
ar
X

iv
:2

41
0.

10
52

8v
1

 [
cs

.N
I]

 1
4

O
ct

 2
02

4

Fast Reroute with Highly Connected Routes Based on

Maximum Flow Evaluation

Leon Okida1, Maverson E. S. Rosa1, Elias P. Duarte Jr.1

1Dept. Informatics - Universidade Federal do Paraná (UFPR)

Curitiba – Brazil

{laog19,maverson,elias}@inf.ufpr.br

Abstract. Fault-tolerant routing allows the selection of alternative routes to the

destination after the route being used fails. Fast Reroute (FRR) is a proactive

strategy through which the protocol pre-configures backup routes that are acti-

vated when needed. In this work, we propose the MaxFlowRouting algorithm

that employs maximum flow evaluation as well as the route size to select routes

that are highly connected. The main advantage of the proposed algorithm is that

if any component of such a route fails, there are more alternative paths to the

destination in comparison with the route computed with Dijkstra’s shortest path

algorithm. Simulation results are presented in which we compare the two algo-

rithms (Dijkstra’s and MaxFlowRouting) for multiple different random graphs

(including Erdos-Renyi, Barábasi-Albert, and Watts-Strogatz) and also for the

topologies of some of the most important Internet backbones of the U.S.A., Eu-

rope, Brazil, and Japan: Internet2, Géant, RNP, and Wide.

1. Introduction

Organizations and individuals have become increasingly dependent on computer net-

works, and the Internet in particular. The Internet can present highly unstable behavior at

some instances [1]. A robust network must adopt fault-tolerant routing strategies in order

to recover quickly after the occurrence of failures along the network infrastructure. Fast

Reroute (FRR) [2] is a proactive strategy that activates a backup route when the primary

route fails. FRR has been adopted by several Internet protocols, including IP itself [2],

MPLS [3, 4], and OSPF [5]. The alternative to FRR is to employ a reactive strategy, which

causes the disruption of traffic delivery after some failure of a link or network device until

the tables re-converge to the new topology. Packets for destinations that were previously

reached through the failed route will most certainly be dropped during that re-convergence

period, which can cause serious disruptions of distributed services and applications.

FRR computes backup routes that are stored in the routing tables as alternatives.

In this way, after a router detects a route failure, it can immediately try an alternative path

to the destination. In this case, the disruption time is limited by how long it takes to detect

the failure and invoke the backup route. One must note, however, that the success of FRR

highly depends on the existence of alternative routes that can effectively bypass the failed

router or link.

In this work, we propose the MaxFlowRouting algorithm based on maximum flow

evaluation [6, 7] to select robust routes. Maximum flow evaluation implicitly finds routes

that are as “connected” as possible, given the network topology. Thus it takes into con-

sideration the redundancy of routes available, since the greater the maximum flow, the

http://arxiv.org/abs/2410.10528v1

greater the number of disjoint paths and, consequently, the greater the number of alterna-

tive backup routes that can be used in case of a failure.

s

a

e

b

c

f

d t

Figure 1. Example of next hop selection based on maximum flow evaluation and
route size.

MaxFlowRouting builds a table with multiple next-hop alternatives for each des-

tination. Routes are ordered according to two criteria: maximum flow and route size.

Figure 1 shows an example of how a router running MaxFlowRouting orders the next

hops to a given destination. In the figure, s is the source and t is the destination. The

algorithm is being executed by node s. There are two alternative adjacent links to the

destination: (s, a) and (s, e). MaxFlowRouting evaluates the two alternatives by first re-

moving the source node (that is running the algorithm) plus its adjacent edges from the

graph. The subgraph generated is formed by the darker lines.

To evaluate edge (s, a), node s computes the maximum flow and shortest path

criteria from node a to node t (the destination) and from e to t. The route from a yields a

maximum flow of 2, while the route from e yields a maximum flow of 1. This indicates

that there are two disjoint paths from node a to node t, but a single one from node e to

node t. Furthermore, the route size is also computed, being equal to 2 from a to node t as

well as from e to t. Weights are used to define the influence of the two criteria on route

selection. Since the focus of the algorithm is on fault tolerance, a relatively higher weight

should be employed for max-flow. In the example, the route through a has a preference

over the route through e due to the higher flow value.

We also describe an FRR algorithm based on backtracking that works on any

routing table with multiple alternatives per destination: when one alternative route fails,

the packet can return to try another alternative. Thus the routing succeeds even if the

routing table maintained by the node running the algorithm does not reflect the latest

changes to the network. Note that the routes can be produced by MaxFlowRouting or any

other routing algorithm, such as Dijkstra’s. We show this algorithm works even if a single

unknown route is fully functional.

Simulation results are also presented comparing MaxFlowRouting with Dijkstra’s

shortest path algorithm. The two algorithms (Dijkstra’s and MaxFlowRouting) were ex-

ecuted on multiple different topologies, such as random graphs (including Erdos-Renyi,

Barábasi-Albert, and Watts-Strogatz) and also on some of the most important Internet

backbones of Brazil, the USA, Europe, and Japan: RNP, Internet2, Géant, and Wide. Re-

sults confirm that MaxFlowRouting provides more backup routes to the destination with

slightly larger routes than those of Dijkstra’s algorithm.

The rest of this work is organized as follows. Section 2 presents MaxFlowRouting

2

and the FRR algorithm based on backtracking. Section 3 presents experimental results

obtained with simulation. Related work is in Section 4, and the conclusions in Section 5.

2. The MaxFlowRouting Algorithm

This section presents the proposed MaxFlowRouting algorithm. Furthermore, an FRR

algorithm with backtracking is also presented, Note that both algorithms are independent:

MaxFlowRouting can produce routes that are employed by another FRR algorithm, and

the FRR with backtracking algorithm can use routes computed by any routing algorithm.

After the specification of the algorithms, case studies are presented, and the proof that

the FRR algorithm successfully routes a message to the destination even if there is a

single fully functional route and the routing table is not up-to-date with the real network

topology.

2.1. MaxFlowRouting: Specification

A node running the algorithm maintains the graph G = (V,E) locally as a representation

of the network topology. Note that algorithm does not require the graph to exactly reflect

the real network topology, after any node detects some topology change, this should be

disseminated to the other nodes. The routing table is updated after a node receives the

new topology information and updates the graph G accordingly. Each node runs Algo-

rithm 1 (MaxFlowRouting) to generate and update the routing table for all possible

destinations. As described next, MaxFlowRouting uses a combination of maximum

flow evaluation and route size to order the candidate next hops for each destination.

Maximum flow evaluation [7, 8] allows the determination of the path of greatest

capacity between two vertices of a graph G. In this work all edge capacities are the

same and equal to 1. Actually, the maximum cut is equivalent to another abstraction

whose application to fault-tolerant routing is even more intuitive: that is the minimum

cut, defined next. The minimum cut m between two vertices u and v of graph G is a set

of edges C such that, the removal of all edges in C from G disconnects u and v, i.e. there

is no path in G from u to v. The size (or cardinality) of a cut C, denoted by |C|, is the

number of edges in C. Furthermore, a cut C is called the minimum cut if, for every cut

C ′ between the same pair of nodes, |C| ≤ |C ′|. For any pair of vertices in the network,

the maximum flow and the minimum cut have the same cardinality and can be computed

using the same algorithms.

The selection of the next hop is done through the evaluation of all neighbors. An

evaluation function Γ(G′, i) is executed by each node s for each of its neighbors i, on a

graph G′ = (V ′, E ′), where V ′ = V − s and E ′ = E − (s, j), ∀j|(s, j) ∈ E. Function

Γ(G′, i) returns a numeric value for each neighbor i adjacent to s, the highest the better.

Besides the maximum flow, Γ(G′, e) is computed also using the route size, so that

it is calculated with the expression Γ(G′, e) = w1 ∗ c1(e) +w2 ∗ c2(e). In this expression,

maximum flow evaluation (criterion c1) and route size (criterion c2) are the two criteria

used to evaluate neighbor i as the next hop to the destination. Each criterion has a weight

(w1 and w2, respectively) which dictates how much each criterion influences the final

value function Γ(G′, i) computes. Thus, from a given vertex s, all adjacent edges are

sorted as the next hop of choice according to Γ(G′, i). Next hops with the highest values

for Γ(G′, e) are chosen first for routing a message to a certain destination.

3

Algorithm MaxFlowRouting is executed by each node i, which initially re-

moves itself from the G known topology, generating the graph G′. After that, s computes

the maximum flow from each neighbor to the destination t. Furthermore, s computes the

distance from each neighbor to each destination. Finally function Γ(G′, j) is computed

for each neighbor to each destination, using the weighted maximum flow and distance.

For each destination (routing table entry), there is a list of CandidateNextHops. This or-

dered list is initialized empty. A neighbor is included in CandidateNextHops if it has a

path to the final destination in G. Finally, the edges in CandidateNextHops are ordered

according to the evaluation function Γ(G′, i).

Algorithm 1 Specification of the MaxFlowRouting routing algorithm: generation of

the routing table by node i.

1: procedure MAXFLOWROUTING(s)

2: let G′ ← G− {i}
3: for each destination t in G′ do

4: let CandidateNextHops← empty list

5: for each neighbor j adjacent to i in G do

6: if there is no path through j to t in G′ then

7: ignore j
8: else

9: add j to CandidateNextHops Compute Γ(G′, j) ←
MaxF low(j, t) ∗ w1 +Distance(j, t) ∗ w2

10: if CandidateNextHops contains more than one edge then

11: ∀j in CandidateNextHops sort those neighbors according to function

Γ(G′, j)

12: RoutingTable[t]← CandidateNextHops

The routing table generated with algorithm MaxFlowRouting is used as the

basis for the message forwarding procedure such as the FRR with backtracking algorithm

presented as Algorithm 2. This algorithm uses the routing table to select the next hop to a

given destination.

Algorithm FastReRouteWithBacktracking is executed by node i to for-

ward a message to a destination node t. First of all, node i checks whether it is a neighbor

of node t, and in this case sends the message directly to t. Each message msg carries the

sequential list of vertices through which it has passed so far, called msg.V isited. Node

i adds itself to msg.V isited in case it is not already there. If it is there and it receives

the message again then a cycle is detected, and this can only happen after a message is

backtracked from a neighbor that did not have any route to the destination. Now node i
selects the next hop to forward the message. It chooses the best-ranked next hop in the

corresponding routing table entry which is not in msg.V isited. In case there is no such a

node to forward the message to, node i backtracks the message to node h, from which it

had received the message. In case there is no h before i then i is the source s and there is

no route from s to t.

4

Algorithm 2 Specification of a Fast-ReRoute algorithm with backtracking.

procedure FASTREROUTEWITHBACKTRACKING(i)

2: if t is adjacent to i ∈ G′ then

send message msg to t
4: else if msg.V isited does not contain node i then

add node i to msg.V isited
6: if RoutingTable[t] contains nodes that are not in msg.V isited then

choose the following sorted next hop j in RoutingTable[t], such that j /∈
msg.V isited

8: send message msg to j
else// There is no node to forward the message to

10: if msg.V isited contains at least one node h before i then

send msg back to h
12: else// The message was backtracked to the source s

return Error: There is no route from the source s to t

2.2. MaxFlowRouting & FRR with Backtracking: Case Studies

Figures 2(a) and 2(b) show two case studies of the proposed MaxFlow Routing and FRR

with backtracking algorithms. Figure 2(a) presents a situation in which link (b, t) fails.

Node b would use that link for forwarding a message. At the time the message is sent

by the node s, only node b is aware of the failure. Initially, node s sends the message to

node a, as it is its only routing alternative to the destination t. Considering that node a’s

routing table presents node b as the alternative that has the highest value returned by the

evaluating function Gamma, a forwards the message to node b, which does not have a

route to the destination and thus ends up returning the message to the node from which

it was received, i.e. node a. After receiving the same message again, node a checks the

routing table searching for the entry that has the highest value returned by the evaluation

function Gamma and which has not been previously visited by the message: the result is

node c. Node a then forwards the message to node c. At this point the main path taken by

the message is represented as s− > a− > c, with node b also marked as visited, but not

included in the route actually used to reach the destination.

The routing table of node c presents three alternatives a, h, d (ordered according

to function Γ) for the destination t. Node c would thus first choose node a however it

is already marked as visited by the message. Thus node c selects node h. Note that

evaluation of node h presents a higher value than that of node d, because, when node

c and all its adjacent edges are removed from graph G′, despite both nodes h, d having

the same value for the maximum flow, the minimum path to node t is shorter through

h (h− > a− > b− > t), node c considers that path as it is unaware that link (b, t)
has failed. As it was in b, When node h receives the message, it learns that there are no

working routes for the destination, and node b has been already visited by the message.

Thus node h returns the message to node c, which now forwards the to node d. From node

d, the message follows the path e− > f− > g− > t to reach the final destination.

Figure 2(b) shows a second case study, which represents a situation in which a

minimum cut edge is selected for routing. Again a message is sent from source node s
to destination node t. In the original topology (graph G) Node s has four alternatives to

5

(a) A link fails as a message is being transmitted. (b) The choice of an edge of a minimum cut.

Figure 2. MaxFlowRouting and FRR with Backtracking case studies.

forward the message to: a, c, g, and h. However, function Gamma is computed on G′

which is obtained by removing s and all its adjacent edges from G. In G′ the number

of alternatives for node s reduces to two nodes: c and a. Function Gamma returns a

higher value for c, as through this node there are two disjoint paths to t. The message then

reaches the destination through the path c− > d− > t. Note that this path has multiple

alternatives that can be used in case there is some failure.

2.3. Proof of Correctness

In this section, we prove that FRR with backtracking succeeds routing a message from

node s to node t across the network represented by graph G if there is at least one working

(non-failed) route from the source to the destination.

Theorem 2.1. Consider graph G = (V,E) representing the network topology

and that two arbitrary vertices s, t ∈ V , representing the source and the destination of a

message m. Algorithm FRR with backtracking is able to successfully route a message

from s to t if there is at least one working route from s to t in G.

Proof. A node running algorithm FRR with backtracking tries to send the message

via the best-evaluated next hop of the corresponding entry of its routing table. The node

corresponding to that next hop also does the same, and so on, until the message reaches

t. However, if some node, say node j, of that route finds out that there is no working

path to the destination, it will backtrack the message to the previous node from which it

received the message, say node i. Node i then tries the next best evaluated next hop, say

k and the process repeats: if there is no working route from node k to t, it will return

to node i. After node i tries all alternatives without success, it backtracks the message.

Backtracking can happen until the source, node s, which will also try all alternatives, and

so if there is at least a single working route to the destination, that route will be found and

used to successfully deliver the message to the destination t. ✷

3. Simulation Results

This section presents experimental results obtained with simulation. The proposed algo-

rithm was compared with Dijkstra’s shortest path algorithm [9]. To be precise, the route

computed by MaxFlowRouting (Algorithm 1) was compared to the route computed by

Dijkstra’s algorithm. For the maximum flow evaluation, we employed the Highest-Label

Preflow-Push algorithm [10, 11]. MaxFlowRouting was executed in the experiments con-

sidering three different pairs of weights for the Maximum Flow evaluation (MF) and for

6

the Shortest Path evaluation (SP). The chosen sets were: 2 for MF and -5 for SP, which

favors smaller route sizes; 5 for MF and -5 for SP, which balances the influence of both

size and connectivity; and 5 for MF and -1 for SP, which favors route connectivity.

The two algorithms were compared using three metrics. The first metric is the

average size of routes. The second metric is the sum of the degrees of all vertices along

the routes. The idea is that a vertex with greater degree has a higher probability of having

an alternative route to the destination. The third metric is the average number of backup

routes available per vertex of each path. A backup route is a route that is disjoint from the

original route selected by either of the algorithms. This metric is computed as follows.

Initially, the edges of the original route are removed from the graph. Next, for each vertex

of the route, except for the source and destination, we check whether there is a backup

route to the destination. If there is indeed a backup route, the counter of backup routes of

the corresponding vertex of the original route is incremented. In the end, the sum of all

obtained backup routes is computed and it is divided by the size of the route, excluding

the origin and destination vertices, thus obtaining the average number of disjoint backup

routes per vertex.

The routing algorithms were executed on multiple different topologies. For each

graph, we computed the routes between all possible pairs of vertices. First, we generated

Erdos-Renyi random graphs. In those graphs the number of edges adjacent to each vertex

is determined by a connectivity parameter 0 < C ≤ 1. The C reflects the probability of

any two processes being adjacent. Thus when C = 1.0, the connectivity is 100%, that

is, the network can be represented by a complete graph. Similarly, when C = 0.5 the

probability that there is an edge between any two processes is 50%, and so on. In this

paper, results are presented for simulations performed with the number of vertices equal

to 100, 150, and 200 with connectivities C = 0.1, 0.3, 0.5, and 0.7. Two other types of

random graphs were also evaluated: the Barabási-Albert Preferential Attachment graph

and the Watts-Strogatz Small World graph. These graphs were also generated with sizes

equal to 100, 150, and 200 vertices.

Furthermore, we executed the routing algorithms also for real Internet topologies.

We selected the most important topologies of Brazil, USA, Europe, and Japan: RNP [12],

Internet2 [13], Géant [14], and Wide [15]. For all metrics experiments, we only present

results for the cases in which the route generated by MaxFlowRouting differed from that

generated by Dijkstra’s algorithm.

3.1. Random Graphs with Varying Connectivity

The Erdos-Renyi Random Graph [16] is a graph with N vertices and the probability that

there an edge between any two vertices is C. Experiments were executed for graphs of

sizes N = 100, 150, and 200, and connectivity levels of C = 0.1, 0.3, 0.5 and 0.7. The

pairs of weights were: MF=2 and SP=-5, MF=5 and SP=-5, and MF=5 and SP=-1. The

results are presented in table 1.

Figure 3 shows clearly that MaxFlowRouting computed routes with more average

backups per vertex than Dijkstra’s algorithm. The number of backups per vertex increases

in larger graphs. However, the difference between the two algorithm’s results reduces as

the graphs become more connected. It is also noticeable that the different pairs of weights

had little effect on the proposed algorithm.

7

Table 1. Results for Erdos-Renyi random graphs with varying connectivity.
N C Weights Avg size Avg Deg Sum Avg Backups Route diff (%) D - Avg size D - Avg Deg Sum D - Avg Backups

100 0.1 MF=2, SP=-5 3.95 48.09 11.56 35.61% 3.54 37.45 8.11

100 0.1 MF=5, SP=-5 4.27 54.70 12.43 38.52% 3.47 38.20 8.84

100 0.1 MF=5, SP=-1 4.85 60.57 11.62 50.74% 3.47 36.33 8.20

150 0.1 MF=2, SP=-5 3.85 68.59 17.81 36.38% 3.39 52.86 12.86

150 0.1 MF=5, SP=-5 4.37 76.01 16.99 39.07% 3.38 50.59 12.36

150 0.1 MF=5, SP=-1 4.24 69.67 17.26 44.06% 3.37 50.21 12.32

200 0.1 MF=2, SP=-5 3.78 88.55 23.62 32.50% 3.25 67.12 17.50

200 0.1 MF=5, SP=-5 4.32 99.99 23.00 40.51% 3.24 65.32 17.26

200 0.1 MF=5, SP=-1 4.25 103.68 24.45 38.64% 3.20 67.29 17.92

100 0.3 MF=2, SP=-5 3.03 98.60 33.67 22.80% 3.00 87.98 24.52

100 0.3 MF=5, SP=-5 3.13 102.55 33.54 37.81% 3.00 89.64 25.77

100 0.3 MF=5, SP=-1 4.14 106.73 34.59 21.25% 3.00 94.60 28.56

150 0.3 MF=2, SP=-5 3.02 148.99 51.57 37.35% 3.00 137.32 41.03

150 0.3 MF=5, SP=-5 3.09 150.45 50.44 32.33% 3.00 135.62 40.64

150 0.3 MF=5, SP=-1 3.07 149.19 50.76 39.75% 3.00 133.99 39.87

200 0.3 MF=2, SP=-5 3.09 196.16 65.21 41.71% 3.00 177.02 52.78

200 0.3 MF=5, SP=-5 3.03 194.03 67.53 30.30% 3.00 177.59 53.70

200 0.3 MF=5, SP=-1 3.07 194.70 66.17 30.51% 3.00 177.79 54.60

100 0.5 MF=2, SP=-5 3.00 155.85 54.45 32.22% 3.00 142.10 40.97

100 0.5 MF=5, SP=-5 3.01 163.87 56.80 16.32% 3.00 154.81 48.89

100 0.5 MF=5, SP=-1 3.04 157.87 53.77 20.50% 3.00 145.92 44.28

150 0.5 MF=2, SP=-5 3.01 234.37 80.28 23.95% 3.00 223.38 70.23

150 0.5 MF=5, SP=-5 3.02 241.53 81.98 16.54% 3.00 232.04 74.12

150 0.5 MF=5, SP=-1 3.02 230.44 78.18 21.77% 3.00 219.48 68.95

200 0.5 MF=2, SP=-5 3.00 310.89 105.78 31.07% 3.00 298.18 93.42

200 0.5 MF=5, SP=-5 3.01 313.88 106.80 11.96% 3.00 301.82 96.81

200 0.5 MF=5, SP=-1 3.01 315.93 107.21 22.98% 3.00 302.64 95.56

100 0.7 MF=2, SP=-5 3.00 213.45 72.62 16.30% 3.00 204.92 64.09

100 0.7 MF=5, SP=-5 3.01 216.81 74.08 12.76% 3.00 199.06 57.44

100 0.7 MF=5, SP=-1 3.00 214.21 72.28 9.27% 3.00 206.80 64.88

150 0.7 MF=2, SP=-5 3.00 318.70 109.01 7.24% 3.00 307.75 98.06

150 0.7 MF=5, SP=-5 3.00 318.62 107.48 24.80% 3.00 306.67 95.93

150 0.7 MF=5, SP=-1 3.01 326.50 110.13 11.83% 3.00 318.72 103.31

200 0.7 MF=2, SP=-5 3.00 432.45 146.78 14.04% 3.00 422.60 136.94

200 0.7 MF=5, SP=-5 3.00 429.13 145.04 12.72% 3.00 418.94 135.21

200 0.7 MF=5, SP=-1 3.00 428.44 145.06 15.18% 3.00 417.00 133.76

8

Figure 3. Comparison of the average backups per vertex computed by each al-
gorithm, connectivity C = 0.1 (left) and C = 0.7 (right). Purple: MaxFlowRouting
MF = 2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue: MaxFlowRouting
with MF = 5, SP = -1. Yellow: Dijkstra.

Considering the average vertex degree metric, as shown in Figure 4 the number of

backups per vertex of the routes computed by MaxFlowRouting is higher than that of Di-

jkstra’s. The difference however reduces as the connectivity increases. The difference in

the results given by the different sets of weights also reduces as the connectivity increases.

Furthermore, the average vertex degrees increases with larger graphs.

Figure 4. Comparison of the average vertex degrees computed by each algo-
rithm, connectivity C = 0.1 (left) and C = 0.7 (right). Purple: MaxFlowRouting MF
= 2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue: MaxFlowRouting
with MF, and SP = -1. Yellow: Dijkstra.

The size of the routes computed by MaxFlowRouting was just slightly higher than

those of Dijkstra’s, as shown in Figure 5. The difference decreased in graphs with higher

connectivity. In the graph with connectivity 0.1, MaxFlowRouting with MF=2 and SP=-5

went from 3.95 at N = 100, to 3.85 at N = 150, and 3.78 at N = 200, while Dijkstra

went from 3.54 at N = 100, 3.39 at N = 150 and 3.25 at N = 200. In the graph with

connectivity 0.7, both algorithms had average route sizes of 3, for all graph sizes (N).

3.2. Preferential Attachment Graphs

The Barabási-Albert Preferential Attachment Graph [17] is a random graph with N ver-

tices. The graph is incrementally generated by adding vertices with degree m edges, each

9

Figure 5. Comparison of the average route sizes computed by each algorithm,
connectivity C = 0.1 (left) and C = 0.7 (right). Purple: MaxFlowRouting MF = 2
and SP = -5. Green: MaxFlowRouting MF = 5 and SP = -5. Blue: MaxFlowRouting
MF = 5 and SP = -1. Yellow: Dijkstra.

Table 2. Results of the experiments with the Preferential Attachment Graphs.

N Weights Avg size Avg Deg Sum Avg Backups Route diff (%) D - Avg size D - Avg Deg Sum D - Avg Backups

100 MF=2, SP=-5 4.21 44.66 13.19 26.10% 4.10 36.93 9.80

100 MF=5, SP=-5 4.27 49.61 15.18 29.11% 3.99 37.30 10.51

100 MF=5, SP=-1 4.14 53.26 17.88 27.05% 3.98 43.10 13.52

150 MF=2, SP=-5 4.26 55.27 17.64 25.13% 4.16 47.02 14.09

150 MF=5, SP=-5 4.60 61.86 17.59 30.38% 4.16 45.50 13.29

150 MF=5, SP=-1 4.38 69.67 22.94 27.69% 4.12 53.50 17.31

200 MF=2, SP=-5 4.39 63.53 20.26 26.40% 4.30 55.02 16.86

200 MF=5, SP=-5 4.60 69.65 20.74 31.14% 4.20 51.38 15.53

200 MF=5, SP=-1 4.97 72.33 20.05 29.56% 4.23 52.78 16.08

of the edges connects the new vertex with existing vertices, preferentially with those of

higher degrees, that is, that have more neighbors. Experiments were executed for graphs

of sizes N = 100, 150, and 200, and vertices with m = 3 edges. tThe pairs of weights

were: MF=2 and SP=-5, MF=5 and SP=-5, and MF=5 and SP=-1. Results are presented

in table 2.

Figure 6 shows that MaxFlowRouting produces routes with higher average back-

ups per vertex than Dijkstra’s algorithm with all 3 pairs of weights. However, the pair

of weights MF = 5 and SP = -1 gave the proposed algorithm a high variability when N
varied, from 17.88 backup routes per vertex with N = 100, going up to 22.94 backup

routes per vertex with N = 150, but dropping to 20.05 at N = 200.

Figure 7 shows that the total vertex degrees of the routes computed by the pro-

posed algorithm were higher than those of Dijkstra’s. For all algorithms, the sum of

vertex degrees grew as N grew. MaxFlowRouting with the pair of weights MF = 5 and

SP = -1 produced the routes with the highest total degrees.

Figure 8 shows that considering route size, the proposed algorithm with the pair

of weights MF = 2 and SP = -5 produces routes that are just slightly longer than the routes

produced by Dijkstra’s algorithm. MaxFlowRouting with the weights MF = 5 and SP =

-1 showed a significant increase in route sizes as N grew.

10

Figure 6. Comparison of the average number of backup routes per vertex. Purple:
MaxFlowRouting MF = 2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue:
MaxFlowRouting MF = 5, SP = -1. Yellow: Dijkstra.

3.3. Small World Graphs

The Watts-Strogatz Small World graph [18] is a random graph with N vertices generated

initially as a ring-like topology in which each vertex is connected to its k nearest neigh-

bors. Then the graph is constructed by replacing with a probability p each edge (u, v) by

a new edge (u, t), where t is a randomly selected vertex of the graph.

Experiments were executed on graphs of sizes N = 100, 150, and 200, vertices

with k = 4 neighbors, and the probability p = 0.4 of edge replacement, and pairs of

weights MF=2 and SP=-5, MF=5 and SP=-5, and MF=5 and SP=-1.

Figure 9 shows the average number of backup routes per vertex of the routes com-

Table 3. Results of the experiments executed on Small World Graphs.

N Weights Avg size Avg Deg Sum Avg Backups Route diff (%) D - Avg size D - Avg Deg Sum D - Avg Backups

100 MF=2, SP=-5 5.61 26.41 3.06 25.39% 5.50 24.22 2.57

100 MF=5, SP=-5 6.07 28.50 2.96 38.75% 5.04 21.66 2.34

100 MF=5, SP=-1 10.76 54.91 3.37 60.28% 4.97 21.94 2.54

150 MF=2, SP=-5 5.96 27.11 2.80 23.65% 5.86 25.29 2.43

150 MF=5, SP=-5 6.47 31.77 3.22 37.15% 5.49 24.48 2.57

150 MF=5, SP=-1 13.98 70.97 3.28 60.14% 5.27 23.00 2.46

200 MF=2, SP=-5 6.16 28.57 2.91 22.23% 6.07 26.47 2.48

200 MF=5, SP=-5 7.08 34.08 3.05 31.14% 5.82 25.45 2.45

200 MF=5, SP=-1 15.46 74.51 2.94 70.51% 5.64 24.17 2.36

11

Figure 7. Comparison of the average route vertex degrees. Purple:
MaxFlowRouting MF = 2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue:
MaxFlowRouting MF = 5, SP = -1. Yellow: Dijkstra.

puted by Dijkstra’s and the proposed algorithm. It is noticeable that the proposed algo-

rithm surpassed Dijkstra’s algorithm for all three pairs weights employed. However, it is

also possible to see that the variation was quite high as the graph sizes (N) varied. Routes

computed with MaxFlowRouting with the weights MF=5 and SP=-1 presented 3.37 back-

ups per vertex with N = 100, dropped slightly to 3.28 with N = 150 and even further to

2.94 with N = 200. Dijkstra was surpassed on larger graphs by the proposed algorithm

with the weights MF=5 and SP=-5, which had 2.96 backups per vertex at N = 100, going

up to 3.22 backups per route at N = 150 and dropping to 3.04 with N = 200.

Figure 10 shows that the largest average sum of vertex degrees was for routes

computed by MaxFlowRouting with the pair of weights MF=5 and SP=-1. This was ex-

pected, as this pair of weights favors route connectivity. With other pairs of weights,

MaxFlowRouting also showed an advantage compared to Dijkstra’s algorithm consider-

ing this metric.

In terms of average route size, Figure 11 shows that the routes computed by

MaxFlowRouting with weights MF=2 and SP=-5 were the shortest, compared to those

computed with the other two pairs of weights (MF=5 and SP=-5 and MF=5 and SP=-1).

In the best case, the routes computed with the proposed algorithm were just slightly larger

than Dijkstra’s, which computes the routes with the shortest sizes possible.

12

Figure 8. Comparison of the average route sizes. Purple: MaxFlowRouting MF =
2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue: MaxFlowRouting MF =
5, SP = -1. Yellow: Dijkstra.

3.4. Internet Topologies: RNP, Internet2, Géant, and Wide

Experiments were also conducted on graphs representing real Internet topologies from

the U.S.A., Europe, Brazil, and Japan. The Internet2 backbone [13] has a topology with

access points all around the U.S.A. The GÉANT network [14] is a European backbone

that connects research and educational networks around the continent. The RNP Ipê net-

work [12] is a Brazilian academic network that covers the whole country. The Wide

network [15] is a backbone that connects universities, research institutions, and compa-

nies in Japan. The graph representing the Internet2 topology has N = 54 vertices, the

Géant topology has N = 44 vertices, the RNP topology has N = 28 vertices, and the

Wide topology has N = 14 vertices. The results are shown in table 4.

Figure 12 shows that MaxFlowRouting with all 3 pairs of weights, produces routes

with more backups per vertex than Dijkstra’s algorithm for all networks. It is also pos-

sible to see that there was little variation between the results produced by the proposed

algorithm with the different pairs of weights. The average number of backups per vertex

did vary from one network to another.

As shown in Figure 13, MaxFlowRouting produced the routes with the largest

average sum of vertex degrees for pair of weights MF = 5 and SP = -1. But even the other

pairs of weights computed routes with average sums of vertex degrees that surpassed

Dijkstra’s, with a particularly large gap for the Wide topology.

13

Figure 9. Comparison of the average backups per vertex. Purple: MaxFlowRout-
ing MF = 2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue: MaxFlowRout-
ing MF = 5 and SP = -1. Yellow: Dijkstra.

Figure 14 shows that the routes computed by the proposed algorithm with the

pair of weights MF = 2 and SP = -5 were the shortest, compared to those produced with

the other pairs of weights. The routes produced by it were slightly larger than the ones

produced by Dijkstra’s algorithm, which computes the shortest paths. For the Internet2

topology, the pair of weights MF = 5 and SP = -5 outperformed the other pairs of weights

considering route sizes and real Internet backbone topologies.

4. Related Work

IP FRR (IP Fast Reroute) [19] was first proposed in the context of the convergence issues

of BGP (Border Gateway Protocol), that were very evident at that time [20]. With the

increasing demand for low-latency by Internet applications, the slow convergence trans-

lates into an important concern. One of the first IPFRR strategies for rerouting traffic

through pre-computed alternatives was proposed by Kvalbein and others [21]. The cen-

tral idea of the strategy, called Multiple Routing Configurations (MRC), consists of using

the known topology of the network and building a set of routing alternatives. MRC was

further improved by Tarik et. al..

The work by Cicik and others [22] is an alternative to IPFRR (IP Fast ReRoute)

that maintains several competing views of the topology of the network, allowing rapid re-

covery after failures occur. Another approach that proved to be effective for fault-tolerant

14

Figure 10. Comparison of the average sum of route vertices degrees. Purple:
MaxFlowRouting MF = 2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue:
MaxFlowRouting MF = 5, SP = -1. Yellow: Dijkstra.

routing on the Internet and which consists of taking direct action on the IP protocol itself,

is the use of not-via addresses [23]. Not-via is a mechanism for protecting the IP routing

against failed links or routers. Routers learn about not-via addresses so that they can avoid

certain paths.

After a link or router fails, routing protocols present a latency to update the rout-

ing tables so that they reflect the new topology. There are algorithms for discovering

and maintaining the topology of dynamic networks, such as [24]. Distributed diagno-

sis algorithms for general topology networks are also used to monitor the network and

disseminate new event information that can be employed to update the routing tables

[25, 26]. There are multiple distributed strategies for monitoring the network topology,

including those based on evolutionary algorithms [27]. Intelligent strategies have also

been explored for communications in dynamic networks [28]. Although traditional diag-

nosis algorithms require perfect tests, recently a diagnosis model has been presented for

asynchronous systems, which is based on imperfect tests [29].

Ohara and others presents in [30] a new family of algorithms that, given the net-

work topology, calculates a directed acyclic graph (DAG - Directed Acyclic Graph) that

also takes into account the maximum flow. The efficiency of the proposed method is eval-

uated through the complexity of the developed algorithms and also through the simulation

of the strategy on different topologies of Internet ASes (Autonomous Systems).

15

Figure 11. Comparison of the average route sizes. Purple: MaxFlowRouting MF
= 2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue: MaxFlowRouting MF
= 5, SP = -1. Yellow: Dijkstra.

Although MaxFlowRouting is related to the proposal in [31], as both use max-

imum flow evaluation for robust routing, the main difference is that routing algorithm

based on maximum flow evaluation is presented that does not require previous knowledge

of the topology and can be applied to external routing. Routes are computed as a packet

reaches a router given the path traversed so far and the alternatives to the destination. The

algorithm disregards the routes that go through any node already visited by the message

when computing the maximum flow. In this way, this process of routing is dependent

on the context of each message, and also on the set of nodes visited by each message

at each node traveled. That algorithm presents a high cost, which prevents its practical

application to real networks.

Yet another related approach for fault-tolerant routing is the set of connectivity

criteria proposed by Cohen and others [32]. The set of quantitative criteria assesses node

connectivity. Each network node receives a label – called connectivity number – that in-

dicates the number of edges that have to fail for that node to disconnect from the network.

The authors show that the connectivity numbers can be computed in polynomial time.

Connectivity numbers have been employed to choose a so called “routing proxy” [33]

which is a relay node on the application level that can forward a message to a given desti-

nation. The path through the routing proxy to the destination has been called a “detour”,

and has employed in the context of network management [34] and general application

16

Table 4. Results observed in experiments with the Intenet Topologies
Topology Weights Avg size Avg Deg Sum Avg Backups Route diff (%) D - Avg size D - Avg Deg Sum D - Avg Backups

Internet2 MF=2, SP=-5 9.72 26.76 0.83 12.30% 9.72 25.55 0.63

Internet2 MF=5, SP=-5 9.49 26.38 0.87 16.35% 9.23 24.50 0.67

Internet2 MF=5, SP=-1 10.42 28.70 0.83 44.09% 9.02 24.18 0.73

Géant MF=2, SP=-5 6.46 25.16 2.32 25.31% 6.46 25.04 2.32

Géant MF=5, SP=-5 6.77 26.42 2.36 34.20% 6.41 23.77 2.08

Géant MF=5, SP=-1 7.61 30.11 2.37 43.09% 6.25 23.00 2.01

RNP MF=2, SP=-5 4.44 25.79 5.73 17.99% 4.44 22.17 4.11

RNP MF=5, SP=-5 4.42 25.54 5.71 19.31% 4.35 21.26 3.85

RNP MF=5, SP=-1 4.74 27.02 5.57 19.84% 4.38 21.32 3.84

WIDE MF=2, SP=-5 3.66 17.66 5.00 3.29% 3.66 13.66 2.33

WIDE MF=5, SP=-5 3.83 18.83 5.00 6.59% 3.33 11.50 1.83

WIDE MF=5, SP=-1 3.83 18.83 5.00 6.59% 3.33 11.50 1.83

PDUs [35].

As mentioned before maximum flow is equivalent to finding the minimum cut. A

cut tree [36] is a combinatorial structure that represents the edge-connectivity between

all pairs of nodes, solving the all pairs minimum cut problem efficiently. Parallel cut

algorithms have been proposed to speed up the computation of a cut tree of a given graph,

which can be employed to compute the minimum cut between all pairs of nodes and thus

speedup the computation of routes by MaxFlowRouting. Parallel versions of both the

Gusfield algorithm [37] and the Gomory-Hu algorithm [38, 39] have been proposed.

Path diversity has been considered in multiple environments. Chen and others [40]

propose a fault-tolerant routing algorithm for a NoC (Network-on-Chip). Besides fault-

resilient the authors also consider traffic balancing through the multiple routes. Hasan

and others [41] propose a particle multi-swarm optimization (PMSO) routing algorithm to

construct, recover, and select k-disjoint paths that tolerate faults while satisfying quality of

service requirements in the context of the Internet of Things. Finally, Shyama and others

[42] propose a fault-tolerant routing algorithm based on swarm intelligence that relies on

multiple paths to the destination in the context of wireless sensor networks, which require

metrics such as minimizing energy consumption.

5. Conclusions

This work proposed MaxFlowRouting, an algorithm that combines maximum flow evalu-

ation with route size to compute robust routes. The purpose is to use MaxFlowRouting in

the context of FRR, as routes are well connected and present more alternatives to reach a

destination in case of a route failure. Besides specifying and evaluating MaxFlowRouting,

we also specify a FRR algorithm with backtracking that we prove to able to successfully

forward a packet from the source to the destination, if there is at least one fully cor-

rect route connecting those nodes. Experimental results were also presented comparing

MaxFlowRouting and Dijkstra’s shortest path algorithm on several topologies. Results

show that MaxFlowRouting produces robust routes that consist of nodes with larger de-

grees, provide a larger number of backup routes, and the route sizes are just slightly larger

than those produced by Dijkstra’s.

Future work should extend MaxFlowRouting to use of other criteria, such as traffic

load and quality of service parameters in addition to the maximum flow and distance

to compute the routes. An experimental evaluation of FRR executed with Dijkstra and

MaxFlowRouting, as well of the impact of the backup routes provided by both algorithms

17

Figure 12. Comparison of the average backups per vertex for real Internet back-
bone topologies. Purple: MaxFlowRouting MF = 2, SP = -5. Green: MaxFlowRout-
ing MF = 5, SP = -5. Blue: MaxFlowRouting MF = 5, SP = -1. Yellow: Dijkstra. From
left to right: Internet2, Géant, RNP, and Wide topologies.

is also left as future work. The construction of a robust version of the OSPF (Open

Shortest Path First) protocol based on MaxFlowRouting is also foreseen as future work.

References

[1] E. Duarte, T. Garrett, L. Bona, R. Carmo, and A. Züge, “Finding stable cliques of planet-

lab nodes,” in 2010 IEEE/IFIP International Conference on Dependable Systems &

Networks (DSN), pp. 317–322, IEEE, 2010.

[2] M. Shand and S. Bryant, “Rfc 5714: Ip fast reroute framework,” 2010.

[3] P. Pan, G. Swallow, and A. Atlas, “Rfc 4090: Fast reroute extensions to rsvp-te for lsp

tunnels,” 2005.

[4] E. P. Duarte Jr, L. Z. Granville, L. Pirmez, J. N. de Souza, R. C. Andrade, L. Tarouco,

R. B. Correia, and A. Lages, “Gigamanp2p: an overlay network for distributed qos

management and resilient routing,” International Journal of Network Management,

vol. 22, no. 1, pp. 50–64, 2012.

[5] C. Filsfils, P. Francois, M. Shand, B. Decraene, J. Uttaro, N. Leymann, and M. Horneffer,

“Rfc 6571: Loop-free alternate (lfa) applicability in service provider (sp) networks,”

2012.

18

Figure 13. Comparison of the average sum of route vertex degrees. Purple:
MaxFlowRouting MF = 2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue:
MaxFlowRouting MF = 5, SP = -1. Yellow: Dijkstra. From left to right: Internet2,
Géant, RNP, and Wide topologies.

[6] L. R. Ford Jr. and D. R. Fulkerson, “Flows in networks,” Princeton University Press,

1962.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 2nd Ed.

McGraw-Hill, 2003.

[8] J. Schroeder, A. Guedes, and E. Duarte Jr, “Computing the minimum cut and maximum

flow of undirected graphs,” Technical report, Federal University of Paraná, 2004.

[9] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathe-

matik, vol. 1, pp. 269–271, 1959.

[10] J. Cheriyan and S. N. Maheshwari, “Analysis of preflow push algorithms for maximum

network flow,” in Foundations of Software Technology and Theoretical Computer

Science, pp. 30–48, Springer Berlin Heidelberg, 1988.

[11] NetworkX, “Preflow-push.” https://networkx.org/documentation/stable/reference/a

2024. Online; accessed 16 July 2024.

[12] RNP, “Ipê network.” https://www.rnp.br/en/ipe-network, 2024. Online; ac-

cessed 11 July 2024.

19

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.flow.maximum_flow.html
https://www.rnp.br/en/ipe-network

Figure 14. Comparison of the average route sizes. Purple: MaxFlowRouting MF
= 2, SP = -5. Green: MaxFlowRouting MF = 5, SP = -5. Blue: MaxFlowRouting MF
= 5, SP = -1. Yellow: Dijkstra. From left to right: Internet2, Géant, RNP, and Wide
topologies.

[13] Internet2, “Layer 1 service.” https://internet2.edu/services/layer-1/,

2024. Online; accessed 11 July 2024.

[14] GÉANT, “GÉant network.” https://network.geant.org/, 2024. Online; ac-

cessed 11 July 2024.

[15] W. Project, “Wide internet official site.” https://two.wide.ad.jp/, 2024. Online;

accessed 11 July 2024.

[16] NetworkX, “Erdős-rényi graph.” https://networkx.org/documentation/stable/reference/

2024. Online; accessed 11 July 2024.

[17] NetworkX, “Barabási-albert graph.” https://networkx.org/documentation/stable/reference

2024. Online; accessed 11 July 2024.

[18] NetworkX, “Watts-strogatz graph.” https://networkx.org/documentation/stable/referenc

2024. Online; accessed 11 July 2024.

[19] M. Gjoka, V. Ram, and X. Yang, “Evaluation of ip fast reroute proposals,” in 2007 2nd

International Conference on Communication Systems Software and Middleware,

pp. 1–8, IEEE, 2007.

20

https://internet2.edu/services/layer-1/
https://network.geant.org/
https://two.wide.ad.jp/
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.watts_strogatz_graph.html

[20] E. Duarte Jr, R. Santini, and J. Cohen, “Delivering packets during the routing convergence

latency interval through highly connected detours,” in International Conference on

Dependable Systems and Networks (DSN), 2004, pp. 495–504, IEEE, 2004.

[21] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast IP Network Recov-

ery Using Multiple Routing Configurations,” INFOCOM 2006. 25th IEEE Interna-

tional Conference on Computer Communications. Proceedings, pp. 1–11, 2006.

[22] T. Cicik, A. Kvalbein, A. F. Hansen, S. Gjessing, and O. Lysne, “Multiple Routing Con-

figurations for Fast IP Network Recovery,” IEEE/ACM Transactions on Networking,

2009.

[23] F. Wang and L. Gao, “IP Fast Reroute Using Not-via Addresses,” IETF Draft, 2009.

[24] B. T. Nassu, T. Nanya, and E. P. Duarte, “Topology discovery in dynamic and decentral-

ized networks with mobile agents and swarm intelligence,” in Seventh International

Conference on Intelligent Systems Design and Applications (ISDA 2007), pp. 685–

690, IEEE, 2007.

[25] E. P. Duarte Jr and A. Weber, “A distributed network connectivity algorithm,” in The

Sixth International Symposium on Autonomous Decentralized Systems, 2003. ISADS

2003., pp. 285–292, IEEE, 2003.

[26] E. P. Duarte, T. Nanya, S. Noguchi, and G. Mansfield, “Non-broadcast network fault-

monitoring based on system-level diagnosis,” in Integrated Network Management

V: Integrated management in a virtual world Proceedings of the Fifth IFIP/IEEE In-

ternational Symposium on Integrated Network Management San Diego, California,

USA, May 12–16, 1997, pp. 597–609, Springer, 1997.

[27] B. T. Nassu, E. P. Duarte Jr, and A. T. Ramirez Pozo, “A comparison of evolutionary

algorithms for system-level diagnosis,” in Proceedings of the 7th annual conference

on Genetic and evolutionary computation, pp. 2053–2060, 2005.

[28] A. S. Banzi, A. T. Pozo, and E. P. Duarte Jr, “An approach based on swarm intelligence for

event dissemination in dynamic networks,” in 2011 IEEE 30th International Sympo-

sium on Reliable Distributed Systems, pp. 121–126, IEEE, 2011.

[29] E. P. Duarte Jr, L. A. Rodrigues, E. T. Camargo, and R. C. Turchetti, “The missing piece: a

distributed system-level diagnosis model for the implementation of unreliable failure

detectors,” Computing, vol. 105, no. 12, pp. 2821–2845, 2023.

[30] Y. Ohara, S. Imahori, and M. R. V., “MARA: Maximum Alternative Routing Algorithm,”

The 28th IEEE Conference on Computer Communications (INFOCOM), 2009.

[31] J. Schroeder and E. Duarte Jr, “Fault-tolerant dynamic routing based on maximum flow

evaluation,” in Latin-American Symposium on Dependable Computing, pp. 7–24,

Springer, 2007.

[32] J. Cohen, E. Duarte Jr, and J. Schroeder, “Connectivity criteria for ranking network

nodes,” in Complex Networks: Second International Workshop, CompleNet 2010,

Rio de Janeiro, Brazil, October 13-15, 2010, Revised Selected Papers, pp. 35–45,

Springer, 2011.

21

[33] E. Duarte and M. A. Musicante, “Formal specification of snmp mib’s using action se-

mantics: The routing proxy case study,” in Integrated Network Management VI.

Distributed Management for the Networked Millennium. Proceedings of the Sixth

IFIP/IEEE International Symposium on Integrated Network Management.(Cat. No.

99EX302), pp. 417–430, IEEE, 1999.

[34] J. Cohen and E. P. Duarte Jr, “Fault-tolerant routing of network management messages in

the internet.,” in LANOMS, pp. 87–98, 2001.

[35] J. Cohen and E. P. Duarte Jr, “Fault-tolerant routing of tcp/ip pdu’s on general topology

backbones.,” in The 3rd IEEE International Workshop on the Design of Reliable

Communication Networks (DRCN’2001), pp. 303–309, 2001.

[36] J. Cohen, L. Rodrigues, and E. Duarte Jr, “Parallel cut tree algorithms,” Journal of Parallel

and Distributed Computing, vol. 109, pp. 1–14, 2017.

[37] J. Cohen, L. Rodrigues, F. Silva, R. Carmo, A. L. Guedes, and E. Duarte, “Parallel im-

plementations of gusfield’s cut tree algorithm,” in Algorithms and Architectures for

Parallel Processing: 11th International Conference, ICA3PP, Melbourne, Australia,

October 24-26, 2011, Proceedings, Part I 11, pp. 258–269, Springer, 2011.

[38] J. Cohen, L. Rodrigues, and E. Duarte Jr, “A parallel implementation of gomory-hu’s cut

tree algorithm,” in 2012 IEEE 24th International Symposium on Computer Archi-

tecture and High Performance Computing, pp. 124–131, IEEE, 2012.

[39] C. Maske, J. Cohen, and E. P. Duarte Jr, “Speeding up the gomory-hu parallel cut tree

algorithm with efficient graph contractions,” Algorithmica, vol. 82, no. 6, pp. 1601–

1615, 2020.

[40] Y. Chen, E. Chang, H. Hsin, K. Chen, and A. Wu, “Path-diversity-aware fault-tolerant

routing algorithm for network-on-chip systems,” IEEE Transactions on Parallel and

Distributed Systems, vol. 28, no. 3, pp. 838–849, 2016.

[41] M. Z. Hasan and F. Al-Turjman, “Optimizing multipath routing with guaranteed fault

tolerance in internet of things,” IEEE Sensors Journal, vol. 17, no. 19, pp. 6463–

6473, 2017.

[42] M. Shyama, A. S. Pillai, and A. Anpalagan, “Self-healing and optimal fault tolerant rout-

ing in wireless sensor networks using genetical swarm optimization,” Computer net-

works, vol. 217, p. 109359, 2022.

22

	Introduction
	The MaxFlowRouting Algorithm
	MaxFlowRouting: Specification
	MaxFlowRouting & FRR with Backtracking: Case Studies
	Proof of Correctness

	Simulation Results
	Random Graphs with Varying Connectivity
	Preferential Attachment Graphs
	Small World Graphs
	Internet Topologies: RNP, Internet2, Géant, and Wide

	Related Work
	Conclusions

