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VNFs and SFCs. The architecture provides multiple recovery mechanisms that
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1 Introduction

Virtualization technology represents the most promising solution to the "Internet
ossification" issue caused by the unanticipated growth that has taken place since the design
of decades-old Internet protocols. With virtualization, the network becomes programmable,
facilitating its evolution along multiple directions. Network Function Virtualization
(NFV) is one of the essential technologies enabling the replacement of hardware-based
middleboxes by software running on off-the-shelf hardware [1]. Virtual Network Functions
(VNFs) are used to implement individual network services, which can be combined to
form complex Service Function Chains (SFCs) consisting of multiple VNFs connected
in a predefined order [2, 3, 4]. Thanks to the availability of NFV technology, network
services that were previously accessible only from a limited number of vendors can now be
downloaded from Internet marketplaces [5]. The adoption of NFV technology has brought
significant benefits in terms of network flexibility and management. To standardize the
execution and management of NFV-based services and ensure interoperability of various
VNFs, the European Telecommunications Standards Institute (ETSI) has proposed the NFV-
MANO architecture [6].

Although network services executed as virtualized software offer several advantages,
it is undeniable that they are more susceptible to failures than traditional specialized
hardware alternatives [7]. The transition from hardware devices to virtualized platforms
brings several challenges regarding dependability [8, 9]. Factors such as the integration
complexity of multiple software systems in different layers, the interoperability of hardware
and software components provided by different vendors, and the limited experience in
operating virtualized network environments are some of the challenges that make it difficult
to ensure the dependability of NFV-based networks.

Proprietary hardware-based middleboxes, on the other hand, are generally designed
with strict resilience goals, similar to the standards defined by carrier-grade systems. The
term “carrier-grade availability” refers to the reliability levels that telecommunication
carriers and service providers offer for their network services and infrastructure, such as
voice communication, data transmission, and internet connectivity. Ensuring carrier-grade
availability (at five nines, 99.999%, which corresponds to less than five minutes of downtime
per year) is critical to the widespread adoption of NFV technology. The ETSI has established
several resiliency requirements for services running in virtualized environments [10, 7].

Several proposals have been put forward to increase the availability of network functions
in virtualized environments [11, 12, 13]. However, these solutions come with limitations,
such as the use of particular technologies or the need to modify VNF code. Some proposals
do not include all the mechanisms necessary to guarantee end-to-end availability. Challenges
are compounded by the fact that most network functions are stateful, requiring detailed
function state management. Additionally, none of the existing solutions fully comply with
the NFV-MANO reference architecture established by the ETSI [6].

In this work we present a novel high availability architecture for NFV-based services,
encompassing both stateful Virtualized Network Functions (VNFs) and Service Function
Chains (SFCs). The architecture, known as NHAM (NFV High Availability Module), has
been integrated as a module into the NFV-MANO reference architecture, aligning with
the specifications put forth by the ETSI. NHAM adopts a virtualization-centric approach,
allowing any VNF or SFC instantiated on the NFV platform to seamlessly inherit the high
availability and resiliency attributes.
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NHAM’s operations are twofold: it manages the internal state of VNFs, and performs
fault management through a plethora of mechanisms that guarantee high availability. To
monitor and control the internal state of VNFs, NHAM leverages checkpoint/restore-based
techniques, thereby ensuring that after a VNF failure, its internal state can be recovered,
retaining its previous state. NHAM also offers four different resiliency mechanisms that
can be used to configure and update VNF replicas. These resiliency mechanisms differ in
terms of computational resources and recovery time, enabling different types of VNFs with
varying availability requirements to recover from failures.

NHAM’s implementation-agnostic design ensures that any NFV-based service can
achieve high availability without any modification of the VNF source code. The virtualized
nature of VNFs enables checkpoints to be taken by saving the network function instance,
providing a generic method to preserve the service state without requiring VNF code
alterations.

Moreover, NHAM addresses the availability of stateful SFCs and puts forth a strategy
to build resilient SFCs. This strategy combines checkpointing with buffer management,
enabling the synchronization of the traffic processed by each VNF with its corresponding
checkpoints. As a result, NHAM guarantees end-to-end service recovery that is complete
and correct, allowing it to tolerate multiple VNF failures and prevent packet losses and
duplications due to failures.

To assess the performance and availability of NFV-based services with NHAM’s
support, a prototype was implemented, and experiments were conducted. We demonstrate
that depending on the strategy and parameters employed, carrier-grade availability can be
achieved. This work is is an extended version of the LADC’2022 paper [14].

The remaining sections of this work are organized as follows. In Section 2, an overview
of NFV and the NFV-MANO architecture, including SFCs, is presented. Section 3 describes
the NHAM architecture, and Section 4 outlines the SFC fault-tolerance strategy. Section 5
presents the implementation and experiments, and Section 6 discusses related work. Finally,
Section 7 concludes the paper.

2 Virtualized Network Functions & Services: An Overview

Network Function Virtualization (NFV) has been proposed as a software-based alternative
for the implementation of network middleboxes, such as firewalls, Network Address
Translation (NAT) devices, Intrusion Detection Systems (IDS), among others. Traditionally,
middleboxes have been available as specialized hardware [15], which can be challenging to
manage and troubleshoot [16]. These services represent a significant portion of a network’s
capital expenditures (CAPEX) and operational expenses (OPEX) [17]. NFV technology
has been also proposed as the means to deploy general COIN (COmputing In the Network)
services within the network [18]. NFV reduces costs, improves flexibility, and simplifies
the design, development, and management of network services [1]. There are also other
advantages, such as reduced energy and physical space requirements [19].

The European Telecommunications Standards Institute (ETSI) has promoted the
development of the NFV-MANO (NFV Management and Orchestration) reference
architecture [6]. This architecture enables virtual functions and services from different
developers to interoperate seamlessly, and includes modules for VNF control and
orchestration, as well as lifecycle and resource management. Additionally, NFV-MANO
defines communication interfaces and provides abstractions for the resources necessary
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Figure 1 The ETSI NFV-MANO architecture.

to execute VNFs [20]. The NFV-MANO architecture, along with the NFVI (NFV
Infrastructure) and the VNFs themselves, are depicted in Figure 1.

The NFVI encompasses the virtualized infrastructure where the VNFs are instantiated,
managed, and executed. This infrastructure comprises physical storage, network, and
computational resources, which are abstracted into virtual resources through a virtualization
layer. The virtualization layer is made up of a hypervisor that creates and manages virtualized
devices, such as Virtual Machines (VMs) and containers, providing isolation for each VNF
to operate independently. In Figure 1, the VNFs symbolize the instances that execute on the
NFVI.

NFV-MANO is composed of three main modules. The first module is the NFV
Orchestrator (NFVO), which facilitates the composition of VNFs on SFCs (Service Function
Chains) [21, 22]. The NFVO is also responsible for managing the SFCs lifecycle and VNFs
resources. The second module is the VNF Manager (VNFM), which is responsible for
VNF lifecycle management, including VNF instantiation, deletion, configuration, and auto-
scaling [23]. To perform its functions, the VNFM utilizes the VNF Descriptor (VNFD),
a template that specifies the operational and deployment requirements for each VNF. The
third module is the Virtualized Infrastructure Manager (VIM), which controls and manages
the computing resources of the NFVI, including the creation, deletion, and reconfiguration
of virtual devices.

Regarding VNF availability, the ETSI has defined several resiliency requirements
for NFV platforms and environments [24, 25]. Specifically, an NFV platform must
support the resiliency of VNFs of different types provided by various vendors. Different
levels of resiliency may be defined because different VNFs have different requirements.
Additionally, to ensure high availability, an NFV platform must provide a comprehensive
fault management system that can detect and help recover from VNF failures. Finally, an
NFV platform must guarantee that stateful VNFs retain their internal state in case of failure.

Despite the fact that many NFV platforms are fully compliant with the NFV-MANO
architecture, none of them offers the complete set of functionalities required to ensure end-
to-end availability for VNFs and SFCs. The aim of the present work is to bridge this gap
by proposing a high availability NFV architecture that integrates with the NFV-MANO
reference model.

Although VNFs perform specific functions, they can be integrated into complex network
services called SFCs. An SFC comprises multiple VNFs connected in a predefined order
through which traffic is routed [2, 26, 27]. According to the Internet Engineering Task Force
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(IETF), the architecture of an SFC (as shown in Figure 2) comprises Classifiers, Service
Function Forwarders (SFFs), and the VNFs themselves, which are briefly described below.

When network traffic enters the SFC, it first reaches the Classifier which applies
predefined policies to determine the appropriate Service Function Path (SFP) to forward the
traffic. These policies may consider several parameters such as source and destination IP
addresses, ports, and protocols (e.g., TCP, UDP) among others. Once the Classifier selects
the appropriate SFP, the traffic is encapsulated and forwarded to the corresponding SFP. As
an SFC can have multiple SFPs, the header of the encapsulated traffic includes an identifier
that specifies the selected SFP.

The Service Function Forwarder (SFF) has the task of transmitting packets from the
Classifier to one or more network functions in a predetermined sequence. It accomplishes
this by utilizing the information included by the Classifier in the SFC header. Once a Virtual
Network Function (VNF) has processed incoming traffic, it sends the processed packets
back to a SFF. Subsequently, the SFF forwards the traffic to the next VNF in the SFP, and
this process repeats until all VNFs have processed the traffic. Finally, upon receiving the
traffic from the last VNF in the SFP, the SFF removes the header from the packets and
delivers the traffic to its ultimate destination.

To summarize, SFCs are a way of composing multiple VNFs to provide end-to-end
network services. They enable the flexible and dynamic chaining of functions, allowing
operators to create new services on demand. SFCs also provide an abstraction layer between
the service provider and the underlying network infrastructure, making it possible to
optimize network traffic by steering it through specific paths. However, ensuring high
availability for SFCs can be challenging, especially in complex environments with many
VNFs and SFCs. In the next section, we propose a high availability architecture that builds
upon the NFV-MANO reference model and provides mechanisms to guarantee service
continuity in the presence of component failures or network disruptions.

3 NHAM: A High Availability NFV Architecture

NHAM (NFV High Availability Module) is an architecture designed to ensure high
availability for NFV. It provides strategies for building resilient VNFs and SFCs, including
failure detection and recovery. NHAM is capable of handling heterogeneous functions and
services from different providers. In a highly available SFC, the system continues to operate
correctly even after faults occur, such as when one or more VNFs crash. As the recovery time
decreases, the availability of the service increases. Detecting and reacting to failures quickly
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is essential to minimize downtime. However, redundancy alone or simply re-instantiating
failed functions is not sufficient to solve the problem [28, 29]. Since most VNFs are stateful,
their internal state changes according to the processed packets and the execution flow of
the function. Hence, preserving the VNF state after recovery is crucial.
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Figure 3 NHAM within the NFV-MANO architecture.

NHAM is a high availability solution for stateful and stateless NFV-based services.
NHAM was designed as a module of the NFV-MANO architecture, and communicates with
the other modules of the NFV-MANO architecture, as shown in Figure 3. NHAM includes
efficient fault management features. VNFs simply inherit high availability properties, with
no need for developers to make any changes to the source code in order to make a service
highly-available. NHAM assumes the classical crash fault model. A description of the
NHAM architecture is presented in the next subsection. The strategy defined by NHAM
to ensure high availability of individual VNFs follows; the strategy for resilient SFCs is
described in the next section.

3.1 NHAM: The Architecture

NHAM is composed of two main components, which are shown in Figure 4: the Fault
Management System (FMS) and the VNF State Manager (VSM). These components are
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Figure 4 NHAM: Architecture.
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described next. The FMS includes functionalities for failure detection and recovery, which
are critical for ensuring high availability in the context of NFV. Failure detection involves
monitoring VNF instances and identifying crashes [30]. NHAM employs two mechanisms
for failure detection. The Failure Detector (FD) module uses a polling strategy, where
messages are sent periodically to the VNFs being monitored, and acknowledgements
are expected to arrive before a timeout expires. The timeout is computed adaptively. In
addition to the polling messages, the FD checks the state of the VNF by directly inspecting
the corresponding virtual device, a feature provided by several hypervisors. If a VNF is
suspected of having crashed, the FD immediately adds it to a list of suspects and sends a
notification message to the VNFM.

Furthermore, the FMS incorporates a Replica Manager that offers a range of resiliency
options which are described in Subsection 3.3 to manage faults and recovery of Virtual
Network Functions (VNFs). Depending on the specific availability requirements of a given
VNF instance, one of four resiliency mechanisms can be selected. Additionally, the FMS
assumes the responsibility of VNF recovery. NHAM has interfaces with the VIM, VNFM,
and NFVO as detailed in Subsection 3.3.

To preserve the internal state of a VNF after recovery and ensure the correct recovery
of stateful VNFs, NHAM employs the VNF State Manager (VSM) component. The VSM
includes a State Synchronizer, an API for handling the internal state of VNFs, and a database
responsible for storing the VNF states. A detailed description of the VSM is in the next
subsection.

As mentioned above, NHAM communicates with other NFV-MANO modules,
including the NFVO, VNFM, and VIM, to perform various tasks related to the lifecycle of
virtualized services. During the recovery of a VNF, NHAM requests the VNFM to create new
VNFs, as an example of NHAM-MANO interaction. Additionally, NHAM can reconfigure
SFCs through the NFVO.

3.2 Stateful VNF Management

The VSM component is responsible for the recovery of stateful VNFs and is based on
checkpoint/restore [31]. Since VNFs run on virtual devices, which can be either virtual
machines or containers, capturing the VNF state without modifying the VNF source code
is perfectly feasible and represents a very attractive option. To achieve this, checkpoints
containing a representation of the system state are periodically captured and saved in non-
volatile memory. In the event of a failure, the system can be restored to the most recent
checkpoint, ensuring the correct recovery of the VNF.

The state of a VNF can be classified as either external or internal [25]. The external state
includes static information that either does not change or changes infrequently over time,
such as firewall/IDS rules and NAT port mapping tables. Recovering the external state is
relatively easy once the VNF has recovered.

The internal state of a VNF, on the other hand, includes information that is updated
as packets are processed and the function executes. Memory mapping, TCP connections,
and cache contents are examples of internal state information. The primary challenge in
managing VNF state is to preserve and ensure the consistency of the internal state, especially
as VNFs fail and recover.

The VSM component of NHAM is responsible for recovering stateful VNFs after a
failure, and it achieves this through the State Synchronizer. The State Synchronizer captures
internal state information and saves VNF checkpoints, which are representations of the
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system state at a particular point in time. To do this, the State Synchronizer employs an
agent that periodically collects internal state information from each VNF.

NHAM defines an API for VNF state management, which consists of two main
operations: export_vnf_state and import_vnf_state. These operations are used to save
and restore the state of a VNF respectively and are described below.

export_vnf_state: This NHAM operation saves a checkpoint of a specific VNF by
momentarily pausing the virtual device to obtain the required state information for the
checkpoint. After the information is obtained and the VNF execution is resumed, the
checkpoint is sent to either the VNF State Database or directly to a replica, depending on
the resiliency mechanism adopted. This operation is necessary to ensure that the internal
state of a VNF is captured and can be restored in case of a failure.

import_vnf_state: This operation is used to restore the state of a VNF with a previously
saved checkpoint. The operation requires two parameters: (i) vnf, which is the VNF instance
identifier, and; (ii) checkpoint, which indicates from where the corresponding checkpoint
has to be imported. To execute the operation, the first step is to momentarily pause the VNF
that will be updated with the checkpoint. Then, the checkpoint is imported and the VNF is
updated. Once the operation is completed, the VNF outputs a code indicating that it was
successfully updated with the new checkpoint.

Note that NHAM also allows the recovery of stateless VNFs, for which it is not required
to save state information. Stateless VNFs do not maintain any internal state that needs to
be saved or recovered. These VNFs are designed to be stateless, as they perform a simple
forwarding operation based on an incoming packet, without storing any information about
the previous packets or connections. Therefore, when a failure occurs, these VNFs can be
easily recovered by simply restarting them. Since they do not have any internal state that
needs to be saved, the import and export VNF state operations are not needed for stateless
VNFs.

3.3 NHAM: Resiliency & Recovery Mechanisms

The choice of resiliency strategy for ensuring high availability of VNFs is dependent on the
specific requirements of each network function [24]. For instance, functions handling real-
time traffic have more rigorous resiliency requirements compared to those handling best-
effort traffic. Thus, the NFV platform should support various strategies that have different
properties and costs.

NHAM features four resiliency mechanisms that rely on two different replication
methods: Active-Standby and Active-Active, both of which are defined by an ETSI standard
[25]. In the Active-Standby method, the VNF replica is already instantiated but is in standby
mode, ready to take over in case the primary instance fails. On the other hand, in the
Active-Active method, the replica has also been instantiated but is actively running and
periodically updating its state, allowing for a more seamless transition in case of a failover.
The choice between these two replication methods ultimately depends on the specific
resiliency requirements of the network function in question.

The cost and recovery time of the different resiliency mechanisms vary, and the selection
of a mechanism for a specific VNF depends on its features and requirements. Each
mechanism employs a different recovery procedure. The resiliency mechanisms and their
corresponding recovery procedures are described in detail below.
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3.3.1 No Redundancy (0R)

The No Redundancy (0R) mechanism does not employ any type of redundancy. Therefore,
in the event of a VNF failure, the only way to recover is to import the last checkpoint and
restart the VNF execution from there. This implies that the service will suffer a downtime
proportional to the time it takes to restore the VNF checkpoint, which can be significant
for stateful VNFs with large state sizes. As shown in Figure 5, the State Synchronizer
periodically takes (in the figure, label 1) and exports (label 2) checkpoints from the VNF to
the VNF State Database.

After a failure occurs (3), the first step of the recovery process is to instantiate a new
VNF (4), replacing the one that has failed. Next, NHAM updates the internal state of the new
VNF. To do so, the State Synchronizer imports the most recent checkpoint from the VNF
State Database (5) to the newly created VNF (6). Once the recovery process is complete,
a reconfiguration process begins. The first step is to obtain the updated information of the
newly instantiated VNF, including its IP address and other identifiers. Then, NHAM sends
this updated information to the corresponding NFV-MANO modules.
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Figure 5 The 0R mechanism.

3.3.2 Primary Replica Active-Standby (1R-AS)

The Primary Replica Active-Standby (1R-AS) resiliency mechanism employs the Active-
Standby method (i.e., warm-standby) with a replica that is instantiated but remains in a
standby mode. As shown in Figure 6, the State Synchronizer exports the VNF checkpoints to
the VNF State Database (in the figure, labels 1 and 2), exactly like the 0R mechanism does.
However, unlike 0R, 1R-AS uses virtual resources to maintain a replica in standby mode,
making it more expensive but with a shorter recovery time. In case of a failure (label 3), the
replica is already created and the State Synchronizer imports the most recent checkpoint
into the replica to update its internal state (4, 5, and 6). Once the internal state is updated, the
replica becomes the primary VNF, and NHAM sends a request to NFV-MANO to update
the required information. A new replica is then instantiated (7) and left in standby mode,
ready to take over in case of a future failure.
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Figure 6 The 1R-AS mechanism.
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3.3.3 Primary Replica Active-Active (1R-AA)

The Primary Replica Active-Active (1R-AA) resiliency mechanism is designed to handle the
high availability of VNFs that require a lower recovery time than the previous mechanisms.
As shown in Figure 7, in the 1R-AA mechanism, each VNF executes as two instances, a
primary and a backup. The primary replica processes incoming traffic, while the backup
replica remains in standby mode. The backup replica receives updates from the primary
through the State Synchronizer (in the figure, labels 1 and 2).
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Figure 7 The 1R-AA mechanism.

In the event of a failure (label 3), the 1R-AA mechanism switches to the backup replica,
which becomes the primary VNF (4). As the backup replica has received all updates from
the primary replica, the failover is immediate. A new backup replica is then created, and the
State Synchronizer imports the most recent checkpoint to that replica, updating its internal
state (5). Finally, the reconfiguration process is executed.

The 1R-AA mechanism is the most expensive in terms of virtual resource consumption
because it requires two replicas for each VNF to remain constantly updated, but provides
the fastest recovery time.

3.3.4 Multiple Replicas Active-Active (MR-AA)

The Multiple Replicas Active-Active (MR-AA) resiliency mechanism is a generalization
of the 1R-AA mechanism. As shown in Figure 8, the VNF is considered to be a member
of a group of 1 +M replicas that are continuously synchronized by the State Synchronizer
(in the figure, labels 1 and 2). Any of the replicas in the group can be accessed to obtain the
service, and the states of the replicas are kept consistent. MR-AA is the most expensive of
all mechanisms, as it requires the synchronization of all the M replicas, but it presents the
shortest downtime in case of failures. No reconfiguration is required after a failure (label 3),
as users can simply access any replica in the group (4). It is possible to specify a minimum
and maximum number of replicas in the group. If the number of correct replicas falls below
the minimum threshold, new replicas are created (5).
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3.4 A Comparison of the Resiliency Mechanisms

Table 1 shows a comparison of the different resiliency mechanisms both in terms of resource
usage (e.g., memory and CPU utilization) and recovery time.

The 0R mechanism presents the lowest cost, and has the longest recovery time. It is ideal
for VNFs that execute low priority functions and can tolerate longer failover times. The
1R-AA mechanism has a shorter recovery time than the 1R-AS mechanism, as its backup
replica is kept up-to-date. The MR-AA mechanism provides the shortest downtime, making
it ideal for VNFs that require the highest level of resiliency. However, it is also the most
expensive mechanism due to the need to synchronize the multiple replicas.

Table 1 Comparison of the different resiliency mechanisms.

Resiliency
Mechanism Method #Replicas Database Recovery

Time
Resource

Usage Reconfiguration

0R None 0 Yes Very High Very Low Yes
1R-AS Active-Standby 1 Yes Moderate Low Yes
1R-AA Active-Active 1 No Low High Yes
MR-AA Active-Active M No Very Low Very High No

Therefore, the choice of resiliency mechanism depends on the specific requirements
and priorities of each VNF. It is important to evaluate the trade-offs between cost, recovery
time, and resiliency when selecting a mechanism. The 1R-AA and MR-AA strategies are
more expensive in terms of resource utilization, but they provide the shortest recovery times,
making them suitable for critical VNFs that require higher levels of availability. In addition,
the MR-AA mechanism can provide even higher levels of availability, as it ensures that
multiple replicas to be continuously synchronized, so that any of the replicas in the group
can be accessed to obtain the service.

In addition to the higher cost of maintaining multiple synchronized replicas, the MR-
AA mechanism also requires more complex synchronization algorithms and monitoring
strategies to ensure the consistency of the states across all replicas. The State Synchronizer
plays a crucial role in this mechanism and needs to keep track of all replicas in the group
to guarantee the synchronization of the states. A monitoring strategy is needed to detect
failures of any of the replicas and to take appropriate actions to replace replicas that have
failed with new ones.

NHAM must also ensure the consistency of replica states in two specific situations: (i)
when a VNF is falsely suspected to have failed, and (ii) when a VNF fails while the state
is being updated. In the first case, NHAM performs the same recovery procedure as if the
replica had actually failed, and a reconfiguration step is executed to replace the replica with
a new instance or an existing one. In the second case, to prevent inconsistencies, the State
Synchronizer halts the update process and rolls back all replicas to their previous state,
using the most recently saved checkpoint. The failed VNF is eliminated, and the remaining
replicas remain consistent.

4 Highly Available SFCs

This section presents the NHAM strategy for making SFCs fault-tolerant.
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Figure 9 NHAM: high availability for SFCs.

4.1 Traffic Buffering

NHAM employs a high availability strategy that ensures the complete recovery of stateful
SFCs, which are made up of one or more stateful VNFs, after any number of VNFs fail along
the service chain. In most SFC implementations, a buffer precedes each VNF along the
SFP, which is used by the SFF to store packets before delivering them to the VNF. NHAM,
on the other hand, uses two buffers for each VNF in the chain, as illustrated in Figure 9.
The first buffer, called buffer_rx, is located before the VNF in the chain and receives the
traffic that needs to be delivered to the VNF. This buffer stores packets that have not yet
been processed by the VNF. The second buffer, known as buffer_tx, is located after the VNF
in the chain and receives the traffic output by the VNF. This buffer stores traffic that has
already been processed by the VNF.

The data flow begins when the first packets from the SFF are stored in the buffer_rx
of the first VNF, which will be processed by that VNF. Subsequently, the SFF forwards
the packets from buffer_rx to the VNF. After processing the traffic, the VNF outputs the
resulting packets into buffer_tx. The SFF then takes over and moves packets from buffer_tx
of one VNF to the buffer_rx of the next VNF in the chain. This process is repeated for all
other VNFs in the chain. When the final VNF processes the traffic and places the packets
in the last buffer_tx, the SFF is responsible for delivering the traffic to the final destination
correctly.

We make the assumption that the buffers, the SFF, and other MANO components do
not fail. This is a practical assumption since the environment on which these SFCs operate
must have been designed to be fault-tolerant to support highly available SFCs. Additionally,
each VNF is assigned to a single SFC and is not shared by multiple SFCs. It is advisable
to deploy VNFs and buffers on physically separated hardware. Furthermore, the recovery
strategy assumes that all VNFs along the chain process traffic in First-In, First-Out (FIFO)
order. Therefore, if two packets are sent to the VNF in a specific sequence and are not
dropped by the VNF, they are output in the same order.

The Hold/Release approach is proposed to ensure the reliable recovery of an SFC after
a failure. This method employs a blend of VNF checkpointing and buffer management, as
detailed below.

4.2 The Hold/Release Strategy

The recovery of a stateful SFC consists of into two key components: (i) the recovery of each
failed VNF, which involves the restoration of state for stateful VNFs (outlined in Section
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3.2); and (ii) the retransmission of traffic that was lost as a result of VNF failures. This
retransmission is accomplished using the Hold/Release approach, which is explained in
detail in the following section (ii).

Prior to storing a packet into the initial buffer_rx of the first VNF in the SFC, the SFF
encapsulates each packet in order to enable routing along the SFP. Along with the explicit
data used to identify the SFP [2], the SFF also incorporates a timestamp in the form of a
counter as it encapsulates the packet. This timestamp works as a unique identifier for each
sequential packet.

NHAM continuously monitors the VNFs, and as soon as it detects any VNF failure, it
promptly alerts the SFF to change the state of the SFC to recovering. While the SFC remains
in this state, traffic ceases to flow through the VNF until the VNF has fully recovered. In
this recovering state, a VNF neither accepts packets from buffer_rx nor forwards packets
to buffer_tx.

The Hold/Release strategy retains packets in buffer_rx until a checkpoint is taken. This
is the “Hold” part of the Hold/Release strategy. In this way NHAM ensures that no packets
are lost due to a VNF failures. Once a VNF checkpoint has been taken after it has processed
a sequence of packets, we say that the checkpoint includes those packets. The SFF can then
remove those packets from buffer_rx. This is the Release part of the Hold/Release strategy.

In case the VNF fails before the checkpoint is taken, it is rolled back to the previous
checkpoint, and all packets it had received from that point (which are still in buffer_rx)
must be sent again and processed by the VNF. Conversely, if the VNF does not fail, the
SFF waits for the checkpoint to be saved before proceeding. Once the checkpoint is saved,
it can be inferred that the last packet in buffer_tx has been both processed by the VNF and
included in the checkpoint. The SFF then removes from buffer_rx the packets up to and
including that last packet.

Consider as an example that all packets up to packet i have been processed by a VNF
when a checkpoint starts. Consider that packet i+ 1 had also been sent from buffer_rx to
the VNF, but was not included in the checkpoint. As the checkpoint completes, the SFF
confirms that the last packet that was already in buffer_tx is packet i and can conclude that
this packet was included in the checkpoint. Now all packets up to i can be removed from
buffer_rx. Note that packet i+ 1 cannot be removed: if it is necessary to rollback, packet
i+ 1 must be reprocessed by the VNF. NHAM also keeps track of the last packet delivered
to the next VNF along the chain, thus it avoids sending duplicate packets along the SFC.

The Hold/Release strategy aims to ensure the consistent recovery of an SFC after a VNF
failure by combining VNF checkpointing with buffer management. It involves temporarily
retaining packets in buffer_rx until a VNF checkpoint is taken after those packets are
processed. If a VNF fails before the checkpoint is taken, it is rolled back to the previous
checkpoint, and all packets it had received from that point must be sent again and processed
by the VNF. If the VNF does not fail, the SFF waits until the checkpoint is saved, and then
removes all packets up to the last packet that was included in the checkpoint. The SFF also
keeps track of the last packet delivered to the next VNF along the chain to avoid sending
duplicate packets. Overall, the Hold/Release strategy allows for efficient recovery of an
SFC by minimizing packet loss and avoiding duplicate packet delivery.

Consider a scenario where packets i, i+ 1, and i+ 2 are transmitted from buffer_rx
to the VNF. The VNF processes only packet i when a checkpoint is initiated. Upon the
completion of the checkpoint, the SFF verifies that packet i is the last packet in buffer_tx
and thus removes all packets up to and including packet i from buffer_rx. Next, the VNF
continues, and processes packets i+ 1 and i+ 2, which are then forwarded to the next
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VNF through buffer_tx. The SFF maintains a record of the last packet in buffer_tx, which
in this case is packet i+ 2. If the VNF fails, packets i+ 1 and i+ 2 must be reprocessed
by the VNF after it recovers since they were not included in the most recent checkpoint.
Nonetheless, they have already been transmitted to the subsequent VNF in the chain. The
SFF keeps track of that, and only forwards new packets from i+ 3 along the SFC.

The VNF recovery process follows the adopted resiliency mechanism, as discussed in
Section 3.3. Once the VNF is operational again, with its state restored based on the last
checkpoint stored, the next step is the retransmission of all the traffic in buffer_rx, including
packets the VNF had received since the checkpoint was saved.

The Hold/Release strategy guarantees SFC recovery regardless of the number of VNFs
that have failed, and works correctly even if multiple VNFs fail simultaneously, such as
due to a power outage. Notably, the buffer_rx of a particular VNF is only cleared after a
VNF checkpoint is saved, and the processed packet is placed in buffer_tx. Thus the traffic
handled between each VNF checkpoint is not forfeited, and the integrity of the entire SFC
is assured.

5 Implementation and Experimental Evaluation

NHAM was implemented as a prototype on an NFV platform compliant with the NFV-
MANO reference model. The prototype was developed in Python, utilizing Docker
containers [32]. For VNF state management, a REST API was created. VNF checkpoints
were taken using CRIU (Checkpoint/Restore in Userspace) [33], containing the essential
information to restore a non-operational VNF, such as the network function itself and some
associated resources, like memory maps and the process tree. The VNFs employed in the
experiments were packet forwarders.

One of the major advantages of NHAM is that it offers multiple alternatives that a
user can choose to turn its VNFs fault-tolerant. A VNFD (VNF Descriptor) is employed
to specify the desired strategy. Next we present an example VNFD. This VNFD specifies
that NFV-MANO should instantiate the VNF on an Ubuntu container, employing 4 CPUs
and 512 MB of RAM. The MR-AA resiliency mechanism is chosen, with three VNF active
replicas (besides the primary). The replicas are kept updated according to the state of the
primary. The checkpoint interval is defined to be of 250ms. The packets processed by the
VNFs have 1024 bytes, while the captured state of each VNF is in average 512 KBytes
(actually this may vary according to the specific VNF being processed).

1 topology_template:
2 node_templates:
3 capabilities:
4 nfv_compute:
5 properties:
6 mem_size: 512 MB
7 num_cpus: 4
8 properties:
9 type: container

10 image: ubuntu
11 resiliency:
12 num_backups: 3
13 cooldown: 250 ms
14 vnf_level:
15 type: MR-AA
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Figure 10 Average time a single VNF takes to recover.

The experiments were executed on an Intel Core i7 processor with 8 cores, 16 GB
RAM, a 1 Gbps Ethernet NIC, and Linux Ubuntu 20.04. Each VNF comprises an Ubuntu
server with 256 MB RAM and 1 CPU, while the MR-AA mechanism defaults to 3 replicas.
NHAM does not need any kernel patches to operate. The first experiment set examines
and compares the impact of the four distinct VNF resiliency mechanisms on SFC recovery
time as the SFC’s VNF count increases. The second experiment set evaluates the resource
utilization of each recovery strategy, in terms of memory and CPU consumption. The third
experiment set measures the impact of NHAM on throughput. Finally, the last experiment
assesses the availability of NFV-based services supported by NHAM. Each experiment was
repeated ten times, and the outcomes are averages presented with a 95% confidence interval.

5.1 Failure Recovery Time

The goal of the first set of experiments is to measure the time it takes for the SFC to
recover from a failure. The downtime during a failure is particularly critical to improve the
availability of virtual services. The failures were introduced by scripts that disconnect all
connections from the VNFs, thereby triggering failure suspicions. The experiment measures
the time it takes from the detection of a failure until the recovery process completes.

The first experiment in this set compares the four different resiliency mechanisms and
measures the average recovery time after a single VNF in the SFC fails. The number of
VNFs in the SFC is increased from 1 to 8, and the results are shown in Figure 10.

The results of the first set of experiments confirm the hypothesis that the 0R mechanism
presents the longest recovery time, with up to 3.6 s of downtime for an SFC with 8 VNFs.
This is due to the time it takes to instantiate a new VNF, which takes approximately 2.4 s
on average, and the time needed for the VSM to restore the most recent checkpoint. On the
other hand, the 1R-AS mechanism shows better results compared to the 0R mechanism,
and this can be explained by the fact that a replica has already been instantiated and is in
standby mode. As NHAM uses the Active-Standby method, only importing a checkpoint
into the replica is necessary, resulting in a total recovery time of 1.14 s for an SFC with 8
VNFs.
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Figure 11 Time to recover multiple failures per SFC.

On the other hand, the 1R-AA and MR-AA mechanisms achieved the best results,
with recovery times of 0.05 s and 0.0002 s, respectively. The results show that (i) NHAM
maintains similar levels of performance even when the SFC length increases and; (ii) the
recovery time remained unchanged, regardless of the SFC length, for all strategies.

In the experiment shown in Figure 11, the impact on recovery time due to multiple
failures occurring simultaneously is evaluated. SFCs with 8 VNFs were used, and the number
of failures per SFC ranged from 1 (single VNF failure) to 8 (failure of the entire SFC).

The impact of recovering multiple VNFs in parallel was evaluated in the next experiment.
NHAM is designed to recover multiple VNFs simultaneously, as described in Section 4.
The experiment measured the impact of increasing the number of VNFs that fail at the same
time on the recovery time. For the 0R resiliency mechanism, the recovery time increased
from 3.56 s for a single failure to 7.8 s for 8 failures, which is an increase of 2.1 times. On
the other hand, for the 1R-AS mechanism, the difference in recovery time between a single
failure and the failure of the entire SFC was smaller, increasing from 1.14 s to 2.52 s.

It is noteworthy that for the 1R-AA and MR-AA mechanisms, the impact of increasing
the number of failures on the recovery time is minimal, since the time to recover from a
single failure is already very low compared to the other strategies. For instance, the recovery
time for 1R-AA varies from 0.004 s for one failure to 0.009 s for eight failures, while for
MR-AA, it varies from 0.0004 s to 0.0009 s. Therefore, it can be concluded that all recovery
mechanisms are scalable concerning the number of VNF failures.

5.2 Overhead

In next experiment we investigated the cost of the resiliency mechanisms in terms of memory
and the CPU utilization, including the cost to monitor, recover, and synchronize the internal
state of VNFs. Figures 12 and 13 show the results for memory and CPU utilization for each
of the resiliency mechanisms as the length of the SFC length varies from 1 to 8 VNFs. The 0R
mechanism presents a longer recovery time in exchange for lower cost. The 0R mechanism
scales well as the number of VNFs grow: its CPU utilization remains roughly constant. For
memory usage, the increase is proportional to the number of VNFs, ranging from 1.88%
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Figure 12 Overhead: CPU consumption.

(1 VNF) to 13.04% (8 VNFs). On the other hand, although the 1R-AS mechanism has a
shorter recovery time than 0R, it maintains the same performance levels as 0R, both in terms
of CPU and memory.

In contrast, the mechanisms based on the Active-Active method, 1R-AA and MR-AA,
present higher resource utilization due to the constant synchronization of the internal state
of their replicas. The 1R-AA mechanism presents a CPU utilization of 21% and memory
usage of 38% to synchronize up to 8 VNFs, while the MR-AA mechanism has similar
memory usage but higher CPU usage, reaching up to 45% for a SFC with 8 VNFs. It is
worth noting that the memory usage of the approaches based on the Active-Active method
is significantly higher than the others, as they perform their operations in memory, avoiding
non-volatile memory I/O overheads.

It is also important to highlight that the cost of the resiliency mechanisms can be
adjusted according to the service provider’s needs. For example, in scenarios where resource
utilization is a critical factor, the 0R mechanism can be the best option, whereas, in scenarios
where fast recovery is a priority, the MR-AA mechanism can be the most suitable.

5.3 Throughput

The next experiment evaluates the impact of NHAM’s Hold/Release strategy on the
throughput in two different scenarios using SFCs with four VNFs. In the first scenario, no
failures occur, and the performance of each resiliency mechanism is compared to a baseline
SFC that is not running NHAM. In the second scenario, failures occur every 30 seconds,
and the impact of the Hold/Release strategy is evaluated.

In the absence of failures (Figure 14), the 0R and 1R-AS mechanisms showed similar
throughput, as expected, as both mechanisms take checkpoints in the same way. These
mechanisms reduced the throughput by approximately 11.5%, owing to the time taken
to obtain, compress, and save checkpoints in non-volatile memory, which increases the
downtime of the VNF.

The 1R-AA mechanism shows a decrease in throughput of only 4.7%. This mechanism
operates in memory, as the internal state is transferred to an active replica, which results in a
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Figure 13 Overhead: memory consumption.
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Figure 14 Throughput of fault-free SFCs.

significant improvement in throughput, as discussed in the previous section. In contrast, the
MR-AA mechanism exhibits the greatest degradation of throughput. Although it has a very
low recovery time, the throughput decreases by 14.1%. The MR-AA mechanism also runs
in memory, but the processing required to ensure the consistency of the group of replicas
for each VNF has a noticeable impact on throughput.

In the scenario in which VNF failures are injected every 30s, shown in Figure 15, the
reduction in throughput is more significant for the 0R and 1R-AS mechanisms compared to
the Active-Active-based methods. This is because both mechanisms (0R and 1R-AS) have
longer recovery times. It is worth noting that even in this scenario, the throughput remains
constant for the 1R-AA and MR-AA mechanisms.
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Figure 15 Throughput of SFCs with failures.

5.4 Availability

The objective of this experiment is to evaluate the availability of NFV-based services
using NHAM. The availability was measured under a varying MTBF (Mean Time Between
Failures). The results for each resiliency mechanism are displayed in Table 2. Each
experiment lasted for 3 hours and the MTBF indicates the frequency (in minutes) at which
failures were injected. In this experiment, SFCs with 8 VNFs were employed.

Table 2 SFC availability with a varying MTBF.

MTBF (min) Availability (%)
0R 1R-AS 1R-AA MR-AA

1 98.057 98.240 99.916 99.999
5 99.605 99.643 99.983 99.999

10 99.802 99.821 99.991 99.999
15 99.868 99.880 99.994 99.999
20 99.901 99.910 99.995 99.999
25 99.920 99.928 99.996 99.999
30 99.934 99.940 99.997 99.999

As anticipated, the 0R mechanism shows the lowest figures in terms of availability.
However, it can still be useful for network functions that can tolerate longer recovery times.
Even for tests with a higher MTBF (for example, one failure every 30 minutes), the 0R
mechanism achieves only 99.3% availability. Similarly, the 1R-AS mechanism also fails
to reach the levels of availability necessary to ensure carrier-grade availability of VNFs,
although it performs better than 0R.

In the experiment, the 1R-AA mechanism presented superior performance in
comparison with 0R and 1R-AS, even in the scenario with a higher probability of failures.
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With an MTBF of 1 minute, VNFs using this mechanism achieved a 99.9% availability
(three nines), while an MTBF of 10 minutes resulted in 99.99% availability (four nines). On
the other hand, the MR-AA mechanism delivered the best results, with 99.999% availability
(five nines) achieved in all cases.

The experiments presented in this section demonstrate that the NHAM framework
is capable of providing high availability for VNFs, with the Active-Active mechanisms
achieving the best results. The 1R-AA mechanism achieved an availability of 99.9% (three
nines) even in the most failure-prone scenario, while the MR-AA mechanism reached an
availability of 99.999% (five nines) in all cases. In contrast, the 0R and 1R-AS mechanisms
had longer recovery times and lower availability rates, making them less suitable for carrier-
grade NFV deployments. However, it is important to note that the availability of the cloud
platform used to deploy the VNFs and SFCs also affects the overall availability of the
system. In general, cloud platforms which are used to deploy NFV environments reach up
to approximately 99.9% (three nines) of availability [7]. Despite this constraint, the NHAM
framework provides a promising solution for improving the reliability and availability of
NFV-based services.

6 Related Work

The REINFORCE framework [12] aims to enhance the resilience of Virtual Network
Functions (VNFs) and Service Function Chains (SFCs) by replicating the network
functions’ states. Unlike the NHAM approach, which offers various resiliency mechanisms,
REINFORCE adopts a single Active-Standby method. Moreover, the VNF developers are
responsible for identifying the stateful VNF operations in REINFORCE. It is worth noting
that the REINFORCE framework is not compliant with the NFV-MANO standard.

The FTC (Fault Tolerant Chain) approach [11] enhances the resiliency of Service
Function Chains (SFCs) without relying on checkpointing or packet replay. Instead, FTC
embeds VNF state information in packets that traverse the chain. Each VNF acts as a replica
for its predecessor, eliminating the need for dedicated replicas. When a VNF fails, it is re-
instantiated, and its state is retrieved from the succeeding VNF in the chain. It is important to
note that FTC does not comply with the IETF SFC reference architecture, as it assumes that
each VNF sends traffic directly to the next one. Additionally, it is not compliant with NFV-
MANO. Exactly like in the REINFORCE framework, the VNF developer is responsible for
indicating which operations cause state changes by modifying the VNF source code.

Remus [34] is a system designed to provide high availability for virtual machines, rather
than NFV. It periodically saves checkpoints from one virtual machine onto a backup virtual
machine. Therefore, in the event of a failure, the backup virtual machine can take over
seamlessly. Remus also synchronizes checkpoints through buffering, where packets are
temporarily stored in a buffer until the synchronization of a new state is complete. This
approach is similar to NHAM’s buffer management and checkpointing mechanism, but the
contexts in which they are used differ.

The authors of a proposal centered on buffers, named Pico Replication (PR) [35],
introduce a framework for enhancing the availability of middleboxes. Instead of preserving
the internal state of the middleboxes, PR takes checkpoints on individual data flows, while
the middlebox carries on processing other flows. Several adaptations are necessary to
guarantee the high availability of middleboxes with PR, which involves modifications to
both the kernel and SDN controller.
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Decoupling the internal state of network functions from their processing is another
proposed strategy for enhancing fault tolerance of stateful network functions, as described
in [36] and [13]. This strategy involves saving the internal state to a distributed database.
If a failure occurs, a new instance can retrieve the updated state from the database, which
does introduce an overhead. The authors of both works claim that the solutions they propose
adds a small latency per processed packet, as replicas are not pre-instantiated. However, if
a VNF fails, a new instance must be created and its state updated, which inevitably impacts
the overall recovery time. Furthermore, implementing both approaches requires extensive
modifications to VNFs themselves.

In [37], a rollback-recovery approach is introduced, which proposes the FTMB (Fault-
Tolerant Middlebox) system for preserving the state of middleboxes through “ordered
logging” and “parallel release”, described next. The ordered logging mechanism saves the
necessary data to reproduce system entries in case of a failure, while parallel release is an
algorithm that guarantees the correct reproduction of entries, considering the dependencies
between packets. Although this solution presents low overhead when the system fails,
implementing this approach requires modifications to the VNF source code, which could
be considered a drawback.

The authors of [38] suggest a control plane architecture that reallocates traffic flows
from failed to operational VNF instances, while maintaining the synchronization of VNF
internal states. This control plane, known as OpenNF, handles the state and minimizes data
loss by transferring flows through the controller. Moreover, OpenNF proposes a VNF state
management API that is comparable to the one suggested for NHAM. However, the OpenNF
API demands adjustments to the VNF source code and comes with performance concerns.

In [39] the authors propose the FTvNF framework for VNF fault tolerance. FTvNF
tracks VNF states, and aims at reducing the state tracking costs. FTvNF relies on two
instances of the protected VNF, called master and slave. In case of a failure, traffic is handled
by the slave machine while the master is recovering. Packets arriving at a service chain first
go through an sequencer that generates a unique identifier for each packet. The sequencer
sends packets through the master VNFs. All the packets are stored in a reliable centralized
logger that is assumed to be fault-tolerant, and remain there until FTvNF determines that
all packets have been fully processed. After a master fails, the packets are handled by the
corresponding slave. The major difference to NHAM is that FTvNF relies on a centralized
fault-tolerant component, and presents a single recovery strategy.

A large number of existing fault-tolerant NFV solutions have a focus on VNF/SFC
deployment. Nearly all adopt the most usual approach to enhance VNF fault tolerance: the
deployment of backup VNFs as stand-by instances [40] or even standby SFCs [41]. Basically
all those works explore the problem from an optimization point of view. Usually the problem
is formulated and shown to be NP-hard, after that an heuristic is proposed, recent works
have a focus on AI techniques [42]. Some of the solutions focus on performance besides
availability, such as [43]. Virtually all those works present an evaluation of their proposed
strategies using simulation, and treat VNFs and SFCs as abstractions with little relation to
actual reference models.

Besides the aforementioned solutions, many NFV and cloud platforms, such as
OpenStack [44] and OSM [45], provide some degree of fault tolerance. Nevertheless, these
solutions are unable to ensure the uptime of stateful VNFs because they lack mechanisms
to retain the virtual devices’ internal states.

Table 3 shows a comparison of the main solutions for NFV reliability, according to
the following characteristics and properties: (i) virtualization, which types of virtualization
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techniques are supported; (ii) NFV, whether the solution is NFV-MANO compatible; (iii)
SFC, whether the solution supports fault-tolerant Service Function Chains or not; (iv) SFC
IETF, in case the solution does support SFCs, whether it is compliant with the IETF SFC
architecture; (v) whether function code modifications are required or not; (vi) redundancy
methods supported e; (vii) the strategy adopted.

Table 3 A comparison of the main solutions for NFV reliability.

Solution Virtualization NFV SFC SFC IETF Code
Modifications

Redundancy
Method Strategy

NHAM VM; Container ✓ ✓ ✓ ✗ Active-Active; Active-Standby Checkpoint/Restore
REINFORCE [12] Container ✗ ✓ ✗ ✓ Active-Standby Checkpoint/Restore
FTC [11] Click ✗ ✓ ✗ ✓ Active-Active Piggybacking
Remus [34] VM ✗ ✗ ✗ ✗ Active-Standby Checkpoint/Restore
HA container [46] Container ✗ ✗ ✗ ✗ None Checkpoint/Restore
PR [35] VM ✗ ✗ ✗ ✓ Active-Standby Data flow checkpoint/restore
FreeFlow [47] VM ✗ ✗ ✗ ✓ Active-Standby Internal state decoupling
CHC [13] Container ✓ ✓ ✗ ✓ None Internal state decoupling
StatelessNF [36] Container ✗ ✗ ✗ ✓ None Internal state decoupling
FTvNF [39] VM ✓ ✓ ✗ ✓ Active-Active Logger; Packet replay
FTMB [37] VM; Container ✓ ✗ ✗ ✓ Active-Standby Logger; Packet replay
PLOVER [48] VM ✗ ✗ ✗ ✗ Active-Active SMR
OpenNF [38] VM; Container ✓ ✗ ✗ ✓ Active-Standby Internal state decoupling
S6 [49] VM; Container ✓ ✗ ✗ ✗ Autoscaling Distributed Shared Object

In comparison with NHAM, other solutions only provide partial support for ensuring
high availability of stateful VNFs. In particular, three main drawbacks can be identified in
those approaches. The first is the lack of support for multiple resiliency mechanisms. The
second disadvantage is that several solutions require modifications to the VNFs’ source
code, which limits both the solution and the types of VNFs that can operate on the platform.
Furthermore, having to modify code is also error-prone, which does have an impact on the
reliability of functions. Finally, none of those solutions are fully compliant with the NFV-
MANO reference architecture – i.e., they do not execute within an NFV-MANO system. For
example, it is often necessary to manually execute VNF lifecycle operations (e.g., create
a new VNF in case of a failure). This drawback raises interoperability concerns, making
integration with other NFV systems a challenging task.

7 Conclusion

In this paper we proposed a strategy to build highly available stateful VNFs and SFCs based
on the NFV-MANO reference model. NHAM does not require modifications to the source
code of a VNF to make it fault-tolerant: NHAM is based on checkpoint/restore and offers
four resiliency mechanisms that can be chosen based on the requirements of the different
types of VNFs. Additionally, NHAM employs buffer management to allow the recovery
of stateful SFCs. Even after multiple VNFs fail simultaneously, NHAM ensures complete
and correct end-to-end service recovery. The proposed architecture was implemented as
a prototype, and experimental results were conducted to evaluate its performance and
availability. The results show that NHAM is an effective solution to improve the robustness
of virtualized services, and it can achieve carrier-grade availability. Future work includes
investigating strategies to improve fault prevention and prediction in the context of NFV.
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