
A Hierarchical Adaptive Leader Election Algorithm for
Crash-Recovery Distributed Systems

Luiz Antonio Rodrigues

Western Parana State University (UNIOESTE)

Cascavel, Paraná, PR, Brazil

luiz.rodrigues@unioeste.br

Allan Edgard Silva Freitas

Federal Institute of Bahia (IFBA)

Salvador, BA, Brazil

allan@ifba.edu.br

Vinicius Fulber-Garcia

Federal University of Parana (UFPR)

Curitiba, PR, Brazil

viniciusfulber@ufpr.br

Elias Procópio Duarte Jr.

Federal University of Parana (UFPR)

Curitiba, PR, Brazil

elias@inf.ufpr.br

ABSTRACT
Leader election is one of the basic building blocks of distributed sys-

tems. Multiple different distributed applications employ a leader for

decision making or as a coordinator. Traditional leader election al-

gorithms are usually based on all-to-all communications and scales

poorly. This work presents a hierarchical adaptive leader election

algorithm for distributed systems under the crash-recovery fault

model, which allows processes to maintain secondary non-volatile

memory. The proposed solution is based on the vCube virtual topol-

ogy, which presents multiple logarithmic properties, being scalable

by definition. One of the contributions of the work is that it is the

first to adapt the vCube to the crash-recovery model. The leader is

the correct process with the smallest identifier, among those that

are most stable, i.e. have failed and recovered the least number of

times. The algorithm is adaptive in the sense that processes that

change from stable to unstable receive a penalty in order to avoid

slowing down the election. Simulation results comparing with the

traditional approach show that the proposed solution significantly

reduces the number of messages required for leader election, as

well as the time to execute a single testing round.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; •
Computer systems organization→ Fault-tolerant network
topologies.

KEYWORDS
Dependability, Fault-Tolerance, Unreliable Failure Detectors, Auto-

nomic Systems, Distributed Algorithms

ACM Reference Format:
Luiz Antonio Rodrigues, Allan Edgard Silva Freitas, Vinicius Fulber-Garcia,

and Elias Procópio Duarte Jr.. 2024. A Hierarchical Adaptive Leader Election

Algorithm for Crash-Recovery Distributed Systems. In 13th Latin-American

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LADC 2024, November 26–29, 2024, Recife, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1740-6/24/11. . . $15.00

https://doi.org/10.1145/3697090.3697102

Symposium on Dependable and Secure Computing (LADC 2024), November
26–29, 2024, Recife, Brazil. ACM, New York, NY, USA, 10 pages. https://doi.

org/10.1145/3697090.3697102

1 INTRODUCTION
Leader election is a fundamental problem in distributed systems,

and is employed by multiple applications and protocols. The envi-

ronments in which the leader is used vary from distributed operat-

ing systems to cloud computing systems. The leader’s role range

from specific tasks such as resource allocation to the orchestration

of critical operations. The leader can be responsible for decision-

making, act as a coordinator, or even just hold some reference

data for other processes. The leader can also be responsible for the

coordination of tasks and for ensuring consistency, reliable task

execution, and adapting the system to maintain the performance

under predefined limits [26]. Furthermore, the leader can simplify

communication by providing a central point to disseminate specific

messages and decisions.

Informally, the purpose of a distributed leader election algorithm

is to ensure that all processes choose a correct process as leader

[5]. Furthermore, all processes must choose the same leader. When

the traditional crash model is adopted, leader election is equivalent

to failure detection. The difference is that it returns, instead of the

list of suspected processes, a single correct process which is the

leader. In the crash-recovery model, processes fail and recover and

can also present unstable behavior, toggling states continuously.

An unstable process can be as harmful as a faulty process [9]. In

the crash-recovery model, an election algorithm seeks not only a

correct but also the most stable leader. Traditionally, leader election
is implemented with a brute-force algorithm, in which every pro-

cess monitors every other process. That all-monitor-all approach

requires a quadratic number of messages per monitoring interval.

This work proposes a hierarchical solution to the leader election

problem based on the vCube virtual topology [12]. The vCube is a

virtual hypercube when all processes are correct, and the number

of processes is a power of 2. Its main characteristic is, however,

that as processes fail and recover, the vCube reorganizes itself au-

tonomously, maintaining several logarithmic properties [8]. vCube

is also a failure detector. Stein and others [27] have proposed the

implementation of a ⋄𝑃 failure detector based on the vCube con-

sidering the partially synchronous GST (Global Stabilization Time)

model. In the GST model, the system is initially asynchronous,

https://orcid.org/0000-0002-9516-1282
https://orcid.org/0000-0003-2503-3100
https://orcid.org/0000-0003-1544-6315
https://orcid.org/0000-0002-8916-3302
https://doi.org/10.1145/3697090.3697102
https://doi.org/10.1145/3697090.3697102
https://doi.org/10.1145/3697090.3697102

LADC 2024, November 26–29, 2024, Recife, Brazil Rodrigues et al.

but after a certain time instant – called GST – it starts to behave

synchronously.

The present work has two main contributions. It is the first to

specify the vCube for the crash-recovery model. Although vCube

always allowed process recovery in the original specifications, this

recovery implicitly implies the total loss of the internal state of

the failed process except the identifier. In this way, a process that

recovers is like a new process, which must catch up by obtaining

all the necessary information from other correct processes that

have not failed. In the present work, each process that runs vCube

has local non-volatile secondary memory and can maintain state

information, which can be retrieved when the process recovers

after a failure.

The hierarchical adaptive leader election algorithm is built on

top of the vCube assuming the failure-recovery model. Each process

keeps its number of incarnations in non-volatile secondary memory.

When the process begins executing the algorithm, it is in its first

incarnation. Each time the process fails and recovers, the number

of incarnations is increased by one. This way, the number of incar-

nations reflects how often a process has failed and recovered. The

leader election algorithm assumes the partially synchronous GST

model so that false suspicions can occur until the system becomes

synchronous. The objective of the algorithm is to elect the most

“stable” leader, that is, the correct process with the smallest number

of incarnations. Thus, the criterion to select the leader is the fol-

lowing: the leader is the process with the smallest identifier among

the processes with the smallest number of incarnations.

Furthermore, the algorithm is adaptive in the sense that it applies

a penalty to stable processes that start presenting unstable behav-

ior. Consider for example that a given process has 3 incarnations,

in a system where the remaining processes have 20 incarnations.

That process is the elected leader. Now suppose that the process

becomes unstable, failing and recovering continuously. If nothing

is done, eventually the number of incarnations will keep growing

and become equal to that of the other processes. However, this

may take too long to happen. Thus, if the same leader fails and

recovers a certain number of times (say, 3 times) then the penalty

is applied, and the number of incarnations becomes equal to that of

the process with the next smallest number of incarnations. In this

way, a previously very stable process becoming unstable does not

slow down the election.

We discuss the correctness of the algorithm in terms of the clas-

sical properties of leader election: eventual accuracy and eventual

agreement. Informally, eventual accuracy determines that every

correct process elects a correct process as the leader. Eventual

agreement dictates that no two correct processes elect two different

processes as leaders. The algorithm was also evaluated through

simulation. Results show a significant reduction in the number of

messages for the election compared to the brute-force (all-monitor-

all) algorithm. It also reduces the execution time of each testing

round, although vCube requires more rounds to detect an event

and converge with the single elected leader.

The rest of the paper is organized as follows. Section 2 describes

the system model. Section 3 presents related work. The proposed al-

gorithm is presented in Section 4. Simulation results are in Section 5,

and Section 6 concludes the work.

2 SYSTEM MODEL
A distributed system is a set of processes Π = {𝑝0, 𝑝1, ..., 𝑝𝑁−1},
also referred to by the process identifiers: Π = {0, 1, ..., 𝑁 − 1}.
Processes communicate by exchanging messages. The system is

fully connected, i.e. the topology can be represented by a complete

graph. Thus any process can send a message directly to any other

process without having to employ intermediaries. Processes fail and

recover according to the crash-recovery model. The most important

feature of this model is the fact that processes have local secondary,

non-volatile memory to maintain state information. After a process

fails and recovers it can retrieve that information.

The communication channels are perfect, thus whenever a cor-

rect process sends a message to another correct process, the desti-

nation eventually delivers the message without duplication. The

primitives to send and receive a message are atomic. The system

is defined under the partially synchronous GST model. Thus the

system is initially asynchronous but after an unknown instant of

time, it becomes and remains synchronous forever. The system is

monitored with the vCube failure detector, described below. vCube

classifies each process in two possible states: correct or suspected. A
process that has crashed does not respond to any stimulus. Before

the GST, a correct but slow process may be suspected of having

failed.

Leader election can be seen as an abstraction that is inmanyways

equivalent to failure detectors. The main difference is that while

a process invokes a failure detector to obtain the list of suspected

processes [28], it invokes the leader election to obtain a single

correct process which is the current leader.

Failure detectors were originally defined as an abstraction to

allow the execution of consensus in synchronous distributed sys-

tems prone to crash faults [6]. Two properties were defined to allow

the evaluation of which were the requirements for a fault detector

to effectively make consensus possible in that setting: complete-

ness and accuracy. Informally, completeness refers to the fact that

eventually, the failure detector will suspect all crashed processes.

Accuracy refers to the fact that correct processes are not (incor-

rectly) suspected by the detector. In practice, completeness is trivial

to obtain in real distributed systems. If a process suffers a crash

fault, it does not respond to any stimulus and will be detected as

soon as the monitoring procedure executes the next round of pro-

cess monitoring. Accuracy, on the other hand, may happen but is

impossible to guarantee. Suppose the performance of some process

reduces significantly to the point it slows down every task. That

slow process can be easily mistaken as faulty. Thus, accuracy may

or may not happen depending on the execution of the detector.

According on how they monitor a process, there are two types

of failure detectors: pull or push. In the push model, each correct

process periodically sends heartbeat messages to the other pro-

cesses, informing them that it is fully functional. In the pull model,

a process sends a response upon receipt of a stimulus, i.e. a test.

Tests are run periodically on a testing interval. Processes neither

have access to a global clock nor their clocks are synchronized, so

testing intervals can differ between processes (despite being nomi-

nally identical, e.g. 30 seconds or 10 milliseconds). The concept of

a testing round is defined to capture this difference in the testing

intervals of the multiple processes. A testing round is defined as the

A Hierarchical Adaptive Leader Election Algorithm for Crash-Recovery Distributed Systems LADC 2024, November 26–29, 2024, Recife, Brazil

time interval in which all correct processes execute their assigned

tests. A testing round is thus as slow as the slowest tester. A test

can be implemented as simply as a heartbeat-request that must be

responded to by a heartbeat-reply or consist of multiple requests

and replies, involving a set of procedures to be executed by the

tested process to check different aspects of its internal state.

Three different strategies to implement pull-based failure de-

tectors are presented in [12]. The first is the most traditional, the

brute-force algorithm, in which each correct process tests all other

processes at every testing interval. The second strategy is the vRing

(virtual Ring) failure detector, in which the processes form a virtual

ring. vRing uses the minimum number of tests: 𝑁 , while brute-force

requires 𝑁 2 −𝑁 tests. On the other hand, the maximum latency for

a process on a vRing to correctly identify that some other process

has failed/recovered can reach up to 𝑁 testing rounds. Brute-force

is optimal in terms of this metric, always requiring a single testing

round for all processes to detect any failure/recovery. Note that

false suspicions can also occur, and in this case, the number of

tests executed by vRing increases, becoming identical to that of

brute-force in the worst case.

The third failure detector is the vCube, according to which pro-

cesses form a virtual hierarchical topology. However, any process

can (in principle) test any other process and the underlying topol-

ogy must be fully-connected, represented by a complete graph. The

virtual edges of a vCube correspond to the tests that the correct

processes execute. When the number of processes is a power of 2,

and there are no faulty processes or false suspicions, vCube is a hy-

percube. However, after processes fail, the vCube reorganizes itself,

maintaining several logarithmic properties, such as the number of

neighbors of each process and the maximum distance between two

processes [16].

vCube organizes processes into progressively larger clusters

with 2
𝑠−1

processes, 𝑠 = 1, .., log
2
𝑛. A cluster is an ordered list

of processes. Figure 1 shows the clusters of an 8-process vCube.

Function 𝑐𝑖,𝑠 (Equation 1) returns the ordered list of processes of

each cluster, where ⊕ is the exclusive bitwise operator (XOR).

𝑐𝑖,𝑠 = {𝑖 ⊕ 2
𝑠−1, 𝑐

𝑖⊕2𝑠−1 , 1, ... , 𝑐𝑖⊕2𝑠−1 ,𝑠−1} (1)

Table 1 shows function 𝑐𝑖,𝑠 for 8 processes. To determine the

edges of the virtual topology, for each process 𝑖 , there is an edge

(𝑗, 𝑖), such that 𝑗 is the first correct process in 𝑐𝑖,𝑠 , 𝑠 = 1... log
2
𝑛.

After a process detects that any other process has failed/recovered,

its adjacent set of edges (tests) is recomputed. For example, in

Figure 1, process 𝑝0 originally tests process 𝑝4 in cluster 3, but after
𝑝4 fails, 𝑝0 test 𝑝5, which is the next correct process in the 𝑐0,3 list.

Table 1: Function 𝑐𝑖,𝑠 for 8 processes.

s 𝑐0,𝑠 𝑐1,𝑠 𝑐2,𝑠 𝑐3,𝑠 𝑐4,𝑠 𝑐5,𝑠 𝑐6,𝑠 𝑐7,𝑠

1 1 0 3 2 5 4 7 6

2 2,3 3,2 0,1 1,0 6,7 7,6 4,5 5,4

3 4,5,6,7 5,4,7,6 6,7,4,5 7,6,5,4 0,1,2,3 1,0,3,2 2,3,0,1 3,2,1,0

A process running vCube maintains a counter (timestamp) for
the number of times the state of each monitored process changes.

21 4

653

7

C0,1

C0,2

C0,3

FAULTY

0

Figure 1: Clusters of a 3-vCube with 2
3 = 8 processes; because

𝑝4 is faulty, 𝑝0 and 𝑝6 are connected to 𝑝5.

Using the timestamp of a tested process, it is possible to determine

each new event that occurs (suspected failure or recovery), thus

making it possible to differentiate recent events from older events.

Initially, each process is considered correct, and the corresponding

timestamp is zero. When there is suspicion, the timestamp is incre-

mented by one unit. Hence, an even value of timestamp indicates

that the process is perceived as correct, while an odd value indicates

that it is suspected.

vCube is a scalable solution for failure detection, as themaximum

number of tests executed is 𝑁𝑙𝑜𝑔2𝑁 , while the worst case latency

is of 𝑙𝑜𝑔2𝑁 testing rounds. vCube has been used to implement a

local area network monitoring tool [11], and several distributed

abstractions, such as blockchains [14], distributed mutual exclusion

[23], dynamic quorums [22], publish-subscribe [7], causal broadcast

[24], and atomic broadcast [25].

3 RELATEDWORK
Leader election is a classical building block of distributed algorithms.

For example, Paxos [19] is one of the best-known consensus algo-

rithms and employs a built-in leader election algorithm. Paxos elects

a leader after a series of message exchanges and voting rounds, and

the elected leader coordinates the actions of the nodes. Raft [18] is

another consensus algorithm that is heavily based on leader elec-

tion. Raft classifies processes into three roles: leader, follower, and

candidate. A leader is elected from among the candidates through

a series of message exchanges, votes and timeouts.

Aguilera and others [1] note that using unstable processes as

leaders to coordinate actions in a distributed system can degrade

performance. The authors define process instability in the crash-

recovery model as the number of incarnations (in the original paper,

the term the authors use is epochs). The number of incarnations of a

given process corresponds to the number of times that process has

LADC 2024, November 26–29, 2024, Recife, Brazil Rodrigues et al.

failed and recovered. They propose the use of stability information

to elect the leader.

Different criteria have been used to elect the leader. Biswas and

others [4] assume a multi-hop system. The criteria for selecting the

leader consider CPU and memory capacities as well as connectivity,

including the degree and eccentricity of the candidates. Based on the

multiple criteria, an ordered list of potential leaders is computed.

The NFD-L algorithm for leader election proposed by Reis and

others [20] assumes an asynchronous system but also under the

crash-recovery model. NFD-L employs a counter of how long a

process has remained correct, instead of an incarnation counter.

The authors argue that their approach is able to elect a stabler

process as leader.

Fernandez and others [13] also use criteria for leader election that

reduce the probability of a process becoming a leader at each new

incarnation, with the purpose of electing a stabler leader. Biswas

and others [3] assigns to each process a rank that is computed based

on failure rate and load, electing the process with the lowest failure

rate and lowest load. In another recent approach, [31] also uses the

number of incarnations to define which nodes are “healthier” and

chooses the leader among them. Finally, [15] is another solution that

relies on stable storage to store the subsequent incarnations and

uses the minimum number of incarnations as the election criterion.

Cachin and others [5] specify the traditional brute-force leader

election algorithm for the crash-recovery model, in which all pro-

cesses monitor all others. The algorithm uses heartbeats, that is,

if a heartbeat from a process is not received within a monitoring

interval, then it is suspected and is removed from the set of leader

candidates. The algorithm also assumes the GST partially synchro-

nous model, and each time a process recovers, the monitoring

interval increases, so that when the system becomes synchronous

the timeout is large enough to receive heartbeats from all correct

processes. Although most leader election algorithms are based on

the brute-force all-monitor-all strategy, there are others such as

the one specified by Santoro [26] that is built on top of an overlay

network based on a full hypercube that does not tolerate crashes.

This work proposes a leader election algorithm based on the

vCube virtual topology for the crash-recoverymodel. In comparison

with the related work, the use of the vCube is a distinctive feature,

allowing scalable leader election with fewer messages and steps

compared to brute force approaches. Similar to some of the related

approaches (such as [1] and [15]), the vCube solution uses the

number of incarnations to determine the stability of the processes.

However a penalty is defined for previously stable processes that

start to present unstable behavior, in order to speed up the election

in those cases.

4 THE HIERARCHICAL LEADER ELECTION
ALGORITHM

This section describes the proposed hierarchical algorithm for

leader election. As mentioned before, the algorithm relies on the

vCube virtual topology and assumes the crash-recovery model. Ac-

cording to that fault model, each process maintains non-volatile

memory to keep information that it can use after recovering from a

failure. The pseudo-code is presented as Algorithm 1. Each process

keeps the following variables carrying state information:

• 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 : List of processes considered correct by process 𝑖 .

• 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 []: Array of timestamps that each process run-

ning vCube maintains for every other process. The times-

tamp in this case is a state counter. Initially, every process

is assumed to be correct and the timestamps are set to zero.

Every time the failure or recovery of a process is detected

the timestamp is incremented. Thus, an even value indicates

that the corresponding process is considered to be correct

and an odd value indicates that the process is suspected of

having failed. As each process running vCube may receive

information about the state of some specific process from

multiple processes, timestamps allow vCube to determine

whether the information received is new or old.

• 𝑙𝑒𝑎𝑑𝑒𝑟𝑖 : Identifier of the process considered to be the leader

by process 𝑖 .

• 𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 []: Each process 𝑖 keeps a counter of how many

times it has failed and recovered, and this information is

disseminated as processes are tested. Process 𝑖 keeps array

𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [] with information about the incarnation of ev-

ery individual process of the system. This array is employed

to as the main criterion to elect a leader.

Initially, all processes elect process zero as the leader (line 7). At

each testing round, a process running vCube executes its assigned

tests - line 14 - and obtains information from processes tested as

correct (line 15). The tester can then update the local arrays that

keep the two counters: incarnations and timestamps. In both cases,

local information is only modified if a greater value is received.

After completing the testing round, the process executes procedure

CheckLeader() that either maintains the current leader or elects a

new leader. The leader is the correct process with the smallest iden-

tifier among the processes with the lowest number of incarnations.

After a process recovers from a failure, procedure recover is

executed (line 46). The process retrieves the information about its

last incarnation from secondary memory, increments the counter,

and saves the updated value. It then restarts running vCube and

the leader election algorithm.

Figure 2 shows an example execution. The vCube has three

dimensions and all 8 processes are correct. Each process 𝑖 tests the

processes in clusters 𝑐𝑖,𝑠 , 𝑠 = 1, 2, 3, i.e.

𝑝0 tests 𝑝1, 𝑝2, 𝑝4;

𝑝2 tests 𝑝3, 𝑝0, 𝑝6;

𝑝3 tests 𝑝2, 𝑝1, 𝑝7;

𝑝4 tests 𝑝5, 𝑝6, 𝑝0;

𝑝5 tests 𝑝4, 𝑝7, 𝑝1;

𝑝6 tests 𝑝7, 𝑝4, 𝑝2;

𝑝7 tests 𝑝6, 𝑝5, 𝑝3.

Whenever 𝑝𝑖 tests 𝑝 𝑗 as correct it obtains new information from

𝑝 𝑗 . If the number of incarnations of all processes is the same, process

𝑝0 is elected as leader.

In a second example, we assume that the process 𝑝0 has failed.

In the first testing round, 𝑝1, 𝑝2 and 𝑝4 test and suspect 𝑝0. In the

next round, among other tests, 𝑝3 tests 𝑝1, 𝑝5 tests 𝑝4, and 𝑝6 tests

𝑝4. All those testers receive the information that 𝑝0 is suspected of

having failed. Finally, in the third round, 𝑝7 learns about the event

from any of the tests it executes. Therefore, all processes receive

the information about the failure of 𝑝0 and select 𝑝1 as the leader.

A Hierarchical Adaptive Leader Election Algorithm for Crash-Recovery Distributed Systems LADC 2024, November 26–29, 2024, Recife, Brazil

Algorithm 1 Hierarchical Leader Election

/* Executed by process 𝑖 of system Π = {0, .., 𝑛 − 1} */

1: procedure Initialization() ⊲ Executed only in the first

run

2: 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 [𝑝] ← 0,∀𝑝 ∈ Π
3: 𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑝] ← 0,∀𝑝 ∈ Π
4: Store(𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑖])
5: 𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑 ← 0

6: Store(𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑)

7: 𝑙𝑒𝑎𝑑𝑒𝑟𝑖 ← 0

8: 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔← 𝑓 𝑎𝑙𝑠𝑒

9: StartMonitor()

10: procedure StartMonitor()

11: 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ← Π
12: repeat
13: for 𝑠 ← 1 to log

2
𝑁 do

14: for all 𝑗 ∈ 𝑐𝑖,𝑠 | 𝑖 is the first correct process ∈ 𝑐 𝑗,𝑠 do
15: Test(𝑗)

16: if 𝑗 is correct then
17: Get information from 𝑗 :

18: 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑗 [] and 𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛 𝑗 []
19: if 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 [𝑗] mod 2 = 1 then
20: 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ← 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ∪ { 𝑗}
21: 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 [𝑗] + +
22: else
23: if 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 [𝑗] mod 2 = 0 then
24: 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ← 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ∖ { 𝑗}
25: 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 [𝑗] + +
26: CheckLeader()

27: Wait until the next test interval

28: forever

29: procedure CheckLeader()
30: 𝑙𝑒𝑎𝑑𝑒𝑟𝑖 ← 𝑝 ∈ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 | 𝑝 =𝑚𝑖𝑛(𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑝], 𝑝)
31: Store(𝑙𝑒𝑎𝑑𝑒𝑟𝑖)

32: if 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒 then
33: CheckPenalty()

34: procedure CheckPenalty()
35: if 𝑙𝑒𝑎𝑑𝑒𝑟𝑖 = 𝑖 then
36: if 𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑 ≥ 3 then
37: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑝 ∈ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 , 𝑝 ≠ 𝑖

38: | 𝑝 =𝑚𝑖𝑛(𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑝], 𝑝)
39: 𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑖] ← 𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒] + 1
40: Store(𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑖])
41: else ⊲ 𝑖 is not the leader

42: if 𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑 > 0 then
43: 𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑 ← 0

44: Store(𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑)

45: 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔← 𝑓 𝑎𝑙𝑠𝑒

46: procedure Recover() ⊲ Executed on process recovery

47: 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 [𝑝] ← 0,∀𝑝 ∈ Π
48: 𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑝] ← 0,∀𝑝 ∈ {Π ∖ 𝑖}
49: Retrieve(𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑖])
50: 𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑖] + +
51: Store(𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑖 [𝑖])
52: Retrieve(𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑)

53: Retrive(𝑙𝑒𝑎𝑑𝑒𝑟𝑖)

54: if 𝑙𝑒𝑎𝑑𝑒𝑟𝑖 = 𝑖 then
55: 𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑 + +
56: Store(𝑐𝑜𝑢𝑛𝑡_𝑙𝑒𝑎𝑑)

57: 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔← 𝑡𝑟𝑢𝑒

58: StartMonitor()

4 5

6 7

0 1

2 3

s=1

s=2
s=3

Figure 2: Clusters of a vCube with 2
3 = 8 processes.

In a final example scenario, we assume that 𝑝0 has recovered from

the failure. In this case, its incarnation counter will be incremented

to 2. Although 𝑝0 is considered correct by all other processes, 𝑝1
will remain as the leader because its incarnation counter is 1.

Next, we discuss the correctness of the hierarchical adaptive

leader election algorithm as well as its time complexity, and the

number of messages required.

4.1 Correctness
The classical properties of a leader election algorithm are eventual

accuracy and eventual agreement, which we prove next for the

proposed algorithm.

Eventual Accuracy According to eventual accuracy, every correct

process elects a correct process as the leader. First note that vCube

LADC 2024, November 26–29, 2024, Recife, Brazil Rodrigues et al.

always satisfies the strong completeness property, i.e., every faulty

process is eventually suspected. A faulty process has crashed, and

thus does not send any message in response to a test request. Thus

every crashed process is eventually suspected by every correct

process. Therefore, as the election outcome will select a process

among those considered to be correct, every correct process always

elects a correct process as its leader.

Now consider an unstable process that repeatedly fails and re-

covers, even after the GST. That process will not be elected, as its

incarnation number keeps growing. If there is at least one stable

process that does not fail after the GST, its incarnation number will

be eventually smaller than that of the unstable processes that fail

and recover and it will be elected.

Note that the penalty defined by the algorithm for stable nodes

that become consistently unstable reduces the time it takes for the

incarnation number of that process to be greater than of another

one that might have been unstable, but is now stable.

Eventual agreement. According to eventual agreement, no two

correct processes elect two different processes as leaders. The even-

tual agreement property can only be guaranteed after the GST,

i.e., several leaders can be elected before the system exhibits the

properties of the synchronous model. The reason is that the lists of

correct processes may vary across the different correct processes of

the system, as some may raise suspicions that are not raised by oth-

ers. However, after the GST, the set of correct processes converges

to the same set throughout the vCube. Since the leader is chosen

based on the process with the lowest identifier among the correct

processes with the lowest incarnation numbers, this deterministic

criterion ensures that all correct processes will eventually agree on

the same leader.

5 SIMULATION RESULTS
This section presents an evaluation of the proposed hierarchical

adaptive leader election algorithm conducted with simulation. First,

we describe the environment, parameters, and metrics. Then, we

present and discuss the results obtained. Our experiments compare

the vCube to the classical all-monitor-all solution (ALL) [5], where

each correct process executes tests on all other processes in all

rounds.

5.1 Simulation Environment
The proposed distributed and adaptive leader election algorithm

was implemented with the Neko [30] simulation tool, a Java frame-

work
1
, developed to enable the simulation of distributed algorithms.

The Neko architecture is organized in two main levels: applica-

tion and network. An application is built in the form of micro-

protocols. The micro-protocols are employed by processes, which

are instances of the class NekoProcess. At the application level,

processes communicate by exchanging messages. Messages are

sent and received using methods send and deliver. The second

component of the Neko architecture is the network, which can be

either a simulated network or a real network. In this work, the

experiments were obtained with a simulated network RandomNet-

work, which employs a lambda parameter to generate variable

1
Neko is available at https://github.com/arluiz/neko

transmission delays following an exponential distribution. Using a

particular seed ensures reproducibility.

An approach was proposed by Rodrigues [21] to simulate pro-

cess faults in Neko. It is possible to define an interval in which

some process will crash using the regular Neko configuration file.

Consider that an application sends messages to the crashed process.

In that case, the failure simulation support class checks whether the

process has crashed and, if this is the case, the message is discarded.

The same applies to messages received from the network.

5.2 Performance Metrics
The performance of distributed algorithms is usually measured by

two metrics: execution time and number of messages generated

[29]. In this section, we first evaluate the latency of the proposed

distributed adaptive leader election algorithm considering both

systems without and with faults. In a scenario with no faults, the

latency is the time interval in which the monitoring information

including the incarnation number is propagated throughout the

vCube to all correct processes. In the scenario with a crash fault,

the latency is the time it takes for all correct processes to detect

the occurrence of a fault and elect the leader (which may result in

keeping the same leader).

In the second scenario, we also evaluated for how long the sys-

tem remained inconsistent, i.e. after the failure of the leader, we

measured the time it took until the new leader was elected by all

correct processes. A similar case happens when a process with the

smallest number of incarnations recovers and until but has not

yet been elected by the other correct processes. This case was not

explicitly evaluated in the simulation, as the length of inconsistent

states (which was measured) gives the same results.

For each scenario, systems with 𝑛 = 2
𝑑
processes were used,

for 𝑑 = 3, 4, .., 9, i.e. 𝑛 = 8, 16, .., 512. The failure parameters are

described in the following scenarios, where applicable.

As mentioned before, the Neko network model used was Ran-

domNetwork. For each message sent, a transmission time of 0.1

time intervals plus a random transmission time component gener-

ated with an exponential distribution with parameter lambda=0.2.

This means that the total time interval between sending the mes-

sage and its delivery by the receiver is at least 0.1 time intervals,

plus a random value. However, for successive messages sent, the

transmission time is shifted by 0.1 (as shown in Figure 3). Each

scenario was executed 31 times and the results show the mean and

confidence interval of 95%.

5.3 Fault-free Scenario
In the first scenario, none of the processes fail. Thus it suffices to

execute a single round of tests was performed by each algorithm

for comparison purposes. In Figure 4 it is possible to observe (a) the

execution time and (b) the number of messages required by vCube

and ALL. Each test performed by a process on another consists of

a test request (REQUEST) and a response (REPLY). The messages

are presented on a logarithmic scale and are also shown in Table 2.

The execution time varies for both algorithms, but it is clear that

the increase is higher for ALL as the number of processes increases.

The number of messages is significantly higher for ALL (𝑁 2
), while

vCube sends 𝑁 log
2
𝑁 messages per testing round.

https://github.com/arluiz/neko

A Hierarchical Adaptive Leader Election Algorithm for Crash-Recovery Distributed Systems LADC 2024, November 26–29, 2024, Recife, Brazil

(a) vCube

(b) ALL (All-to-all)

Figure 3: Messages exchanged as tests are executed by both
vCube and ALL with 8 processes.

Table 2: Number of messages exehanged in fault-free scenar-
ios.

Processes ALL vCube Balance

8 112 48 57.14%

16 480 128 73.33%

32 1,984 320 83.87%

64 8,064 768 90.48%

128 32,512 1,792 94.59%

256 130,560 4,096 96.86%

512 523,264 9,216 98.28%

5.4 Scenarios with Crashes
To simulate a crash fault, the Neko failure signal is sent for process

0 at time 0.0 of the simulation. In this case, due to the number of

rounds it takes for both strategies (vCube and ALL) to allow all

8 16 32 64 128 256 512

0

20

40

60

Processes

E
x
e
c
u
t
i
o
n
t
i
m
e

ALL

vCube

(a) Execution time

8 16 32 64 128 256 512

10
2

10
3

10
4

10
5

10
6

Processes

M
e
s
s
a
g
e
s

ALL

vCube

(b) Total Messages

Figure 4: Fault-free execution based on the Neko RandomNet-

work network model.

correct processes to detect the crash, the simulation was of log
2
(𝑛)

rounds for vCube and two rounds for ALL, corresponding to the

worst-case latency of each solution. The testing interval between

was set to 100.0 time units for both algorithms.

Since a single crash was simulated, the execution time is very

similar to that of the scenario without failures. The same is true for

the number of messages, although it is slightly lower as a crashed

process does not execute any test. Figure 5 illustrates the behavior

of vCube and ALL when detecting the failure of process 𝑝0 in a

system with 𝑛 = 8 processes. Initially, processes 𝑝6, 𝑝7, 𝑝3 and 𝑝5
do not detect the failure because they do not test process 𝑝0 directly

and therefore they keep process 0 as the leader. On the other hand,

processes 𝑝1, 𝑝2 and 𝑝4 directly test process 𝑝0 (Figure 2) and detect

LADC 2024, November 26–29, 2024, Recife, Brazil Rodrigues et al.

its failure in the first round. At this point, there is an inconsistency

in the system. The inconsistency remains until the second round,

which starts at time 100, in which 𝑝6, 𝑝7, 𝑝3 and 𝑝5 detect the failure

of 𝑝0 based on the tests they execute on their neighbors, and thus

elect 𝑝1 as the new leader.

Thus, only after all correct processes either test the crashed

process or obtain information about the crash from other processes

tested correct 𝑝1 is elected leader by all correct processes. Since

ALL requires all processes to test all other processes, the the latency

is always the lowest (optimal). Depending on whether the crash

happens in the begining or the middle of a round, the latency of

ALL ranges from one to two testing rounds.

1 #vCube

2 0 , 0 00 p0 messages 0 . 0 p0 c r a sh s t a r t e d !

3 1 , 3 90 p6 messages Leader remains : 0

4 1 , 3 92 p7 messages Leader remains : 0

5 1 , 6 76 p3 messages Leader remains : 0

6 2 , 5 47 p5 messages Leader remains : 0

7 4 , 0 00 p1 messages s u s p e c t 0

8 4 , 2 02 p2 messages s u s p e c t 0

9 4 , 9 33 p4 messages s u s p e c t 0

10 4 , 9 33 p4 messages New Leader : 1

11 5 , 2 41 p2 messages New Leader : 1

12 7 , 3 59 p1 messages New Leader : 1

13 . . .

14 100 , 3 60 p5 messages s u s p e c t 0

15 100 , 7 83 p7 messages s u s p e c t 0

16 100 , 8 71 p6 messages s u s p e c t 0

17 101 , 0 60 p3 messages s u s p e c t 0

18 101 , 0 88 p5 messages New Leader : 1

19 101 , 3 86 p6 messages New Leader : 1

20 101 , 7 48 p7 messages New Leader : 1

21 102 , 4 20 p3 messages New Leader : 1

1 #ALL

2 0 , 0 00 p0 messages 0 . 0 p0 c r a sh s t a r t e d !

3 4 , 1 00 p1 messages s u s p e c t 0

4 4 , 1 00 p1 messages New Leader : 1

5 4 , 1 00 p2 messages s u s p e c t 0

6 4 , 1 00 p2 messages New Leader : 1

7 4 , 1 00 p3 messages s u s p e c t 0

8 4 , 1 00 p3 messages New Leader : 1

9 4 , 1 00 p4 messages s u s p e c t 0

10 4 , 1 00 p4 messages New Leader : 1

11 4 , 1 00 p5 messages s u s p e c t 0

12 4 , 1 00 p5 messages New Leader : 1

13 4 , 1 00 p6 messages s u s p e c t 0

14 4 , 1 00 p6 messages New Leader : 1

15 4 , 1 00 p7 messages s u s p e c t 0

16 4 , 1 00 p7 messages New Leader : 1

Figure 5: Execution log of the first testing rounds after the
crash of process 𝑝0 (𝑛 = 8).

Figure 6 shows the latency for the detection of a crash fault that

occurred at time 0.0. The latency is the time it takes from the failure

to its detection by all correct processes. Since process 0 is the first

to be tested by all processes in the ALL, the time is proportional to

the number of processes and also depends on the timeout (4 time

units). The latency would be higher had the faulty process been

the last to be tested. In any case, the ALL strategy guarantees that

the detection in all cases (All-Latency) would occur in one, or at

most two testing rounds. A second round is only required if the

fault occurs halfway through the testing round (All-Total).

The latency of vCube is directly related to the hierarchical testing

mechanism. Thus, in the first round, only those processes that

are virtually connected to the faulty process detect the crash. In

the second round, the neighbors that are two hops away learn

about the crash, and so on. Table 3 shows the number of messages

in crash scenarios. As with the non-fault scenarios, the number

of test messages increases with the number of processes, with a

considerably steeper increase for ALL.

Table 3: Number of messages in scenarios where 𝑝0 crashes.

Processes ALL vCube Balance

8 182 129 29.12%

16 870 488 43.91%

32 3.782 1.565 58.62%

64 15.750 4.560 71.05%

128 64.262 12.481 80.58%

256 259.590 32.688 87.41%

512 1.043.462 82.845 92.06%

Thus, although the number of messages required by the ALL

strategy is much higher than vCube’s (similar to the fault-free

scenario), vCube’s latency is always slightly higher than ALL’s

– vCube requires 𝑙𝑜𝑔2𝑁 rounds in the worst case. Note that the

latency to detect the recovery of process is the same, as the event

information propagation follows the same strategy.

8 16 32 64 128 256 512

0

200

400

600

800

Processes

L
a
t
e
n
c
y
(
t
i
m
e
)

vCube-Total

vCube-Latency

ALL-Total

ALL-Latency

Figure 6: Latency to detect a failure of process 𝑝0 at time 0.0.

A Hierarchical Adaptive Leader Election Algorithm for Crash-Recovery Distributed Systems LADC 2024, November 26–29, 2024, Recife, Brazil

5.5 Evaluating the Penalty Impact
To evaluate the impact of the penalty on newly unstable processes,

consider the scenario in which process zero has an initial number

of incarnations equal to zero, and the other processes have random

incarnation values between 10 and 20 (Figure 7). Thus process zero

had been very stable, while the others were unstable. The situation

changes, and process zero starts a sequence of multiple failures/re-

coveries. In a scenario without the proposed penalty, process zero

will continue to be elected leader until its number of incarnations

exceeds that of another process with fewer incarnations, that is 10

incarnations. With the penalty, after three incarnations in sequence

(lines 4, 7 and 10) process zero will adjust its number of incarnations

(line 15). So, after another incarnation (line 18), the process (process

1) is finally elected (line 21). Note that the number of subsequent

incarnations proposed by the algorithm to apply the penalty (3 in

this case) is a parameter that can be changed as necessary.

1 #vCube − pena l t y impact

2 1 , 9 00 p0 messages e r p1 p0 I _AM_ALIVE [0 , 10 , 1 8 , 1 9 ,

1 7 , 1 5 , 1 3 , 11]

3 . . .

4 1 , 0 00 p0 messages 1 . 0 p0 c r a sh s t a r t e d ! ! ! ! !

5 10 , 0 00 p0 messages c r a sh s toped a t crash −VCubeFD

6 . .

7 104 , 0 00 p0 messages 1 0 4 . 0 p0 c r a sh s t a r t e d ! ! ! ! !

8 111 , 0 00 p0 messages c r a sh s t oped a t crash −VCubeFD

9 . .

10 207 , 0 00 p0 messages 2 0 7 . 0 p0 c r a sh s t a r t e d ! ! ! ! !

11 215 , 0 00 p0 messages c r a sh s t oped a t crash −VCubeFD

12 . .

13 221 , 1 00 p0 messages e r p4 p0 I _AM_ALIVE [2 , 10 , 1 8 , 1 9 ,

1 7 , 1 5 , 1 3 , 11]

14 221 , 1 00 p0 messages Leader remains : 0

15 221 , 1 00 p0 messages P ena l t y a p p l i e d : new i n c a r n a t i o n 11

16 . . .

17 302 , 0 00 p0 messages 3 0 2 . 0 p0 c r a sh s t a r t e d ! ! ! ! !

18 307 , 0 00 p0 messages c r a sh s t oped a t crash −VCubeFD

19 . .

20 344 , 3 00 p0 messages e r p4 p0 I _AM_ALIVE [1 1 , 10 , 1 8 , 1 9 ,

1 7 , 1 5 , 1 3 , 11]

21 344 , 3 00 p0 messages New Leader : 1

Figure 7: Execution log with the penalty approach (𝑁 = 8).

Figure 8 shows the impact of latency in the scenario in which

the penalty is applied, considering the time required for process

zero to stop being elected the leader after it becomes unstable. In

the figure, process zero fails and recovers at random time instants

defined along 100 simulation-time steps.

6 CONCLUSION
This work presented a hierarchical algorithm for leader election in

distributed systems. The algorithm is defined on the vCube virtual

topology, which adaptively reorganizes itself after process failures

maintaining several logarithmic properties. The proposed algorithm

assumes the crash-recovery model, i.e. a process can keep a counter

in secondary memory indicating how many times it has failed

and recovered. The algorithm employs that counter to elect one

of the most stable processes as leader. A penalty is applied after

stable processes fail and recover a pre-configured number of times,

i.e. present unstable behavior. The purpose of the penalty is to

avoid slowing down the election. The algorithm was implemented

8 16 32 64 128 256 512

0

500

1,000

1,500

Processes

E
x
e
c
u
t
i
o
n
t
i
m
e

vCube-P

vCube-NoP

Figure 8: Penalty comparison (vCube-P) with the regular
approach (vCube-NoP).

with simulation and compared with the traditional all-monitor-all

approach. Results show that the proposed algorithm is efficient

and scalable, and requires a significantly lower number of tests

(messages).

Future work includes adapting the algorithm to dynamic dis-

tributed systems where the composition of the system changes over

time. Another future work is to define the algorithm for partition-

able networks with general topologies [10], and the Byzantine fault

model [2]. Furthermore, the investigation of intelligent strategies

to improve leader election should also be considered [17].

ACKNOWLEDGMENTS
This work was partially supported by the Brazilian Research Coun-

cil (CNPq - Conselho Nacional de Desenvolvimento Científico e

Tecnológico) grant 308959/2020-5; FAPESB (Fundação de Amparo

a Pesquisa do Estado da Bahia) grant TIC0004/2015; and CAPES

(Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -

Brasil) - Finance Code 001.

REFERENCES
[1] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. 2000. Failure detection

and consensus in the crash-recovery model. Distributed computing 13, 2 (2000),

99–125.

[2] Luiz Carlos Pessoa Albini, Elias Procópio Duarte Jr., and Roverli Pereira Zi-

wich. 2005. A generalized model for distributed comparison-based system-

level diagnosis. Journal of the Brazilian Computer Society 10 (2005), 44–56.

https://doi.org/10.1007/BF03192365

[3] Amit Biswas, Ashish Kumar Maurya, Anil Kumar Tripathi, and Samir Aknine.

2021. Frlle: a failure rate and load-based leader election algorithm for a bidi-

rectional ring in distributed systems. The Journal of Supercomputing 77 (2021),

751–779.

[4] Amit Biswas and Anil Kumar Tripathi. 2021. Preselection based leader election

in distributed systems. In International Symposium on Intelligent and Distributed
Computing. Springer, 261–271.

[5] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Introduction to
reliable and secure distributed programming. Springer Science & Business Media.

[6] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors

for Reliable Distributed Systems. J. ACM 43, 2 (March 1996), 225–267. https:

//doi.org/10.1145/226643.226647

https://doi.org/10.1007/BF03192365
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647

LADC 2024, November 26–29, 2024, Recife, Brazil Rodrigues et al.

[7] João Paulo de Araujo, Luciana Arantes, Elias Procópio Duarte, Luiz A. Ro-

drigues, and Pierre Sens. 2019. VCube-PS: A causal broadcast topic-based

publish/subscribe system. J. Parallel Distributed Comput. 125 (2019), 18–30.

https://doi.org/10.1016/j.jpdc.2018.10.011

[8] Elias P Duarte, Luiz CP Albini, Alessandro Brawerman, and Andre LP Guedes.

2009. A Hierarquical Distributed Fault Diagnosis Algorithm Based on Clusters

withDetours. In The 6th IEEE Latin American Network Operations andManagement
Symposium. IEEE, 1–6.

[9] Elias P Duarte, Thiago Garrett, Luis CE Bona, Renato Carmo, and Alexandre P

Züge. 2010. Finding stable cliques of PlanetLab nodes. In DSN 2010. IEEE, 317–322.
https://doi.org/10.1109/DSN.2010.5544300

[10] Elias Procopio Duarte, Andrea Weber, and Keiko VO Fonseca. 2011. Distributed

diagnosis of dynamic events in partitionable arbitrary topology networks. IEEE
Transactions on Parallel and Distributed Systems 23, 8 (2011), 1415–1426. https:

//doi.org/10.1109/TPDS.2011.284

[11] Elias Procópio Duarte Jr. and LC Erpen De Bona. 2002. A dependable SNMP-based

tool for distributed network management. In Proc. International Conference on
Dependable Systems and Networks. IEEE, 279–284. https://doi.org/10.1109/DSN.

2002.1028911

[12] Elias P Duarte Jr, Luiz A Rodrigues, Edson T Camargo, and Rogério C Turchetti.

2023. The missing piece: a distributed system-level diagnosis model for the

implementation of unreliable failure detectors. Computing 105, 12 (2023), 2821–

2845. https://doi.org/10.1007/s00607-023-01211-8

[13] Christian Fernández-Campusano, Mikel Larrea, Roberto Cortiñas, and Michel

Raynal. 2017. A distributed leader election algorithm in crash-recovery and

omissive systems. Inform. Process. Lett. 118 (2017), 100–104.
[14] Allan Edgard Silva Freitas, Luiz Antonio Rodrigues, and Elias Procópio Duarte Jr.

2024. vCubeChain: A scalable permissioned blockchain. Ad Hoc Networks 158
(2024), 103461. https://doi.org/10.1016/j.adhoc.2024.103461

[15] Carlos Gómez-Calzado, Mikel Larrea, Iratxe Soraluze, Alberto Lafuente, and

Roberto Cortiñas. 2013. An Evaluation of Efficient Leader Election Algorithms

for Crash-Recovery Systems. In 2013 21st Euromicro. IEEE, 180–188. https:

//doi.org/10.1109/PDP.2013.33

[16] Denis Jeanneau, Luiz A. Rodrigues, Luciana Arantes, and Elias Procópio Duarte

Jr. 2017. An autonomic hierarchical reliable broadcast protocol for asynchronous

distributed systems with failure detection. J. Braz. Comput. Soc. 23, 1 (2017),

15:1–15:14. https://doi.org/10.1186/s13173-017-0064-9

[17] Bogdan Tomoyuki Nassu, Elias Procópio Duarte, and Aurora T. Ramirez Pozo.

2005. A comparison of evolutionary algorithms for system-level diagnosis. In Proc.
7th Annual Conference on Genetic and Evolutionary Computation (Washington

DC, USA) (GECCO ’05). Association for Computing Machinery, New York, NY,

USA, 2053–2060. https://doi.org/10.1145/1068009.1068350

[18] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consen-

sus algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX Association,

USA, 305–320.

[19] M. Pease, R. Shostak, and L. Lamport. 1980. Reaching Agreement in the Presence

of Faults. J. ACM 27, 2 (apr 1980), 228–234. https://doi.org/10.1145/322186.322188

[20] Vinícius A. Reis and Gustavo M. D. Vieira. 2017. Quality of Service of an Asyn-

chronous Crash-Recovery Leader Election Algorithm. In Anais do XXXV Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuídos (Belém). SBC, Porto

Alegre, RS, Brasil. https://sol.sbc.org.br/index.php/sbrc/article/view/2685

[21] Luiz Antonio Rodrigues. 2006. Extensão do suporte para simulação de defeitos em
algoritmos distribuídos utilizando o Neko. Master’s thesis. UFRGS.

[22] Luiz A. Rodrigues, Luciana Arantes, and Elias P. Duarte. 2016. An Autonomic

Majority Quorum System. In 2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA). IEEE, 524–531. https://doi.org/

10.1109/AINA.2016.73

[23] Luiz A. Rodrigues, Elias P. Duarte, and Luciana Arantes. 2018. A distributed

k-mutual exclusion algorithm based on autonomic spanning trees. JPDC 115

(2018), 41–55. https://doi.org/10.1016/j.jpdc.2018.01.008

[24] Luiz A. Rodrigues, Elias P. Duarte, João Paulo de Araujo, Luciana Arantes, and

Pierre Sens. 2018. Bundling Messages to Reduce the Cost of Tree-Based Broadcast

Algorithms. In 2018 Eighth Latin-American Symposium on Dependable Computing
(LADC). ACM, 115–124. https://doi.org/10.1109/LADC.2018.00022

[25] Lucas V Ruchel, Edson Tavares de Camargo, Luiz Antonio Rodrigues, Rogério C

Turchetti, Luciana Arantes, and Elias Procópio Duarte Jr. 2024. Scalable atomic

broadcast: A leaderless hierarchical algorithm. JPDC 184 (2024), 104789. https:

//doi.org/10.1016/j.jpdc.2023.104789

[26] Nicola Santoro. 2006. Design and analysis of distributed algorithms. John Wiley

& Sons.

[27] Gabriela Stein, Luiz Antonio Rodrigues, Elias ProcóPio Duarte Jr., and Luciana

Arantes. 2023. Diamond-P-vCube: An Eventually Perfect Hierarchical Failure

Detector for Asynchronous Distributed Systems. In Proceedings of the 12th Latin-
American Symposium on Dependable and Secure Computing (La Paz, Bolivia)

(LADC ’23). Association for Computing Machinery, New York, NY, USA, 40–49.

https://doi.org/10.1145/3615366.3615420

[28] Rogerio C Turchetti and Elias Procopio Duarte. 2015. Implementation of failure

detector based on network function virtualization. In 2015 IEEE International
Conference on Dependable Systems and Networks Workshops. IEEE, 19–25. https:

//doi.org/10.1109/DSN-W.2015.30

[29] P. Urban, X. Defago, and A. Schiper. 2000. Contention-aware metrics for dis-

tributed algorithms: comparison of atomic broadcast algorithms. In 9th Int’l
Conf.on Computer Communications and Networks (ICCCN). 582–589. https:

//doi.org/10.1109/ICCCN.2000.885548

[30] P. Urban, X. Defago, and A. Schiper. 2001. Neko: a single environment to simulate

and prototype distributed algorithms. In 15th Int’l Conf. Info. Networking. IEEE,
503–511. https://doi.org/10.1109/ICOIN.2001.905471

[31] Jiangran Wang and Indranil Gupta. 2023. Churn-Tolerant Leader Election Proto-

cols. In 43rd IEEE ICDCS. IEEE, 96–107.

https://doi.org/10.1016/j.jpdc.2018.10.011
https://doi.org/10.1109/DSN.2010.5544300
https://doi.org/10.1109/TPDS.2011.284
https://doi.org/10.1109/TPDS.2011.284
https://doi.org/10.1109/DSN.2002.1028911
https://doi.org/10.1109/DSN.2002.1028911
https://doi.org/10.1007/s00607-023-01211-8
https://doi.org/10.1016/j.adhoc.2024.103461
https://doi.org/10.1109/PDP.2013.33
https://doi.org/10.1109/PDP.2013.33
https://doi.org/10.1186/s13173-017-0064-9
https://doi.org/10.1145/1068009.1068350
https://doi.org/10.1145/322186.322188
https://sol.sbc.org.br/index.php/sbrc/article/view/2685
https://doi.org/10.1109/AINA.2016.73
https://doi.org/10.1109/AINA.2016.73
https://doi.org/10.1016/j.jpdc.2018.01.008
https://doi.org/10.1109/LADC.2018.00022
https://doi.org/10.1016/j.jpdc.2023.104789
https://doi.org/10.1016/j.jpdc.2023.104789
https://doi.org/10.1145/3615366.3615420
https://doi.org/10.1109/DSN-W.2015.30
https://doi.org/10.1109/DSN-W.2015.30
https://doi.org/10.1109/ICCCN.2000.885548
https://doi.org/10.1109/ICCCN.2000.885548
https://doi.org/10.1109/ICOIN.2001.905471

	Abstract
	1 Introduction
	2 System Model
	3 Related Work
	4 The Hierarchical Leader Election Algorithm
	4.1 Correctness

	5 Simulation Results
	5.1 Simulation Environment
	5.2 Performance Metrics
	5.3 Fault-free Scenario
	5.4 Scenarios with Crashes
	5.5 Evaluating the Penalty Impact

	6 Conclusion
	Acknowledgments
	References

