
Ad Hoc Networks 158 (2024) 103461

A
1

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

vCubeChain: A scalable permissioned blockchain
Allan Edgard Silva Freitas a, Luiz Antonio Rodrigues b,∗, Elias Procópio Duarte Jr. c

a Federal Institute of Bahia (IFBA), Rua Emídio dos Santos, s-n, Salvador, 40301-015, Bahia, Brazil
b Western Parana State University (UNIOESTE), Rua Universitária, 2069, Cascavel, 85819-110, PR, Brazil
c Federal University of Parana (UFPR), Rua Evaristo F. Ferreira da Costa, 383-291, Curitiba, 82590-300, PR, Brazil

A R T I C L E I N F O

Keywords:
Distributed computing
Consensus
Blocksim
vCube

A B S T R A C T

This work presents vCubeChain, a scalable permissioned blockchain based on the vCube virtual topology.
vCube is a virtual hierarchical topology that presents several logarithmic properties. vCubeChain employs a
leader election algorithm that relies on the failure detection information that vCube provides. The leader
employs a vCube-based autonomic reliable broadcast algorithm to disseminate blocks, each consisting of
multiple transactions. In case multiple leaders end up concurrently elected due to false suspicions, vCubeChain
is proven to recover to a consistent state upon the discovery of contradictory blocks. vCubeChain is described,
specified, and correctness and liveness draft proofs are presented. The blockchain was implemented on the
Blocksim simulator, and a set of experiments are presented, including comparisons with Bitcoin, Ethereum
and Hyperledge Fabric. Results demonstrate the scalability of the solution.
1. Introduction

A blockchain is a distributed ledger that stores transaction records
on a set of processes connected through a network. The major ad-
vantage of blockchains compared to other alternative technologies
is that there is no need for a central authority to ensure security
properties [1]. A large, growing number of applications have been
proposed for blockchains, in diverse fields, such as cryptocurrencies,
digital government transactions, document copyright protection, and
real estate transactions, among several others [2].

Blockchains combine distributed and secure computing techniques
to maintain a data structure – the block chain – that guarantees the
persistence of transactions stored by the processes that make up the
system. It is possible to classify blockchains into two basic types:
permissioned (private) and non-permissioned (public). A permissioned
blockchain requires all processes to know each other in advance so
that they can be properly authenticated to execute any system op-
eration. Examples of permissioned blockchains include Hyperledger
Fabric [3], Corda [4], among others [5]. Permissionless blockchains al-
low the participation of unknown processes, which do not need to trust
each other. Examples include Bitcoin [6], Ethereum [7], Algorand [8],
among others [9]. These blockchains use consensus mechanisms based
on ‘‘Proof-of-Work’’ (PoW) or ‘‘Proof-of-Stake’’ (PoS) to validate new
blocks. PoW results in a high expenditure of energy, and the winning
process receives a reward, in the case of Bitcoin, the cryptocurrency it-
self. Ethereum 2.0 uses a PoS strategy, which requires users to ‘‘pledge’’

∗ Corresponding author.
E-mail address: luiz.rodrigues@unioeste.br (L.A. Rodrigues).

currency, in this case, Ether (ETH), to become validators of the [10]
network.

As processes trust each other in permissioned blockchains, instead
of employing PoW or PoS, they can use classic consensus algorithms,
such as Raft [11] or PBFT [12]. Those algorithms present strong
consistency guarantees, but are expensive and do not scale well [13].
Furthermore, permissioned blockchains are generally based on a leader,
who proposes the block to be stored and also manages the member
processes.

Although permissionless blockchains can consist of a very large
number of nodes, they have a very limited transaction flow compared to
smaller-scale systems based on a predefined group of trusted processes
running conventional consensus algorithms. However, in permissioned
networks, the cost of broadcast mechanisms can be quadratic with
respect to the number of participants, and are thus not scalable [14,15].

In this work, we present vCubeChain, a scalable permissioned
blockchain. vCubeChain is based on the vCube hierarchical virtual
topology [16]. The topology is maintained through a failure detector
that forms a hypercube when all processes are correct and the number
of processes is a power of two. As processes crash, vCube reorganizes
itself, maintaining several logarithmic properties. vCubeChain is a
permissioned blockchain, i.e., all processes are properly authenticated.
A leader is elected using an autonomous reliable broadcast strategy to
disseminate blocks across the network. Each block consists of multiple
transactions. False suspicions may cause the election of multiple com-
peting leaders simultaneously, allowing temporary forks to occur [6].
vailable online 11 March 2024
570-8705/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.adhoc.2024.103461
Received 30 November 2023; Received in revised form 2 February 2024; Accepted
 26 February 2024

https://www.elsevier.com/locate/adhoc
https://www.elsevier.com/locate/adhoc
mailto:luiz.rodrigues@unioeste.br
https://doi.org/10.1016/j.adhoc.2024.103461
https://doi.org/10.1016/j.adhoc.2024.103461
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2024.103461&domain=pdf


Ad Hoc Networks 158 (2024) 103461A.E.S. Freitas et al.
Fig. 1. Clusters of process 0 and the complete 𝑐(𝑖, 𝑠) of a 3-dimensional vCube.
In this situation, vCubeChain remains intact, always returning to a state
consistent with the reconciliation of differences.

The blockchain was implemented on the Blocksim simulator, and
a set of experiments are presented, including comparisons with Bit-
coin, Ethereum and Hyperledge Fabric. Results are presented both
for transaction processing time and the number of messages required,
demonstrating the scalability of the proposed solution.

The rest of this work is organized as follows. Section 2 defines the
system model, also including a brief description of the vCube virtual
topology. In Section 3 vCubeChain is described and specified and proofs
of correctness and termination are presented. The implementation of
vCubeChain using simulation and evaluation results are described in
Section 4. Related work is presented in Section 5. Finally, Section 6
concludes the paper.

2. System model

We assume a distributed system that consists of a set 𝑃 of 𝑛 >
1 processes {𝑝0, .., 𝑝𝑛−1} that communicate by exchanging messages.
Processes are also called nodes. Process 𝑝𝑖 can also be referred to
as process 𝑖. Each process can communicate directly with any other
process, i.e., the system is fully connected and can be represented by
a complete graph. A process can crash, and crashes are permanent.
Each process can be in one of two states: a correct process is one that
never fails; otherwise, the process has crashed. The operations to send
and receive messages are atomic, but the broadcast primitives are not.
The communication channels are perfect. Thus, messages exchanged
between processes are never lost, corrupted or duplicated.

The processes form a virtual hierarchical topology called vCube [16,
17]. The virtual topology is a complete hypercube if all processes are
correct and the number of processes is a power of two, but keeps the
hypercube properties for any number of correct processes. vCube im-
plements a pull-based failure detector [18], in which processes execute
tests and exchange test result information so that all correct processes
can determine the state of each other process as either correct or suspect
of have crashed. Up to 𝑛−1 processes can crash. After processes crash,
vCube reorganizes itself autonomously, maintaining several logarithmic
properties such as the maximum distance between processes and the
maximum number of tests each process has to reply to. The system is
assumed to be partially synchronous with a Global Stabilization Time
(GST). Thus, informally, the system is initially asynchronous, but after
the GST it becomes synchronous, i.e. there are known upper bounds for
both the time to execute a task and for transmitting messages between
processes [19]. As a result, the failure detector can make mistakes,
i.e., before the GST, a correct but slow process can be incorrectly
suspected of having crashed.

As mentioned above, a process running vCube executes tests on
other processes to determine if they are correct or suspected of having
crashed. The tested process is considered to be correct if the tester
receives a response within the expected time interval. Otherwise, the
2

process is suspected. Processes run tests on progressively larger clusters.
Each cluster 𝑠 = 1, .., log2 𝑛 has 2𝑠−1 elements, where 𝑛 is the total
number of processes in the system. The processes in each cluster 𝑠
and the order in which they are tested by a process 𝑖 are given by
function 𝑐𝑖,𝑠, defined below. The symbol ⊕ represents the exclusive
binary operation OR (XOR):

𝑐(𝑖, 𝑠) = {𝑖 ⊕ 2𝑠−1, 𝑐𝑖 ⊕ 2𝑠−1, 1,… , 𝑐(𝑖 ⊕ 2𝑠−1, 𝑠 − 1)} (1)

Tests are executed in rounds. In each testing round, the set of
testers of a process 𝑖 consists of each first correct process 𝑗 in clusters
𝑐(𝑖, 𝑠), 𝑠 = 1,… , log2 𝑛. If the tested process is correct, the tester obtains
new information about the state of the other processes. A testing round
is completed after all the correct processes have run all their assigned
tests.

Fig. 1 illustrates the hierarchical organization of a 3-dimensional
vCube with 𝑛 = 23 processes. The table shows the elements of each
cluster 𝑐(𝑖, 𝑠) for the system. In this system, each process tests three
clusters. As an example, the first cluster tested by 𝑝0 is 𝑐(0, 1) = (1); the
other two clusters are 𝑐(0, 2) = (2, 3) and 𝑐(0, 3) = (4, 5, 6, 7). In this case,
processes 𝑝1, 𝑝2 and 𝑝4 are tested. In each testing round, each process
is tested by at least one correct process. This ensures that, in at most
log2 𝑛 rounds, all processes have updated their local state information
about all other processes.

In [20] a reliable broadcast algorithm is presented for vCube. That
algorithm assumes a synchronous system, and the processes form a min-
imum spanning tree that reconfigures itself autonomically as processes
fail and recover. The tree guarantees that the broadcast completes in
logarithmic time. A correct process forwards messages to the first cor-
rect process in each of its clusters. A version assuming an asynchronous
system was proposed by [21], which deals with false suspicions by
continuously sending messages to suspected processes.

3. vCubeChain: a scalable permissioned blockchain

This section presents vCubeChain — a scalable permissioned leader-
based blockchain. vCubeChain is a distributed ledger that provides safe
storage of valid transactions across its processes organized on a vCube.
vCubeChain assumes authenticated processes, i.e. all processes know
and trust each other. Initially, clients send new transactions to any
vCubeChain process. Only the leader can validate a transaction. If the
process that receives a new transaction is not the leader, it forwards
the transaction to the leader. The leader validates the transaction
and forms a new block after there is a sufficiently large number of
valid transactions. Each new block is disseminated throughout the
blockchain via vCube’s autonomic reliable broadcast algorithm, which
is described later in this section.

Processes use the underlying vCube failure detection service to elect
the blockchain leader. The leader is simply defined as the correct pro-
cess with the highest identifier. As processes are authenticated, there
are no impersonation attacks in which an adversary pretends to be the



Ad Hoc Networks 158 (2024) 103461A.E.S. Freitas et al.

1

d
t
c
t
o
n
t
t
a
o
w

F
E
p

3

t

Algorithm 1 vCubeChain executed by process 𝑖

1: procedure Init( )
2: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ← 𝑃
3: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ← ∅
4: CheckLeader( )
5: if IAmLeader( ) then
6: append 𝑔𝑒𝑛𝑒𝑠𝑖𝑠_𝑏𝑙𝑜𝑐𝑘 to 𝑐ℎ𝑎𝑖𝑛
7: RBcast(Msg-type=𝐵𝐿𝑂𝐶𝐾,

𝑔𝑒𝑛𝑒𝑠𝑖𝑠_𝑏𝑙𝑜𝑐𝑘)

8: procedure NewTransaction(msg 𝑚)
9: Let 𝑇 be the new transaction with 𝑚

10: if IAmLeader( ) then
11: ProcessTransaction(𝑇 )
12: else
13: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∪ {𝑇 }
4: SendToLeader(𝑇 )

15: procedure ProcessTransactions(𝑇 )
16: if Validate(𝑇 ) then
17: AddToBlock(𝑇 )
18: else
19: NotifySender(𝑇 )

20: procedure AddToBlock(𝑇 )
21: if !ThereIsCandidateBlock( ) then
22: create 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘
23: append 𝑇 to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘
24: if BlockCompleted( ) then
25: append 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘 to 𝑐ℎ𝑎𝑖𝑛
26: RBcast(Msg-type=𝐵𝐿𝑂𝐶𝐾,

𝑛𝑒𝑤_𝑏𝑙𝑜𝑐𝑘 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘)

27: upon receive 𝑇 from 𝑝
28: if IAmLeader( ) then
29: ProcessTransaction(𝑇 )
30: else
31: SendToLeader(𝑇 )

32: upon receive ⟨𝐵𝐿𝑂𝐶𝐾, 𝑛𝑒𝑤_𝑏𝑙𝑜𝑐𝑘⟩ from 𝑝
33: append 𝑛𝑒𝑤_𝑏𝑙𝑜𝑐𝑘 to 𝑐ℎ𝑎𝑖𝑛
34: for all 𝑇 ∈ 𝑛𝑒𝑤_𝑏𝑙𝑜𝑐𝑘 do
35: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∖ {𝑇 }

36: upon receive ⟨𝐿𝐸𝐴𝐷𝐸𝑅, 𝑛𝑒𝑤_𝑙𝑒𝑎𝑑𝑒𝑟⟩ from 𝑝
37: if IAmLeader( ) and 𝑛𝑒𝑤_𝑙𝑒𝑎𝑑𝑒𝑟 > 𝑖 then
38: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔

∪ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘
39: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘 ← ∅
40: 𝑙𝑒𝑎𝑑𝑒𝑟 ← 𝑛𝑒𝑤_𝑙𝑒𝑎𝑑𝑒𝑟
41: for all 𝑇 ∈ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 do
42: SendToLeader(𝑇 )

43: procedure checkLeader( )
44: 𝑛𝑒𝑤_𝑙𝑒𝑎𝑑𝑒𝑟 ← 𝑚𝑎𝑥(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖)
45: if 𝑛𝑒𝑤_𝑙𝑒𝑎𝑑𝑒𝑟 ≠ 𝑙𝑒𝑎𝑑𝑒𝑟 then
46: 𝑙𝑒𝑎𝑑𝑒𝑟 ← 𝑛𝑒𝑤_𝑙𝑒𝑎𝑑𝑒𝑟
47: if IAmLeader( ) then
48: RBcast(Msg-type=𝐿𝐸𝐴𝐷𝐸𝑅, 𝑛𝑒𝑤_𝑙𝑒𝑎𝑑𝑒𝑟)
49: for all 𝑇 ∈ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 do
50: ProcessTransactions(𝑇 )
51: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∖ {𝑇 }
52: else
53: for all 𝑇 ∈ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 do
54: SendToLeader(𝑇 )

55: upon notifying crash(process 𝑗)
56: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ∖ {𝑗}
57: CheckLeader( )

58: upon notifying up(process 𝑗)
59: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ∪ {𝑗}
60: CheckLeader( )
(
t
a
(
t
(

s
r
(
t
a
f
s
a
i
i

3

p
i
C
W

leader. However, due to false suspicions and the latency to propagate
node state information across the system, it is possible that more than
one node considers itself the leader. We show that even if multiple
processes consider themselves to be leaders, vCubeChain eventually
converges to a single leader and maintains global consistency.

vCubeChain is specified in pseudo-code in Algorithm 1. Users can
register transactions at any process using the NewTransaction proce-
ure. If the selected process is not the leader, it sends the transaction
o the leader. The leader then validates the transaction in the Pro-
essTransactions procedure and includes it in a candidate block using
he AddToBlock procedure. The leader maintains this block with a set
f valid transactions until it fills up. The block size, i.e., the maximum
umber of transactions in a block, is a configurable parameter. Once
he new block (line 24) is complete, the leader disseminates it across
he vCubeChain via RBCast (line 26), an autonomic reliable broadcast
lgorithm [21]. This algorithm relies on the vCube hierarchical topol-
gy to ensure that the dissemination of blocks throughout the system
ill require a logarithmic number of communication steps to complete.

vCubeChain adopts the typical blockchain data structure shown in
ig. 2. The first block is called genesis and is proposed by the first leader.
ach block consists of a set of transactions as well as the hash of the
revious block and the hash of the current block.

.1. Block proposition

New blocks are proposed to vCubeChain as shown in Fig. 3. Ini-
3

ially, a client sends a new transaction to any vCubeChain process l
Fig. 3(a)). If this process is not a leader, it forwards the transaction to
he leader (Fig. 3(b)). The leader validates the transaction and forms

new block with a sufficiently large number of valid transactions
Fig. 3(c)). Finally, in step 4, the new block is disseminated throughout
he blockchain via vCube’s autonomic reliable broadcast algorithm
Fig. 3(d)).

After a specific process receives a new transaction, that process
aves it in the pending buffer (line 13). This transaction will only be
emoved of that buffer when the process receives a block containing it
line 35) or a notification from the leader that it is not valid (according
o the state of the ledger). In case the current leader is suspected
nd another leader is elected, the process resends all transactions
rom the pending buffer to the newly elected leader. If both the
uspected and new leaders persist transactions into new blocks, then
fork occurs. vCubeChain detects and resolves forks after a finite time

nterval to ensure global consistency through the mechanism described
n Section 3.3.

.2. Leader election

A process learns who the leader is by executing the CheckLeader
rocedure. In the case of a leader failure, the process with the highest
dentifier among the correct processes is chosen. Processes invoke the
heckLeader primitive to learn whether there has been a leader change.
hen a correct leader is incorrectly suspected of having failed, another
eader is elected, but as soon as it ceases to be suspected it can become



Ad Hoc Networks 158 (2024) 103461A.E.S. Freitas et al.
Fig. 2. Typical blockchain data structure (NIST).
Fig. 3. Transaction processing and new block proposition.

the leader again. vCubeChain assumes the GST timing model, according
to which the leader will no longer be incorrectly suspected after a
certain point in time.

In the example in Fig. 4, in Fig. 4(a), process 7 (𝑝7) is the leader
but becomes unduly suspected. Then, process 6 is elected as the new
leader. However, soon after, in Fig. 4(b), process 7 is again considered
to be correct, and over time, the two processes, 6 and 7, are perceived
as leaders by different system processes. Finally, in Fig. 4(c), the system
stabilizes, and process 7 is again the sole leader.

The proposed strategy includes a consensus-based approach to elim-
inate inconsistencies resulting from the existence of multiple leaders,
described in the next subsection.
4

3.3. Forks, consensus, and consistency

Dolev et al. (1987) proved that consensus can be reduced to reliable
broadcast with message ordering. vCubeChain’s consensus algorithm
relies on that result. In normal operation, the leader receives trans-
actions from clients and other system processes. After verifying their
validity, the leader establishes a local order on the pending transactions
by proposing a new block containing the transactions. The algorithm
disseminates this block using vCube’s reliable broadcast strategy, which
guarantees delivery to all the correct processes after a finite time
interval using an autonomic spanning tree.

Supposing that, in the face of false suspicions, two or more pro-
cesses can become leaders, and all can propose blocks to the chain.
As mentioned above, this causes the creation of forks. A fork consists
of subchains that are not consistent with each other. However, as all
leaders will reliably broadcast both subchains, all correct processes
will have the same view of the blockchain, including the fork and
derived subchains. In this scenario, the longest subchain is selected, so
that transactions are proposed based on information from that longest
subchain. Note that a leader validates transactions, i.e., if it receives a
transaction derived from an unknown last block, the transaction fails
to validate and will not be incorporated into any block proposition.

As forks can be created, vCubeChain requires a chain adjustment
mechanism. As the leader employs reliable broadcast to send each block
to all processes, which confirm the receipt of the block, the leader can
determine which proposed blocks are stable. A block is stable if all
processes perceived as correct have confirmed the receipt of that block.
For the sake of consistency, we employ a stability window of 𝐵 blocks.
𝐵 is a configurable parameter that can be set case by case. In other
words, if a process 𝑝 is the leader and has at least 𝐵 confirmed blocks,
its chain can be considered stable. On the other hand, some blocks will
fail the validation and are not persisted. Therefore, the transactions in
those blocks (or subchains) that do not persist must be retransmitted.
In our case, we employed 𝐵 = 2. Other values can be employed, the
window could be larger in case of a context of more instability. A larger
value implies more transactions to be redone and more contention.

The consensus strategy adopted by vCubeChain is a compromise
solution based on the premise that the perception of the correct pro-
cesses will converge to a single leader after eventual disputes between
multiple leaders. Thus, after the convergence, the leader will be able
to resolve any fork after 𝐵 blocks are confirmed, thus agreement is
guaranteed across the system.

For example, in Fig. 5, there is a fork due to conflicting leaders
6 and 7, which is incorrectly suspected of having failed. Leader 7
proposes blocks 2 to 5, and after process 6 also becomes a leader it
proposes block 2′. After some time, process 6 realizes that process 7 is
still active and gives up the leadership. Thus, after the system remains
stable for long enough process 7 becomes the sole leader. As mentioned
above, the leader will wait for confirmations from the correct processes
to assess block stability. Stable blocks are shown in green in Fig. 5.
Process 7 uses block stability information in order to compute the
difference between stable subchains. In this case, the stability window

https://www.nist.gov/blockchain


Ad Hoc Networks 158 (2024) 103461A.E.S. Freitas et al.
Fig. 4. Example of improper leadership demotion followed by correction.
Fig. 5. A fork with two subchains with stable blocks.

is of length 𝐵 = 2. Thus the leader determines the longest stable
subchain, consisting of blocks 2 to 5. The transactions in block 2′ are
not validated and later will have to be reconciled.

Although the reliable broadcast mechanism requires a linear num-
ber of messages, in pre-GST degradation scenarios, this cost can become
quadratic — that is the worst case, in which all processes are correct but
unduly suspect all others. Nevertheless, from the GST the perception
of the failure detector will converge, and all processes elect the same
leader.

In scenarios without leader failures, the algorithm is straightfor-
ward: the leader reliably broadcasts blocks in order, which guarantees
that the blockchain will work in the usual way. The failure of a leader
may, given the instability of the system, raise disputes, and there
may be multiple leaders during some time intervals. Even if there are
forks, the processes will receive all proposed blocks from all competing
leaders in the orders they established. However, as shown above, a fork
is guaranteed to be reconciled after the GST, and described above.

3.4. Safety and liveness

We present draft proofs in this section that the safety of vCubeChain
is guaranteed, even under timing conditions that may lead to false
suspicions and multiple leaders or no leader at all. However, it is
impossible to guarantee progress (i.e., termination) in all scenarios,
a fact that is consistent with the FLP impossibility [22]. Progress is
guaranteed only after the GST, when the leader is unique and can
communicate with the other active processes in a finite time.

Lemma 3.1 (Safety). All correct processes running vCubeChain eventually
converge for the same blockchain, i.e., with the same blocks which include
all correlated transactions.
5

Discussion. vCubeChain employs a consensus strategy that is based
on the autonomic reliable broadcast strategy presented. In a graceful
execution scenario, only one correct leader proposes blocks that will
be broadcast in a finite time to all correct processes. If there are
instabilities, more than one leader may be elected, and all of them can
propose new blocks based on the current chain. All those new blocks
are broadcast and can generate forks that consist of multiple subchains.
The reliable broadcast mechanism guarantees that all correct processes
will eventually receive all blocks, including those of the subchains.
After the system converges to a single leader again, this leader will
assess block stability and eventually resolve any fork by determining
that the longest subchain is the only valid chain. This causes all correct
processes to update the corresponding blocks accordingly. □

Lemma 3.2 (Liveness). All valid transactions are eventually committed
across the blockchain.

Discussion. In a graceful execution scenario, only one correct leader
proposes blocks that will be broadcast in a finite time to all correct
processes. In this case, liveness (i.e., termination) is guaranteed: a single
leader can only propose a single sequence of blocks that result in a
single chain, of which all correct processes are aware.

On the other hand, in scenarios with multiple leaders, forks can be
created with multiple subchains. vCubeChain assumes the GST model,
according to which any timing instabilities are solved within a finite
time interval, and a new single leader is elected. The sole leader relies
on block stability information to solve forks, determining a single valid
chain. Transactions from deprecated subchains will be resubmitted, and
deprecated blocks become invalid and are discarded. □

Theorem 3.3. Algorithm 1 implements a permissioned blockchain that
guarantees safety (i.e., correctness) and, in the presence of a sufficiently
long period of timing stability, also guarantees liveness (i.e., the termination
of the algorithm).

Proof. The proof follows directly from Lemmas 3.1 and 3.2 (Termin-
ation). □

4. Simulation results

This section presents an evaluation of vCubeChain, including com-
parisons with Bitcoin, Ethereum, and Hyperledger Fabric. The block-
chains were implemented using the Blocksim simulator [23]. Blocksim
is a discrete event simulator developed in Python that allows the
implementation of blockchains as ‘‘models’’. Both the implementa-
tions (i.e., the Blocksim models) of Bitcoin and Ethereum (permission-
less blockchains) were already available. We implemented not only



Ad Hoc Networks 158 (2024) 103461A.E.S. Freitas et al.
Table 1
Main aspects of the evaluated solutions.

Characteristics Bitcoin Ethereum Fabric vCubeChain

Consensus PoW PoS Kafka-based this

Permissioned (P)
Permissionless (L) L L P P

Nodes
misbehavior yes yes no no

Finality no no yes no

vCubeChain but also Hyperledger Fabric, which was essential so that
we could make a comparison with another permissioned blockchain.
Blocksim’s P2P network is configured with nodes (representing pro-
cesses), each of which is initialized with a set of neighbors. It is also
possible to configure the communication latency, both in terms of link
transmission, as well as send and receive delay parameters. Next we
present a brief description of the four Blocksim models employed in
the evaluation.
Bitcoin. The Bitcoin [6] BlockSim model uses a block size limit of 1
megabyte and employs a probability distribution for the number of
transactions per block that is based on real data from the Bitcoin net-
work. The model provides two types of nodes: miners and non-miners.
A non-mining node only validates blocks or validates and disseminates
new transactions. Miners validate and group new transactions in a
transaction queue to create candidate blocks that are later passed on
to other nodes in the system.
Ethereum. The Ethereum [7] BlockSim model was implemented in
a similar way as that of Bitcoin, also presenting mining and non-
mining nodes. However, Ethereum implements the gas limit, which is
the maximum amount of gas a transaction can spend (between 1 and
32,000, typically 21,000 and the gas limit for a block. For example, if
the block has a gas limit of 10,000 and each transaction has a cost of
1000, each block can contain up to 10 transactions.
Fabric. We implemented the Hyperledger Fabric [3] Blocksim model
using a simplified leader-based approach and a gossip protocol to
broadcast transactions and blocks. For the sake of comparison with the
other solutions available in the simulator, transaction validation by the
endorsement policy is omitted, and we focus on the simulation of the
propagation of valid transactions and blocks. Although Fabric supports
multiple blockchains connected to the same ordering service (multiple
channels), we simulate a one-channel scenario. The gossip protocol uses
the push strategy, where each peer selects a random set of neighbors
to send the messages to. A leader is elected to pull blocks and initiate
the gossip distribution.
vCubeChain. The vCubeChain Blocksim model uses the same configu-
ration as Bitcoin. However, transactions are sent only to the leader (the
process with the highest ID), and the leader broadcasts blocks to all
other processes using vCube’s hierarchical reliable broadcast strategy.

The implementations for Bitcoin, Ethereum, and Fabric assume a
fully connected network where all nodes communicate directly. The
vCubeChain implementation uses the vCube virtual topology, which
dynamically defines the neighbors of each node, according to the
topology rules and failure detection information. For each message sent
and received in the network, the processing time is computed according
to the size of the corresponding messages. Blocksim simulates TCP,
and the connections between processes are established as nodes first
communicate.

Table 1 shows a summary of the main aspects of the four solutions
(Bitcoin, Ethereum, Fabric, vCubeChain). In terms of the consensus
solution employed; whether they are permissioned or permissionless;
whether they allow node misbehavior, and finality (transactions cannot
be rolled back).
6

Table 2
Locations where nodes are placed (simulation).

Sites Non-miners Miner/Leader

Cascavel/Brazil 𝑁∕4 0

Salvador/Brazil 𝑁∕4 0

Curitiba/Brazil (𝑁∕2) − 1 1

Fig. 6. Latency in milliseconds between nodes on each site (simulation).

4.1. Simulated scenarios

The algorithms were executed for systems with 𝑁 = 8, 16, 32, 64, and
128 nodes (representing processes). The configuration parameters used
were those defined in [23]. For Ethereum, the default value for the
gas limit was 21,000 and a block gas limit of 2.1 million was defined.
According to Table 2, the nodes are distributed across three sites. For
𝑁 = 8, for example, there are two nodes in Cascavel/Brazil, two more
in Salvador/Brazil, and four in Curitiba/Brazil. For the latter, one node
is configured as a miner for both Bitcoin and Ethereum and as a leader
for Fabric and vCubeChain. The number of random neighbors (i.e., the
fanout) of each Fabric’s gossip node was set to three, which is the
default value adopted by Fabric [24].

The values for the communication latency (in milliseconds) between
nodes at each site were set using the parameters in Fig. 6. Those values
were obtained from real RTT measurements on the RNP (National
Research Network) network that connects the three sites. The normal
distribution (mean and standard deviation) was used for nodes at
different sites, and the inverse gamma distribution was used for nodes
at the same location. The full parameters are available on Github.1

Results are presented for blockchain scalability, focusing on the
execution times and number of messages required by the four different
solutions. Simulations were performed on an Intel i7 with 512 SSD
and 16 GB RAM memory. For each execution, a thousand transactions
were generated, one transaction per round. A new round starts every
15 s. Transactions were randomly distributed among processes using
Blocksim’s transaction factory function.

4.2. Results

The average time taken to validate all transactions is shown in
Fig. 7(a), computed as an average of 30 executions of each scenario and
IC=95%. We assume the transaction validation times of the different
models are roughly comparable. Actually, the transaction validation
times were found to be similar for the four models. This uniformity
across the four models led to some interesting findings. First and fore-
most, it highlights the importance of employing other metrics beyond
time to determine the overall blockchain efficiency. With validation
times being very similar, our attention shifted to resource utilization,
scalability, and adaptability. In particular, resource utilization became
a crucial metric, as algorithms that could achieve similar results with

1 https://github.com/arluiz/FD-blocksim

https://github.com/arluiz/FD-blocksim


Ad Hoc Networks 158 (2024) 103461A.E.S. Freitas et al.
Fig. 7. Average time to validate all transactions and average number of messages in logarithmic scale for 30 executions with CI 95%.
fewer resources emerged as more sustainable and cost-effective. This
aspect of the simulation allowed us to identify potential aspects of
the algorithms that could possibly lead toward more environmentally
friendly and economically viable solutions. Overall, we also highlight
that the Ethereum simulation took a significantly longer time (several
hours) to simulate than those of Bitcoin, Fabric, and vCubeChain (each
just a few minutes).

The total number of messages employed by the Blocksim models is
shown in logarithmic scale in Fig. 7(b). Both models that were already
available in the simulator (Bitcoin and Ethereum) employ two message
types, one for ‘‘header’’ and another for ‘‘body’’. For each message
containing the transaction header, a request is sent for the transaction
body, which in turn generates a new message containing the transaction
content. The same is true for blocks. To ensure a fair comparison, we
implemented Fabric and vCubeChain in exactly the same way.

In the case of vCubeChain, the number of messages employed keeps
small due to the hierarchical broadcast strategy employed. On the hand,
Fabric uses a three-neighbor gossip protocol. In the case of Bitcoin
and Ethereum, the transmission is one-to-one. Moreover, processes in
Bitcoin send initialization messages as they start communicating to
spread their knowledge about new transactions and blocks.

In terms of the number of blocks created, for Ethereum, the number
of transactions per block is determined by the gas limit. For Bitcoin and
VCubeChain, A block size of 2 megabytes was employed. Therefore, all
transactions are combined into a single block in all scenarios.

In a real scenario, considering the TCP connections in an error-free
execution, vCubeChain opens fewer connections compared to Bitcoin,
Ethereum and Fabric because it communicates only with the leader
and 𝑙𝑜𝑔2𝑁 neighbors in average and up to 𝑁 neighbors in worst-case,
in which a single process is correct. Bitcoin and Ethereum use a one-
to-all strategy, i.e. there are (𝑁2 − 𝑁)∕2 connections. In the Fabric
implementation, each process communicates with 3 random neighbors,
so the number of connections can vary from 3 ∗ 𝑁 to (𝑁2 − 𝑁)∕2
depending on the selection of neighbors.

5. Related work

This section presents an overview of related work, including both
permissionless and permissioned blockchains. Several permissionless
blockchains use probabilistic approaches to consensus, such as Bitcoin’s
proof-of-work (PoW) [6]. That approach is actually an implicit leader
election. In PoW, multiple processes compete to solve the cryptographic
challenge and then submit a block proposal for the blockchain. Multiple
processes may succeed, which results in a divergence expressed by a
fork. To bring the blockchain back to a consistent state, Bitcoin adopts
the rule of the survival of the longest chain, similar to vCubeChain’s
approach.
7

The so-called PoX (Proof-of-Anything) consensus mechanisms have
been proposed with the purpose of reducing the computational cost of
PoW [25]. Arguably, the most successful PoX strategy is Proof-of-Stake
(PoS), used in platforms such as Ethereum [26] and Algorand [8]. PoS
consensus mechanisms address inefficiencies inherent in conventional
Proof-of-Work (PoW) protocols. Instead of relying on crypto mining,
in PoS blockchains a leader is elected based on its stake, in terms of
tokens or cryptocurrency. The leader verifies and records transactions.
Nodes make stakes in a staking pool, the node with the highest stake is
elected as validator/leader for the next proposal slot. In that proposal
slot, that node (i.e., the leader) proposes a new block that a quorum
must approve to be added to the blockchain. The quorum is also
defined based on the stakes. As it makes new proposals, the leader
earns rewards which are newly generated tokens. PoS is based on game
theory: participants who have a higher amount of tokens for a longer
time have higher chances to be elected as leaders and to the deciding
quorum.

PoS does not prevent the occurrence of forks. The so-called multiple
honest slots may arise by design [27]: they are proposal slots that
emerge when two or more honest nodes are elected as leaders. That
may occur for instance during network instabilities when the system
falls into a non-synchronous timing situation that may result in asym-
metries and cause more than one process to assume the leader role.
Again, there are strategies to bring the blockchain back to consistency.
Ethereum 1.0 [7] also employs the longest chain rule, like Bitcoin.
However, Ethereum 2.0 [10] runs a fork-choice algorithm that mea-
sures the ‘weight’ of the multiple chains, using a variation of the GHOST
fork rule [28].

Some hybrid approaches combine PoW and PoS or use slightly
modified approaches [25]. For instance, the Proof-of-Activity (PoA)
protocol employs PoW to create empty blocks and the PoS to ver-
ify blocks and add transactions [29]. Other hybrid approaches, such
as the protocol proposed in [30], often elect a committee to verify
blocks and confirm transactions. Those approaches try to minimize
power consumption but employ game theory concepts of permissionless
blockchains.

All those approaches based on PoW and PoS, and other PoX and
hybrid approaches heavily rely on cryptocurrency or token rewards.
Similar to those strategies of permissionless blockchains, vCubeChain
can also cope with multiple leaders, and uses rules to reconcile the
blockchain eventually.

In the case of permissioned blockchains, the platforms usually en-
capsulate in their core a traditional consensus approach, as in the case
of Hyperledger Fabric [3] or of Corda [4] that allows an arbitrary
consensus mechanism to be plugged.

Traditional approaches to consensus, such as Paxos [31] and Raft
[11], explicitly use leader election. In Paxos, for example, the proposer



Ad Hoc Networks 158 (2024) 103461A.E.S. Freitas et al.

m
g
i
c
m
c
a

[
e
r
t
a
s
P

tries to become the leader in the first phase and get the proposal
accepted. Alternatively, the proposer may fail to gain a majority and
try later, or another leader may be elected. Conversely, Raft clearly
distinguishes the leader election process, which is explicitly executed
by the protocol.

Both the Paxos strategy (based on a majority of acceptors) and the
Raft strategy (based on heartbeat message exchanges and timeouts)

ay experience performance degradations as the number of processes
rows. Furthermore, despite of having the advantage of predictabil-
ty, those deterministic strategies imply on a higher communication
ost. On the other hand, probabilistic algorithms, despite of being
ore efficient in terms of communication, they can also present other

hallenges, such as the high computational cost of the proof-of-work
pproach.

Some Paxos approaches, such as Fast Paxos [32] and Multi-Paxos
33], assume a speculative strategy, which is efficient in graceful
xecutions. In Fast Paxos, different values may be accepted in a fast
ound, i.e., it is prone to collisions, and a value may not be decided. In
hat case, the algorithm turns back to the classic version. In Multi-Paxos

distinguished replica is elected as the protocol leader to improve
ystem performance by reducing the 2-phase commit protocol of classic
axos to a 1-phase commit protocol for 𝑛 consensus rounds. However,

the protocol degrades to the classic version in a collision scenario in
which two or more proposers compete for the leadership.

vCubeChain presents greater scalability even in the degraded sce-
nario, as it employs the autonomic and hierarchical reliable broadcast
strategy that does allow forks to occur but it will bring the system
back to consistency once it becomes stable. Recall that vCubeChain
relies on the underlying vCube both as a failure detector and for leader
election. This strategy avoids contention in a synchronous network: the
leader is the correct process with the highest identifier. If the network
behaves asynchronously, multiple leaders can be elected: forks can
appear, which are resolved a posteriori. This solution seeks to reduce
contention in the permissioned blockchain — as occurs in consensus
algorithms generally used in this environment, which also increases
vCubeChain’s scalability.

RingPaxos [34] uses a logical ring as an overlay network for saving
messages in phase 1. PigPaxos [35] uses a piggy-backing approach to
save messages and employs relays to reduce leader load. In comparison,
our approach is also message savvy, but by using the vCube’s autonomic
spanning trees.

Other consensus approaches address Byzantine faults, such as PBFT
[12], and Zyzzyva [36]. Currently, vCubeChain assumes crash faults.

6. Conclusion

This work presented vCubeChain, a hierarchical and autonomic per-
missioned blockchain. vCubeChain relies on vCube’s failure detection
and reliable broadcast mechanisms. A leader is elected based on failure
detection information, the leader is responsible for making proposals
for new blocks. During a period of instability, multiple leaders can be
elected and forks can appear, but the system returns to a consistent
state as soon as network conditions improve. vCubeChain was imple-
mented through simulation and compared with Bitcoin and Ethereum.
Results demonstrate the scalability of the solution.

Future work includes the investigation of vCubeChain in the context
of Byzantine faults. Other future work should define strategies to
deal with crash-recovery and dynamic processes, that join and leave
the system over time. Currently, vCubeChain implements a complete
stack blockchain, but we envision that specific parts of the proposed
approach may be adapted as a pluggable module for other existing
8

blockchain platforms.
CRediT authorship contribution statement

Allan Edgard Silva Freitas: Writing – original draft, Investiga-
tion, Formal analysis, Conceptualization. Luiz Antonio Rodrigues:
Writing – original draft, Investigation, Data curation, Conceptualiza-
tion. Elias Procópio Duarte Jr.: Writing – original draft, Valida-
tion, Methodology, Investigation, Funding acquisition, Formal analysis,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was partially supported by the Brazilian Research Coun-
cil (CNPq - Conselho Nacional de Desenvolvimento Científico e Tec-
nológico) grant 308959/2020-5; FAPESP/MCTIC/CGI grant 2021/
06923-0; and the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior - Brasil (CAPES) - Finance Code 001.

References

[1] H.T.M. Gamage, H. Weerasinghe, N.G.J. Dias, A survey on blockchain technology
concepts, applications, and issues, SN Comput. Sci. 1 (2020) 1–15, http://dx.doi.
org/10.1007/s42979-020-00123-0.

[2] W. Chen, Z. Xu, S. Shi, Y. Zhao, J. Zhao, A survey of blockchain applications
in different domains, in: Proc. 2018 Int’L Conf. on Blockchain Technology and
Application, ICBTA ’18, ACM, New York, NY, USA, 2018, pp. 17–21, http:
//dx.doi.org/10.1145/3301403.3301407.

[3] E. Androulaki, et al., Hyperledger fabric: A distributed operating system for
permissioned blockchains, in: Proceedings of the Thirteenth EuroSys Conference,
EuroSys ’18, Association for Computing Machinery, New York, NY, USA, 2018,
http://dx.doi.org/10.1145/3190508.3190538.

[4] R.G. Brown, J. Carlyle, I. Grigg, M. Hearn, Corda: an introduction, 2016, p. 15,
URL https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf.

[5] A.A. Monrat, O. Schelén, K. Andersson, Performance evaluation of permissioned
blockchain platforms, in: 2020 IEEE Asia-Pacific Conference on Computer Sci-
ence and Data Engineering, CSDE, 2020, pp. 1–8, http://dx.doi.org/10.1109/
CSDE50874.2020.9411380.

[6] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Citeseer, 2008, URL
http://bitcoin.org/bitcoin.pdf.

[7] D.D. Wood, Ethereum: a secure decentralised generalised transaction ledger,
2014, URL https://ethereum.github.io/yellowpaper/paper.pdf.

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: Scaling
Byzantine agreements for cryptocurrencies, in: Proceedings of the 26th Sym-
posium on Operating Systems Principles, SOSP ’17, Association for Computing
Machinery, New York, NY, USA, 2017, pp. 51–68, http://dx.doi.org/10.1145/
3132747.3132757.

[9] L. Peng, W. Feng, Z. Yan, Y. Li, X. Zhou, S. Shimizu, Privacy preservation
in permissionless blockchain: A survey, Digit. Commun. Netw. 7 (3) (2021)
295–307, http://dx.doi.org/10.1016/j.dcan.2020.05.008.

[10] Ethereum.org, PROOF-OF-STAKE (POS), 2022, https://ethereum.org/en/
developers/docs/consensus-mechanisms/pos/.

[11] D. Ongaro, J. Ousterhout, In search of an understandable consensus algorithm,
in: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’14, USENIX Association, USA, 2014, pp. 305–320, URL
https://dl.acm.org/doi/10.5555/2643634.2643666.

[12] M. Castro, B. Liskov, Practical Byzantine fault tolerance and proactive recovery,
ACM Trans. Comput. Syst. 20 (4) (2002) 398–461, http://dx.doi.org/10.1145/
571637.571640.

[13] D. Dolev, C. Lenzen, Early-deciding consensus is expensive, in: Proc. of the PODC
’13, ACM, New York, NY, USA, 2013, pp. 270–279, http://dx.doi.org/10.1145/
2484239.2484269.

[14] M. Vukolić, The quest for scalable blockchain fabric: Proof-of-work vs. BFT
replication, in: J. Camenisch, D. Kesdoğan (Eds.), Open Problems in Network
Security, Springer International Publishing, Cham, 2016, pp. 112–125, http:

//dx.doi.org/10.1007/978-3-319-39028-4_9.

http://dx.doi.org/10.1007/s42979-020-00123-0
http://dx.doi.org/10.1007/s42979-020-00123-0
http://dx.doi.org/10.1007/s42979-020-00123-0
http://dx.doi.org/10.1145/3301403.3301407
http://dx.doi.org/10.1145/3301403.3301407
http://dx.doi.org/10.1145/3301403.3301407
http://dx.doi.org/10.1145/3190508.3190538
https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf
http://dx.doi.org/10.1109/CSDE50874.2020.9411380
http://dx.doi.org/10.1109/CSDE50874.2020.9411380
http://dx.doi.org/10.1109/CSDE50874.2020.9411380
http://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
http://dx.doi.org/10.1145/3132747.3132757
http://dx.doi.org/10.1145/3132747.3132757
http://dx.doi.org/10.1145/3132747.3132757
http://dx.doi.org/10.1016/j.dcan.2020.05.008
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://dl.acm.org/doi/10.5555/2643634.2643666
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/2484239.2484269
http://dx.doi.org/10.1145/2484239.2484269
http://dx.doi.org/10.1145/2484239.2484269
http://dx.doi.org/10.1007/978-3-319-39028-4_9
http://dx.doi.org/10.1007/978-3-319-39028-4_9
http://dx.doi.org/10.1007/978-3-319-39028-4_9


Ad Hoc Networks 158 (2024) 103461A.E.S. Freitas et al.
[15] R. Guerraoui, J. Hamza, D.-A. Seredinschi, M. Vukolic, Can 100 machines
agree?, 2019, http://dx.doi.org/10.48550/ARXIV.1911.07966, https://arxiv.org/
abs/1911.07966.

[16] E.P. Duarte, L.C.E. Bona, V.K. Ruoso, VCube: A provably scalable distributed
diagnosis algorithm, in: 2014 5th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, 2014, pp. 17–22, http://dx.doi.org/10.1109/
ScalA.2014.14.

[17] E. Duarte, T. Nanya, A hierarchical adaptive distributed system-level diagnosis
algorithm, IEEE Trans. Comput. 47 (1) (1998) 34–45, http://dx.doi.org/10.1109/
12.656078.

[18] E.P. Duarte Jr., L.A. Rodrigues, E.T. Camargo, R.C. Turchetti, The missing piece:
a distributed system-level diagnosis model for the implementation of unreliable
failure detectors, Computing 105 (2023) http://dx.doi.org/10.1007/s00607-023-
01211-8.

[19] D. Dolev, C. Dwork, L. Stockmeyer, On the minimal synchronism needed for
distributed consensus, J. ACM 34 (1) (1987) 77–97, http://dx.doi.org/10.1145/
7531.7533.

[20] L.A. Rodrigues, L. Arantes, E.P. Duarte Jr., An autonomic implementation of
reliable broadcast based on dynamic spanning trees, in: 2014 Tenth European
Dependable Computing Conference, 2014, pp. 1–12, http://dx.doi.org/10.1109/
EDCC.2014.31.

[21] D. Jeanneau, et al., An autonomic hierarchical reliable broadcast protocol for
asynchronous distributed systems with failure detection, JBCS 23 (15) (2017)
http://dx.doi.org/10.1186/s13173-017-0064-9.

[22] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus
with one faulty process, J. ACM 32 (2) (1985) 374–382.

[23] C. Faria, M. Correia, BlockSim: Blockchain simulator, in: 2019 IEEE International
Conference on Blockchain (Blockchain), 2019, pp. 439–446, http://dx.doi.org/
10.1109/Blockchain.2019.00067.

[24] N. Berendea, H. Mercier, E. Onica, E. Riviere, Fair and efficient gossip in
hyperledger fabric, in: 2020 IEEE 40th International Conference on Distributed
Computing Systems, ICDCS, IEEE Computer Society, Los Alamitos, CA, USA,
2020, pp. 190–200, http://dx.doi.org/10.1109/ICDCS47774.2020.00027, URL
https://doi.ieeecomputersociety.org/10.1109/ICDCS47774.2020.00027.

[25] C.T. Nguyen, D.T. Hoang, D.N. Nguyen, D. Niyato, H.T. Nguyen, E. Dutkiewicz,
Proof-of-stake consensus mechanisms for future blockchain networks: Funda-
mentals, applications and opportunities, IEEE Access 7 (2019) 85727–85745,
http://dx.doi.org/10.1109/ACCESS.2019.2925010.

[26] F. Saleh, Blockchain without waste: Proof-of-stake, Rev. Financ. Stud. 34 (3)
(2020) 1156–1190, http://dx.doi.org/10.1093/rfs/hhaa075.

[27] A. Kiayias, S. Quader, A. Russell, Consistency of proof-of-stake blockchains with
concurrent honest slot leaders, in: 2020 IEEE 40th International Conference on
Distributed Computing Systems, ICDCS, 2020, pp. 776–786, http://dx.doi.org/
10.1109/ICDCS47774.2020.00065.

[28] Y. Sompolinsky, A. Zohar, Secure high-rate transaction processing in bitcoin,
in: R. Böhme, T. Okamoto (Eds.), Financial Cryptography and Data Security,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 507–527, http://dx.
doi.org/10.1007/978-3-662-47854-7_32.

[29] I. Bentov, C. Lee, A. Mizrahi, M. Rosenfeld, Proof of activity: Extending bitcoin’s
proof of work via proof of stake [extended abstract] y, ACM SIGMETRICS
Perform. Eval. Rev. 42 (3) (2014) 34–37.

[30] R. Pass, E. Shi, Hybrid Consensus: Efficient Consensus in the Permissionless
Model, in: A. Richa (Ed.), 31st International Symposium on Distributed Comput-
ing (DISC 2017), in: Leibniz International Proceedings in Informatics (LIPIcs),
vol. 91 (2017) 39:1–39:16, http://dx.doi.org/10.4230/LIPIcs.DISC.2017.39.

[31] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998)
133–169, http://dx.doi.org/10.1145/279227.279229.
9

[32] L. Lamport, Fast paxos, Distrib. Comput. 19 (2) (2006) 79–103, http://dx.doi.
org/10.1007/s00446-006-0005-x.

[33] R. Van Renesse, D. Altinbuken, Paxos made moderately complex, ACM Comput.
Surv. 47 (3) (2015) http://dx.doi.org/10.1145/2673577.

[34] P.J. Marandi, M. Primi, N. Schiper, F. Pedone, Ring paxos: A high-throughput
atomic broadcast protocol, in: 2010 IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN, 2010, pp. 527–536, http://dx.doi.org/
10.1109/DSN.2010.5544272.

[35] A. Charapko, A. Ailijiang, M. Demirbas, PigPaxos: Devouring the communication
bottlenecks in distributed consensus, in: Proceedings of the 2021 International
Conference on Management of Data, SIGMOD ’21, Association for Computing
Machinery, New York, NY, USA, 2021, pp. 235–247, http://dx.doi.org/10.1145/
3448016.3452834.

[36] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, E. Wong, Zyzzyva: speculative byzan-
tine fault tolerance, in: Proceedings of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles, 2007, pp. 45–58.

Allan Edgard Silva Freitas is a Full Professor at Federal
Institute of Bahia (IFBA), Brazil. He received his Ph.D. in
Computer Science from the Federal University of Bahia
(UFBA). He is an effective member of the Brazilian Com-
puter Society (SBC) and the Association for Computing
Machinery (ACM). He served as chair of several conferences
and workshops, including Brazilian Symposium on Com-
puter Networks and Distributed Systems (SBRC’2016). He
is the vice-coordinator of the Special Committee on Fault-
Tolerant Systems of the SBC (CE-TF). His main interests are
distributed systems, computer networks, fault tolerance, and
Dependability.

Luiz Antonio Rodrigues is a Full professor at Western
Parana State University (Unioeste), Brazil, and a member
of the GPISC (Computer Systems Research and Innovation
Group). He received his Ph.D. in Computer Science from
the Federal University of Parana (UFPR) including a year-
long internship int the LIP6 at Sorbonne University. He
is an effective member of the Brazilian Computer Society
(SBC) and was the coordinator of the Special Committee
on Fault-Tolerant Systems of the SBC (CE-TF 2019–2020).
His main interests are in computer science, with a focus on
computer networks, fault tolerance, distributed systems, and
Dependability.

Elias P. Duarte Jr. is a Full Professor at Federal University
of Parana, Brazil. His research interests include computer
networks and distributed systems, their dependability and
algorithms. With over 300 peer-reviewer papers, and 130
students supervised, Prof. Duarte is Associate Editor of the
Computing (Springer) journal and IEEE Transactions on
Dependable and Secure Computing, and has served as chair
of more than 25 conferences and workshops, including TPC
Chair of GLOBECOM’2024, SRDS’2018 and ICDCS’2021.
He chaired the Brazilian National Laboratory on Computer
Networks (2012–2016), and is a member of the Brazilian
Computer Society and a Senior Member of the IEEE.

http://dx.doi.org/10.48550/ARXIV.1911.07966
https://arxiv.org/abs/1911.07966
https://arxiv.org/abs/1911.07966
https://arxiv.org/abs/1911.07966
http://dx.doi.org/10.1109/ScalA.2014.14
http://dx.doi.org/10.1109/ScalA.2014.14
http://dx.doi.org/10.1109/ScalA.2014.14
http://dx.doi.org/10.1109/12.656078
http://dx.doi.org/10.1109/12.656078
http://dx.doi.org/10.1109/12.656078
http://dx.doi.org/10.1007/s00607-023-01211-8
http://dx.doi.org/10.1007/s00607-023-01211-8
http://dx.doi.org/10.1007/s00607-023-01211-8
http://dx.doi.org/10.1145/7531.7533
http://dx.doi.org/10.1145/7531.7533
http://dx.doi.org/10.1145/7531.7533
http://dx.doi.org/10.1109/EDCC.2014.31
http://dx.doi.org/10.1109/EDCC.2014.31
http://dx.doi.org/10.1109/EDCC.2014.31
http://dx.doi.org/10.1186/s13173-017-0064-9
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb22
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb22
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb22
http://dx.doi.org/10.1109/Blockchain.2019.00067
http://dx.doi.org/10.1109/Blockchain.2019.00067
http://dx.doi.org/10.1109/Blockchain.2019.00067
http://dx.doi.org/10.1109/ICDCS47774.2020.00027
https://doi.ieeecomputersociety.org/10.1109/ICDCS47774.2020.00027
http://dx.doi.org/10.1109/ACCESS.2019.2925010
http://dx.doi.org/10.1093/rfs/hhaa075
http://dx.doi.org/10.1109/ICDCS47774.2020.00065
http://dx.doi.org/10.1109/ICDCS47774.2020.00065
http://dx.doi.org/10.1109/ICDCS47774.2020.00065
http://dx.doi.org/10.1007/978-3-662-47854-7_32
http://dx.doi.org/10.1007/978-3-662-47854-7_32
http://dx.doi.org/10.1007/978-3-662-47854-7_32
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb29
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb29
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb29
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb29
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb29
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.39
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1007/s00446-006-0005-x
http://dx.doi.org/10.1007/s00446-006-0005-x
http://dx.doi.org/10.1007/s00446-006-0005-x
http://dx.doi.org/10.1145/2673577
http://dx.doi.org/10.1109/DSN.2010.5544272
http://dx.doi.org/10.1109/DSN.2010.5544272
http://dx.doi.org/10.1109/DSN.2010.5544272
http://dx.doi.org/10.1145/3448016.3452834
http://dx.doi.org/10.1145/3448016.3452834
http://dx.doi.org/10.1145/3448016.3452834
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb36
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb36
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb36
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb36
http://refhub.elsevier.com/S1570-8705(24)00072-6/sb36

	vCubeChain: A scalable permissioned blockchain
	Introduction
	System Model
	vCubeChain: a Scalable Permissioned Blockchain
	Block Proposition
	Leader Election
	Forks, Consensus, and Consistency
	Safety and Liveness

	Simulation Results
	Simulated Scenarios
	Results

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


