See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320843003

De uma prisão ateniense a um duelo parisiense

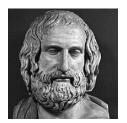
Present	cation · October 2017		
CITATION	c	READ	
0	3	1	
2 autho	rs, including:		
0	Ermelindo Paulo Breviglieri Schultz Universidade Federal do Paraná		
	1 PUBLICATION 0 CITATIONS SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

Computer Science Popularization: an ethnocomputing approach View project

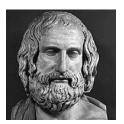
De uma prisão ateniense a um duelo parisiense

Semana ABERta de Informática 2017



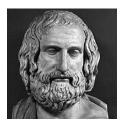
510 aC — 428 aC Filósofo

subversivo



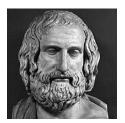
510 aC — 428 aC Filósofo

► subversivo: ímpio



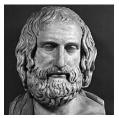
510 aC — 428 aC Filósofo

subversivo: ímpio: "Sol e a lua não são deuses"



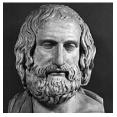
510 aC — 428 aC Filósofo

- subversivo: ímpio: "Sol e a lua não são deuses"
- preso em Atenas (\approx 450 aC)



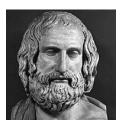
510 aC — 428 aC Filósofo

- subversivo: ímpio: "Sol e a lua não são deuses"
- ▶ preso em Atenas (\approx 450 aC)
- solto por Péricles e enviado para Lâmpsaco.



510 aC — 428 aC Filósofo

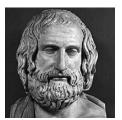
- subversivo: ímpio: "Sol e a lua não são deuses"
- ▶ preso em Atenas (\approx 450 aC)
- solto por Péricles e enviado para Lâmpsaco.



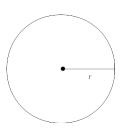
510 aC — 428 aC Filósofo

- subversivo: ímpio: "Sol e a lua não são deuses"
- ▶ preso em Atenas (\approx 450 aC)
- solto por Péricles e enviado para Lâmpsaco.

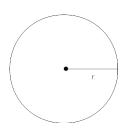
problema da Quadratura do Círculo



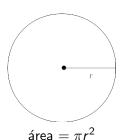
510 aC — 428 aC Filósofo



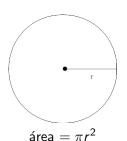
obtenha um quadrado com a mesma área

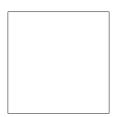


obtenha um quadrado com a mesma área



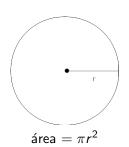
obtenha um quadrado com a mesma área





lado =
$$r\sqrt{\pi}$$

dado um círculo obtenha um quadrado com a mesma área



lado =
$$r\sqrt{\pi}$$

utilizando apenas régua e compasso

duas operações disponíveis:

duas operações disponíveis:

1. traçar segmento de reta passando por dois pontos dados

duas operações disponíveis:

1. traçar segmento de reta passando por dois pontos dados

duas operações disponíveis:

1. traçar segmento de reta passando por dois pontos dados

2. traçar (arco de) circunferência com centro e raio dados

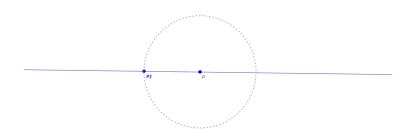
duas operações disponíveis:

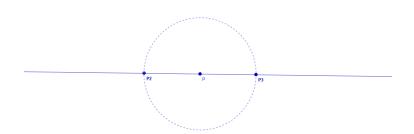
1. traçar segmento de reta passando por dois pontos dados

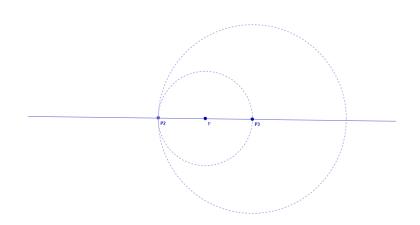
2. traçar (arco de) circunferência com centro e raio dados

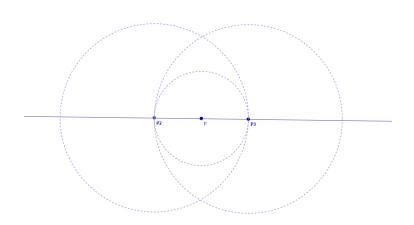
dados uma reta r e um ponto P

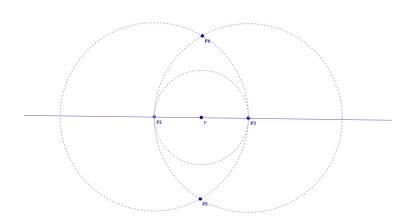
dados uma reta r e um ponto P

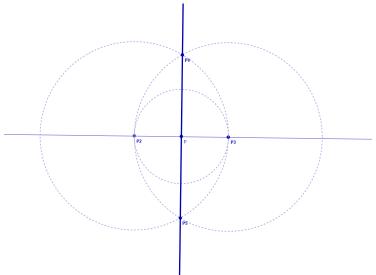












obtenha ...
usando somente ...

```
\mathsf{dado} \ \ldots \leftarrow \mathsf{entrada} \mathsf{obtenha} \ \ldots \mathsf{usando} \ \mathsf{somente} \ \ldots
```

 $\mathsf{dado}\,\ldots \leftarrow \mathsf{entrada}$

obtenha $\ldots \leftarrow$ saída

usando somente ...

 $\mathsf{dado}\,\ldots\leftarrow\,\mathsf{entrada}$

obtenha . . . ← saída

usando somente $\ldots \leftarrow$ operações disponíveis

```
dado \dots\leftarrow entrada \leftarrow \text{problema computacional} obtenha \dots\leftarrow saída usando somente \dots\leftarrow modelo de computação
```

dado ... \leftarrow entrada \leftarrow problema computacional obtenha ... \leftarrow saída

usando somente . . . ← modelo de computação

 $dado \ldots \leftarrow entrada$

← problema computacional

obtenha . . . ← saída

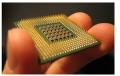
usando somente . . . \leftarrow modelo de computação

 $dado \ldots \leftarrow entrada$

← problema computacional

obtenha . . . ← saída

usando somente ... \leftarrow modelo de computação



Duplicação do Cubo

Duplicação do Cubo dado um cubo,

Duplicação do Cubo

dado um cubo, obtenha outro cubo com o dobro de seu volume

Duplicação do Cubo

dado um cubo, obtenha outro cubo com o dobro de seu volume

 $\mathsf{lado} = \ell$

 $\mathsf{lado} = \ell \sqrt[3]{2}$

Duplicação do Cubo

dado um cubo,

obtenha outro cubo com o dobro de seu volume

$$\mathsf{lado} = \ell$$

$$\mathsf{lado} = \ell \sqrt[3]{2}$$

Trissecção do ângulo

Duplicação do Cubo

dado um cubo,

obtenha outro cubo com o dobro de seu volume

 $\mathsf{lado} = \ell$

lado = $\ell\sqrt[3]{2}$

Trissecção do ângulo

dadas duas retas não paralelas formando o ângulo α

Duplicação do Cubo

dado um cubo,

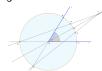
obtenha outro cubo com o dobro de seu volume

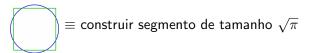
 $\mathsf{lado} = \ell$

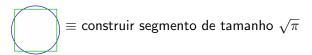
lado =
$$\ell\sqrt[3]{2}$$

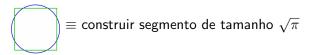
Trissecção do ângulo

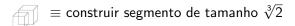
dadas duas retas não paralelas formando o ângulo α obtenha o ângulo $\frac{\alpha}{3}$

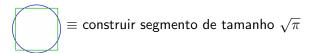


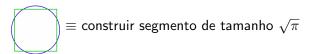












 \equiv construir segmento de tamanho $\cos(lpha/3)$

Números Construtíveis

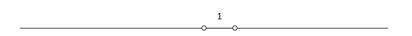
número x é construtível

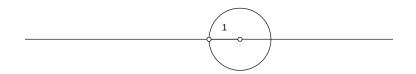
Números Construtíveis

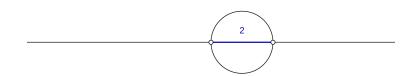
número x é construtível

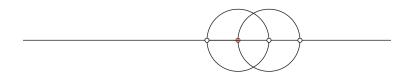
 \equiv

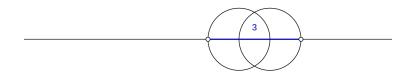
 $\acute{\mathrm{e}}$ possível construir um segmento de comprimento x a partir de um segmento de comprimento 1

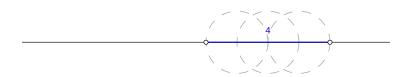


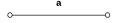


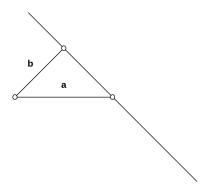


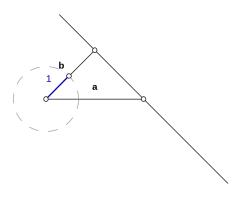


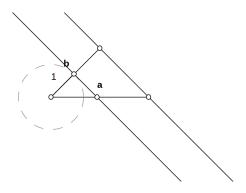


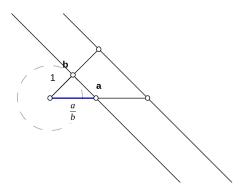




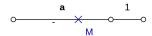


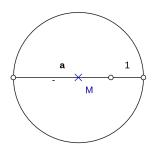


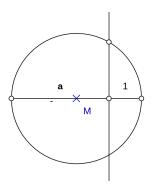


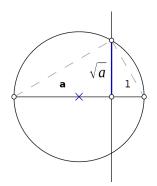


Raízes quadradas de números construtíveis são construtíveis









quadratura do círculo de raio r

quadratura do círculo de raio $r \leq {\rm construção}$ de $r\sqrt{\pi}$

quadratura do círculo de raio $r \leq {\rm construção}$ de $r\sqrt{\pi}$

duplicação do cubo de lado ℓ

quadratura do círculo de raio $r \preceq {\rm constru}$ ção de $r\sqrt{\pi}$

duplicação do cubo de lado $\ell \preceq$ construção de $\ell\sqrt[3]{2}$

quadratura do círculo de raio $r \preceq {\rm constru}$ ção de $r\sqrt{\pi}$

duplicação do cubo de lado $\ell \preceq$ construção de $\ell \sqrt[3]{2}$

trissecção do ângulo α

quadratura do círculo de raio $r \preceq \operatorname{construção}$ de $r\sqrt{\pi}$ duplicação do cubo de lado $\ell \preceq \operatorname{construção}$ de $\ell\sqrt[3]{2}$ trissecção do ângulo $\alpha \preceq \operatorname{construção}$ de $\cos(\alpha/3)$

ou será que existem números não construtíveis?

ou será que existem números não construtíveis?

o modelo de computação da régua e compasso é capaz de computar qualquer número?

ou será que existem números não construtíveis?

o modelo de computação da régua e compasso é capaz de computar qualquer número?

ou existem números que não são computáveis nesse modelo?

 $\approx 300~\text{aC}$

 $\approx 300~\text{aC}$

 $\approx 300~\text{aC}$

um dos livros mais influentes da história

 $\approx 300~\text{aC}$

um dos livros mais influentes da história modelo de rigor lógico

 \approx 300 aC

um dos livros mais influentes da história

modelo de rigor lógico

axiomatização da geometria

 \approx 300 aC

Elementos

um dos livros mais influentes da história

modelo de rigor lógico

axiomatização da geometria

provas: construções com régua e compasso

... passaram dois mil e duzentos anos ...

Évariste Galois 1811 — 1832

... passaram dois mil e duzentos anos ...

Évariste Galois 1811 — 1832

subversivo

... passaram dois mil e duzentos anos ...

Évariste Galois 1811 — 1832

subversivo: ativista republicano

... passaram dois mil e duzentos anos ...

Évariste Galois 1811 — 1832

subversivo: ativista republicano

expulso da faculdade

... passaram dois mil e duzentos anos ...

Évariste Galois 1811 — 1832

subversivo: ativista republicano

expulso da faculdade

preso várias vezes

... passaram dois mil e duzentos anos ...

Évariste Galois 1811 — 1832

subversivo: ativista republicano

expulso da faculdade

preso várias vezes

morto em um duelo

resolver uma equação usando somente

resolver uma equação usando somente

▶ as quatro operações aritméticas: +, -, ×, /

resolver uma equação usando somente

- ▶ as quatro operações aritméticas: +, -, ×, /
- ▶ radiciação: √

resolver uma equação usando somente

▶ as quatro operações aritméticas: +, -, ×, /

▶ radiciação: √

dada

resolver uma equação usando somente

- ▶ as quatro operações aritméticas: +, -, ×, /
- ▶ radiciação: √

dada uma equação com incógnita x

resolver uma equação usando somente

- ▶ as quatro operações aritméticas: +, -, ×, /
- ▶ radiciação: √

dada uma equação com incógnita x obtenha

Solução de equações por radicais

resolver uma equação usando somente

- ▶ as quatro operações aritméticas: +, -, ×, /
- ▶ radiciação: √

dada uma equação com incógnita x obtenha um valor de x que a satisfaça

Solução de equações por radicais

resolver uma equação usando somente

- ▶ as quatro operações aritméticas: +, -, ×, /
- ▶ radiciação: √

dada uma equação com incógnita x obtenha um valor de x que a satisfaça usando somente

Solução de equações por radicais

resolver uma equação usando somente

- ▶ as quatro operações aritméticas: +, -, ×, /
- ▶ radiciação: √

dada uma equação com incógnita x obtenha um valor de x que a satisfaça usando somente +, -, \times , / e $\sqrt{}$

grau 2

grau 2:
$$ax^2 + bx = c$$

grau 2:
$$ax^2 + bx = c$$
: séc. XX

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

► Bhāskara?

```
grau 2: ax^2 + bx = c: séc. XX aC (Babilônia)

• Bhāskara: 1114 — 1185 (Índia)
```

```
grau 2: ax^2 + bx = c: séc. XX aC (Babilônia)
```

► Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

▶ Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

▶ Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$
: sec XVI (Itália)

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

▶ Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$
: sec XVI (Itália) grau > 5

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

► Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$
: sec XVI (Itália)

grau ≥ 5

impossível

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

▶ Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$
: sec XVI (Itália)

▶ impossível: Abel — Ruffini (1824)

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

▶ Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$
: sec XVI (Itália)

grau ≥ 5

▶ impossível: Abel — Ruffini (1824): solução geral

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

▶ Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$
: sec XVI (Itália)

grau ≥ 5

▶ impossível: Abel — Ruffini (1824): solução geral = algoritmo

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

▶ Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$
: sec XVI (Itália)

grau ≥ 5

- ▶ impossível: Abel Ruffini (1824): solução geral = algoritmo
- ► Galois (1832)

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

▶ Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$
: sec XVI (Itália)

grau ≥ 5

- ▶ impossível: Abel Ruffini (1824): solução geral = algoritmo
- ► Galois (1832)
 - existem equações insolúveis

grau 2:
$$ax^2 + bx = c$$
: séc. XX aC (Babilônia)

▶ Bhāskara: 1114 — 1185 (Índia)

graus 3 e 4:
$$ax^4 + bx^3 + cx^2 + dx = e$$
: sec XVI (Itália)

grau ≥ 5

- ▶ impossível: Abel Ruffini (1824): solução geral = algoritmo
- Galois (1832)
 - existem equações insolúveis
 - caracterização das que tem solução

um corpo

um corpo $(+, \times, tudo que tem direito)$

um corpo (+, \times , tudo que tem direito): \mathbb{R}

um corpo (+, \times , tudo que tem direito): $\mathbb R$ um polinômio irredutível

um corpo (+, \times , tudo que tem direito): $\mathbb R$ um polinômio irredutível (sem raízes no corpo)

um corpo (+, \times , tudo que tem direito): $\mathbb R$ um polinômio irredutível (sem raízes no corpo): x^2+1

um corpo (+, \times , tudo que tem direito): $\mathbb R$ um polinômio irredutível (sem raízes no corpo): x^2+1 extensão do corpo:

▶ inclusão de uma raiz do polinômio

um corpo (+, \times , tudo que tem direito): $\mathbb R$ um polinômio irredutível (sem raízes no corpo): x^2+1 extensão do corpo:

ightharpoonup inclusão de uma raiz do polinômio: $\sqrt{-1}$

um corpo (+, \times , tudo que tem direito): $\mathbb R$ um polinômio irredutível (sem raízes no corpo): x^2+1 extensão do corpo:

- ▶ inclusão de uma raiz do polinômio: $\sqrt{-1}$
- e tudo mais necessário para que seja corpo

um corpo (+, \times , tudo que tem direito): $\mathbb R$ um polinômio irredutível (sem raízes no corpo): x^2+1 extensão do corpo:

- ightharpoonup inclusão de uma raiz do polinômio: $\sqrt{-1}$
- e tudo mais necessário para que seja corpo: $2 + \sqrt{-1}$, $3\sqrt{-1}$, $\sqrt{-1}^3$, ...

um corpo (+, \times , tudo que tem direito): $\mathbb R$ um polinômio irredutível (sem raízes no corpo): x^2+1 extensão do corpo:

- ightharpoonup inclusão de uma raiz do polinômio: $\sqrt{-1}$
- e tudo mais necessário para que seja corpo: $2 + \sqrt{-1}$. $3\sqrt{-1}$. $\sqrt{-1}^3$

$$2+\sqrt{-1}$$
, $3\sqrt{-1}$, $\sqrt{-1}$, ...

o resultado é o corpo $\mathbb{R}(\sqrt{-1})$

um corpo (+, \times , tudo que tem direito): $\mathbb R$ um polinômio irredutível (sem raízes no corpo): x^2+1 extensão do corpo:

- ightharpoonup inclusão de uma raiz do polinômio: $\sqrt{-1}$
- e tudo mais necessário para que seja corpo: $2 + \sqrt{-1}$, $3\sqrt{-1}$, $\sqrt{-1}^3$, ...

o resultado é o corpo
$$\mathbb{R}(\sqrt{-1})=\mathbb{C}$$

...e Grupos

automorfismos sobre $\mathbb{R}(\sqrt{-1})$ que mantém \mathbb{R} invariante

...e Grupos

automorfismos sobre $\mathbb{R}(\sqrt{-1})$ que mantém \mathbb{R} invariante

formam um grupo

automorfismos sobre $\mathbb{R}(\sqrt{-1})$ que mantém \mathbb{R} invariante

formam um grupo

grupo solúvel

automorfismos sobre $\mathbb{R}(\sqrt{-1})$ que mantém \mathbb{R} invariante

formam um grupo

grupo **solúvel** \implies polinômio solúvel por radicais

automorfismos sobre $\mathbb{R}(\sqrt{-1})$ que mantém \mathbb{R} invariante

formam um grupo

grupo **solúvel** \implies polinômio solúvel por radicais

a explicação acima contém graves simplificações

automorfismos sobre $\mathbb{R}(\sqrt{-1})$ que mantém \mathbb{R} invariante

formam um grupo

grupo $solúvel \implies polinômio solúvel por radicais$

a explicação acima contém graves simplificações caso os sintomas persistam, procure um algebrista

todo grupo com até quatro elementos é solúvel

todo grupo com até quatro elementos é solúvel

para todo n > 4 existe polinômio cujo grupo não é solúvel

todo grupo com até quatro elementos é solúvel

para todo n > 4 existe polinômio cujo grupo não é solúvel

 $x \not\in \mathsf{construt} \mathsf{ível}$ $\label{eq:construt} \updownarrow$ é possível estender $\mathbb Q$ a $\mathbb Q(x)$ passo a passo

x é construtível \updownarrow é possível estender $\mathbb Q$ a $\mathbb Q(x)$ passo a passo $\mathbb Q\to\mathbb Q(x_1)$

x é construtível \updownarrow é possível estender $\mathbb Q$ a $\mathbb Q(x)$ passo a passo $\mathbb Q\to\mathbb Q(x_1)\to(\mathbb Q(x_1))(x_2)\to,$

x é construtível \updownarrow é possível estender $\mathbb Q$ a $\mathbb Q(x)$ passo a passo $\mathbb Q\to\mathbb Q(x_1)\to(\mathbb Q(x_1))(x_2)\to,\ldots$

 $\begin{matrix} x \text{ \'e construt\'ivel} \\ & \updownarrow \\ & \text{\'e poss\'ivel estender } \mathbb{Q} \text{ a } \mathbb{Q}(x) \text{ passo a passo} \\ \mathbb{Q} \to \mathbb{Q}(x_1) \to (\mathbb{Q}(x_1))(x_2) \to, \ldots, \to (\mathbb{Q}(x_1)\ldots(x_{n-1}))(x) \end{matrix}$

x é construtível

é possível estender \mathbb{Q} a $\mathbb{Q}(x)$ passo a passo

$$\mathbb{Q} \to \mathbb{Q}(x_1) \to (\mathbb{Q}(x_1))(x_2) \to, \ldots, \to (\mathbb{Q}(x_1)\ldots(x_{n-1}))(x)$$

de forma que em cada passo o polinômio irredutível tem grau 2

x 'e construt'ivel $\Leftrightarrow \text{ poss\'ivel estender } \mathbb{Q} \text{ a } \mathbb{Q}(x) \text{ passo a passo}$ $\mathbb{Q} \to \mathbb{Q}(x_1) \to (\mathbb{Q}(x_1))(x_2) \to, \ldots, \to (\mathbb{Q}(x_1)\ldots(x_{n-1}))(x)$ de forma que em cada passo o polinômio irredutível tem grau 2

o grau do polinômio irredutível de x é potência de 2

x é construtível

é possível estender $\mathbb Q$ a $\mathbb Q(x)$ passo a passo

$$\mathbb{Q} \to \mathbb{Q}(x_1) \to (\mathbb{Q}(x_1))(x_2) \to, \ldots, \to (\mathbb{Q}(x_1)\ldots(x_{n-1}))(x)$$

de forma que em cada passo o polinômio irredutível tem grau 2

o grau do polinômio irredutível de x é potência de 2

 $r\sqrt{\pi}$ não é construtível

 $r\sqrt{\pi}$ não é construtível

porque $\sqrt{\pi}$ não é construtível

 $r\sqrt{\pi}$ não é construtível

porque $\sqrt{\pi}$ não é construtível

porque π não é raiz de nenhum polinômio em $\mathbb Q$

 $r\sqrt{\pi}$ não é construtível

porque $\sqrt{\pi}$ não é construtível

porque π não é raiz de nenhum polinômio em $\mathbb Q$ π é transcendente

 $r\sqrt{\pi}$ não é construtível

porque $\sqrt{\pi}$ não é construtível

porque π não é raiz de nenhum polinômio em $\mathbb Q$ π é transcendente (Lindemann, 1882)

 $r\sqrt{\pi}$ não é construtível

porque $\sqrt{\pi}$ não é construtível

porque π não é raiz de nenhum polinômio em $\mathbb Q$ π é transcendente (Lindemann, 1882)

 $\sqrt{\pi}$ também tem que ser transcendente

 $r\sqrt{\pi}$ não é construtível

porque $\sqrt{\pi}$ não é construtível

porque π não é raiz de nenhum polinômio em $\mathbb Q$ π é transcendente (Lindemann, 1882)

 $\sqrt{\pi}$ também tem que ser transcendente

 $\ell\sqrt[3]{2}$ não é construtível

 $\ell\sqrt[3]{2}$ não é construtível porque $\sqrt[3]{2}$ não é construtível

 $\ell\sqrt[3]{2}$ não é construtível porque $\sqrt[3]{2}$ não é construtível porque o polinômio irredutível do qual $\sqrt[3]{2}$ é raiz é x^3-2

 $\ell\sqrt[3]{2}$ não é construtível porque $\sqrt[3]{2}$ não é construtível porque o polinômio irredutível do qual $\sqrt[3]{2}$ é raiz é x^3-2 e seu grau não é potência de 2

 $\ell\sqrt[3]{2}$ não é construtível porque $\sqrt[3]{2}$ não é construtível porque o polinômio irredutível do qual $\sqrt[3]{2}$ é raiz é x^3-2 e seu grau não é potência de 2

$$\cos(\alpha/3) = \cos(\pi/9)$$
 não é construtível

$$\cos(\alpha/3) = \cos(\pi/9)$$
 não é construtível

o polinômio irredutível do qual $cos(\pi/9)$ é raiz tem grau 3

 $\cos(\alpha/3)=\cos(\pi/9)$ não é construtível o polinômio irredutível do qual $\cos(\pi/9)$ é raiz tem grau 3 que não é potência de 2

 $\cos(\alpha/3)=\cos(\pi/9)$ não é construtível o polinômio irredutível do qual $\cos(\pi/9)$ é raiz tem grau 3 que não é potência de 2

dois exemplos de modelos de computação

dois exemplos de modelos de computação

construções com régua e compasso

dois exemplos de modelos de computação

- construções com régua e compasso
- cálculos com operações aritméticas e radicais

dois exemplos de modelos de computação

- construções com régua e compasso
- cálculos com operações aritméticas e radicais

problemas computacionais para cuja solução o esforço de pesquisa atravessou mais de dois mil anos

dois exemplos de modelos de computação

- construções com régua e compasso
- cálculos com operações aritméticas e radicais

problemas computacionais para cuja solução o esforço de pesquisa atravessou mais de dois mil anos

quadratura do círculo, duplicação do cubo etc

dois exemplos de modelos de computação

- construções com régua e compasso
- cálculos com operações aritméticas e radicais

problemas computacionais para cuja solução o esforço de pesquisa atravessou mais de dois mil anos

- quadratura do círculo, duplicação do cubo etc
- construtibilidade de números

dois exemplos de modelos de computação

- construções com régua e compasso
- cálculos com operações aritméticas e radicais

problemas computacionais para cuja solução o esforço de pesquisa atravessou mais de dois mil anos

- quadratura do círculo, duplicação do cubo etc
- construtibilidade de números
- solução de equações por radicais

Moral da História

Moral da História

"Computação não trata de computadores (...) no mesmo sentido em que (...) biologia não trata de microscópios (...). A razão porque se confunde Computação e computador é a mesma pela qual os antigos egípcios confundiam geometria com os instrumentos de medição: quando um assunto é novo (...) é muito fácil confundir o que há de essencial nele com os instrumentos utilizados"

Hal Abelson

Moral da História

"Computação não trata de computadores (...) no mesmo sentido em que (...) biologia não trata de microscópios (...). A razão porque se confunde Computação e computador é a mesma pela qual os antigos egípcios confundiam geometria com os instrumentos de medição: quando um assunto é novo (...) é muito fácil confundir o que há de essencial nele com os instrumentos utilizados"

Hal Abelson

"A razão de ser da computação [numérica] é 'insight', não os números."

Richard Hamming

