
An Assembly Language I.D.E. To Engage Students Of All Levels
* A Tutorial *

2007 CCSC: Central Plains Conference

Pete Sanderson, Otterbein College, PSanderson@otterbein.edu
Ken Vollmar, Missouri State University, KenVollmar@missouristate.edu

MARS is a software simulator for the MIPS assembly language intended for educational
use. We will explore the capabilities of MARS release 3.2.1 in this three part tutorial.

MARS may be downloaded from www.cs.missouristate.edu/MARS.

Part 1 : Basic MARS Use

The example program is Fibonacci.asm to compute everyone’s favorite number
sequence.

1. Start MARS from the Start menu or desktop icon.

2. Use the menubar File…Open or the Open icon to open Fibonacci.asm in the
default folder. (All icons have menubar equivalents; the remainder of these steps will
use the icon whenever possible.)

3. The provided assembly program is complete. Assemble the program using the icon

4. Identify the location and values of the program’s initialized data. Use the checkbox to
toggle the display format between decimal and hexadecimal .
 The nineteen-element array fibs is initialized to zero, at addresses 0x10010000

… 0x10010048.
 The data location size has value 19ten at 0x1001004c.
 The addresses 0x10010050 … 0x1001006c contain null-terminated ASCII strings.

Use the checkbox to toggle the display format between decimal and hexadecimal,
.

5. Use the Settings menu to configure the MARS displays. The settings will be retained
for the next MARS session.

Page 1

http://www.cs.missouristate.edu/MARS
mailto:KenVollmar@missouristate.edu
mailto:PSanderson@otterbein.edu

 The Labels display contains the addresses of the assembly code statements with a
label, but the default is to not show this display. Select the checkbox from the

Settings menu.
 Select your preference for allowing pseudo-instructions (programmer-friendly

instruction substitutions and shorthand).
 Select your preference for assembling only one file, or many files together (all the

files in the current folder). This feature is useful for subroutines contained in
separate files, etc.

 Select the startup display format of addresses and values (decimal or
hexadecimal).

6. Locate the Registers display, which shows the 32 common MIPS registers. Other tabs
in the Registers display show the floating-point registers (Coproc 1) and status codes
(Coproc 0).

7. Use the slider bar to change the run speed to about 10 instructions per second.

 This allows us to “watch the action” instead of the
assembly program finishing directly.

8. Choose how you will execute the program:

 The icon runs the program to completion. Using this icon, you should
observe the yellow highlight showing the program’s progress and the values of
the Fibonacci sequence appearing in the Data Segment display.

 The icon resets the program and simulator to initial values. Memory
contents are those specified within the program, and register contents are
generally zero.

 The icon is “single-step.” Its complement is , “single-step backwards”
(undoes each operation).

9. Observe the output of the program in the Run I/O display window:
The Fibonacci numbers are:
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
-- program is finished running --

10. Modify the contents of memory. (Modifying a register value is exactly the same.)
 Set a breakpoint at the first instruction of the subroutine which prints results. Use

the checkbox at the left of the instruction whose address is 0x00400060 =
4194400ten.

Page 2

 Reset and re-run the program, which stops at the breakpoint.
 Double-click in one of the memory locations containing the computed Fibonacci

numbers. The cell will be highlighted and will accept keyboard entry, similar to a
spreadsheet. Enter some noticeably different value, and use the Enter key or click
outside the cell to indicate that the change is complete. Example: Memory address
0x10010020 = 268501024 ten presently contains data 0x00000022 = 34 ten.

 Click to continue from the breakpoint. The program output includes your
entered value instead of the computed Fibonacci number.

11. Open the Help for information on MIPS instructions, pseudoinstructions,
directives, and syscalls.

12. Modify the program so that it prompts the user for the Fibonacci sequence length.

 Select the Edit tab in the upper right to return to the program editor.

 The MIPS comment symbol is #. All characters on the line after the character #
are ignored.

 Un-comment lines 12-19. The newly exposed program fragment will prompt the
user for the length of the Fibonacci sequence to generate, in the range 192 x .
(The length of the sequence must be limited to the size of the declared space for
result storage.)

 Determine the correct syscall parameter to perform “read integer” from the user,
and insert the parameter at line The correct syscall parameter may be found at

Help … Syscall tab…read integer service. The completed line will have the
form li $v0, 42 (where in this case 42 is not the right answer).

 Reset and re-run the program. The program will stop at the breakpoint

you inserted previously. Continue and finish with .

Page 3

Part 2 : MARS Tools

You may have noticed that MARS has a Tools menu. The capabilities provided through
this menu really catapult MARS into a different league of computer science educational
software.

We call each of the items in the Tools menu a MARS Tool. A MARS Tool is best
described as a pop-up application that observes MIPS memory and/or register activity
during MIPS program execution then communicates that activity to the tool user to serve
a particular purpose. This is best seen by example.

MARS Tools Activity 1 : Running the Data Cache Simulator tool

1. Close any MIPS programs you are currently using.

2. Open the program row-major.asm from the Examples folder. This program
will traverse a 16 by 16 element integer matrix in row-major order, assigning
elements the values 0 through 255 in order. It performs the following algorithm:

for (row = 0; row < 16; row++)
 for (col = 0; col < 16; col++)
 data[row][col] = value++;

3. Assemble the program.

4. From the Tools menu, select Data Cache Simulator. A new frame will appear in the
middle of the screen.

Page 4

This is a MARS Tool that will simulate the use and performance of cache memory
when the underlying MIPS program executes. Notice its three major sections:

 Cache Organization: You can use the combo boxes to specify how the cache
will be configured for this run. Feel free to explore the different settings, but
the default is fine for now.

 Cache Performance: With each memory access during program execution,
the simulator will determine whether or not that access can be satisfied from
cache and update the performance display accordingly.

 Tool Control: These buttons perform generic control functions as described
by their labels.

5. Click the tool's Connect to MIPS button. This causes the tool to register as an
observer of MIPS memory and thus respond during program execution.

6. Back in MARS, adjust the Run Speed slider to 30 instructions per second. It is
located at the right side of the toolbar. This slows execution so you can watch the
Cache Performance animation.

7. In MARS, run the program using the Run toolbar button , the menu item or
keyboard shortcut. Watch the Cache Performance animate as it is updated with every
access to MIPS memory.

8. What was the final cache hit rate? _____________. With each miss, a block of 4
words are written into the cache. In a row-major traversal, matrix elements are
accessed in the same order they are stored in memory. Thus each cache miss is
followed by 3 hits as the next 3 elements are found in the same cache block. This is
followed by another miss when Direct Mapping maps to the next cache block, and the
patterns repeats itself. So 3 of every 4 memory accesses will be resolved in cache.

9. Given that explanation, what do you predict the hit rate will be if the block size is
increased from 4 words to 8 words? ______________. Decreased from 4 words to 2
words? ___________.

10. Verify your predictions by modifying the block size and re-running the program from
step 7.
NOTE: when you modify the Cache Organization, the performance values are
automatically reset (you can always use the tool's Reset button).

NOTE: You have to reset the MIPS program before you can re-run it.
NOTE: Feel free to adjust the Run Speed slider to maximum speed anytime you
want.

Page 5

11. Repeat steps 2 through 10 for program column-major.asm from the Examples
folder. This program will traverse a 16 by 16 element integer matrix in column-major
order, assigning elements the values 0 through 255 in order. It performs the
following algorithm:

for (col = 0; col < 16; col++)
 for (row = 0; row < 16; row++)
 data[row][col] = value++;

NOTE: You can leave the Cache Simulator in place, move it out of the way, or close
it. It will not interfere with the actions needed to open, assemble, or run this new
program and will remain connected to MIPS memory. If you do not close the tool,
then skip steps 4 and 5.

12. What was the cache performance for this program? ____________. The problem is
the memory locations are now accessed not sequentially as before, but each access is
16 words beyond the previous one (circularly). With the settings we've used, no two
consecutive memory accesses occur in the same block so every access is a miss.

13. Change the block size to 16. Note this will reset the tool.

14. Create a second instance of the Cache Simulator by once again selecting Data Cache
Simulator from the Tools menu. Adjust the two frames so you can view both at the
same time. Connect the new tool instance to MIPS, change its block size to 16 and
change its number of blocks to 16.

15. Re-run the program. What is the cache performance of the original tool instance?
____________. Block size 16 didn't help because there was still only one access to
each block, the initial miss, before that block was replaced with a new one. What is
the cache performance of the second tool instance? ____________. At this point,
the entire matrix will fit into cache and so once a block is read in it is never replaced.
Only the first access to a block results in a miss.

In what courses might an exercise like this one be useful for your students? I have used a
variation on this exercise as a student exercise in Operating Systems, and for a lecture
illustration of the cache concept in Otterbein's CS 0 course, "The Scope of Computer
Science".

Page 6

MARS Tools Activity 2 : Running the Cache Simulator as a stand-alone

1. In command mode, traverse to the directory containing Mars.jar and enter the
command:

java -classpath Mars.jar mars.tools.CacheSimulator

2. The cache simulator tool is launched. Its Tool Control section is replaced by
Application Control, which contains additional controls for loading, assembling and
running MIPS programs. It uses MARS' MIPS assembler and runtime simulator in
the background to control MIPS execution.

3. Click the Open MIPS program button and a File Open dialog will pop up. Browse
to and select a MIPS program to run. Select row_major.asm again if you wish.

4. The Assemble and Run button is now enabled. Click it to assemble and run the
program. The animation will be very rapid.

5. Use the Run Speed slider to adjust the running speed, click the Reset button then
click Assemble and Run again. While the program is running, the Stop button is
enabled. Program status is updated in the single line text field.

We plan to implement a small MARS Tool Suite application to simplify the selection and
launching of tools such as the Cache Simulator that are capable of running outside the
MARS integrated development environment.

Page 7

MARS Tools Activity 3 : The Memory Reference Visualization tool

1. Open the program row-major.asm from the Examples folder if it is not already
open.

2. Assemble the program.

3. From the Tools menu, select Memory Reference Visualization. A new frame will
appear in the middle of the screen.

This tool will paint a grid unit each time the corresponding MIPS memory word is
referenced. The base address, the first static data segment (.data directive) word,
corresponds to the upper-left grid unit. Address correspondence continues in row-
major order (left to right, then next row down).

The color depends on the number of times the word has been referenced. Black is 0,
blue is 1, green is 2, yellow is 3 and 4, orange is 5 through 9, red is 10 or higher.
View the scale using the tool’s slider control. You can change the color (but not the
reference count) by clicking on the color patch.

4. Click the tool's Connect to MIPS button. This causes the tool to register as an
observer of MIPS memory and thus respond during program execution.

5. Back in MARS, adjust the Run Speed slider to 30 instructions per second.

Page 8

6. Run the program. Watch the tool animate as it is updated with every access to MIPS
memory. Feel free to stop the program at any time.

7. Hopefully you observed that the animation sequence corresponded to the expected
memory access sequence of the row-major.asm program. If you have trouble seeing
the blue, reset the tool, move the slider to position 1, change the color to something
brighter, and re-run.

8. Repeat steps 2 through 7, for column-major.asm. You should observe that the
animation sequence corresponded to the expected memory access sequence of this
program.

9. Repeat again for fibonacci.asm to observe the animated pattern of memory
references. Adjust the run speed and re-run if necessary.

10. (Optional) Create a new instance of the Data Cache Simulator. Move the two frames
around so you can see both. Connect the cache simulator to MIPS and reset the
Memory Reference Visualization. Re-run the program. This exercise illustrates that
two different tools can be used simultaneously.

The Memory Reference Visualization tool could be useful in an operating systems course
to illustrate spatial and temporal locality and memory reference patterns in general.

Page 9

Part 3 : Extending MARS Capabilities

Our session today is not long enough for interactive activities in this area, but we’ll
provide you with enough detail that you can pursue them on your own if you desire.

Abstract

MARS can be customized and extended in four different ways: (1) writing new MARS
Tools, (2) writing new MIPS system calls, (3) writing new MIPS pseudo-instructions, and
(4) writing new MIPS basic instructions. Techniques for all four are described here.

You have the ability to extend and customize certain MARS capabilities to make it more
useful in your courses. This document describes four different techniques for extending
MARS capabilities:

1. Ability to write MARS Tools for inclusion in the Tools menu and stand-alone use.

2. Ability to define and add new system calls for subsequent use by MIPS programs.

3. Ability to customize the instruction set by adding, removing or modifying pseudo
(macro) instruction specifications.

4. Ability to customize the basic instruction set by adding, removing or modifying
basic instruction specifications.

These procedures apply to MARS 3.2.1, released January 2007. Some may be
streamlined in future releases.

The ability to define and plug in new MARS Tools will be used to develop new learning
aids for students in a variety of computer science courses and provide micro-worlds for
assembly language students to target in their projects. Through those tools it is possible
to deeply engage students in both settings.

The ability to modify the set of system calls, basic instructions, and pseudo-instructions
can be used to define a complete instruction set for an alternative RISC architecture.
MARS was not designed with this in mind however, so support is uneven. For example,
instruction syntax analysis and code generation is driven by the example and template
provided with each instruction, whereas lexical analysis such as the recognition of
register names is embedded in program logic and cannot easily be modified. A
customized instruction set has to use MIPS conventions for labeling, register naming, and
so forth. Hopefully MARS can be refactored in future releases to facilitate its use for
alternative instruction sets.

Page 10

1. Writing your own MARS Tool and plugging it into MARS

Abstract

If you think MARS Tools like the Cache Simulator are cool then why not develop your
own? There are two different ways to do so: (1) write a class that implements the
MarsTool interface and is launched from the Tools menu in MARS, or (2) write a class
that extends the AbstractMarsToolAndApplication class and runs either from the Tools
menu or as a free-standing application. You can also write a free-standing application
that uses the Mars API.

This section describes two different techniques for developing your own MARS Tool.

1. Write a class that implements the mars.tools.MarsTool interface and keep
it in the mars.tools package. It will automatically be added to the Tools
menu the next time MARS is run and launched when its menu item is selected.

2. Write a class that extends
mars.tools.AbstractMarsToolAndApplication and keep it in the
mars.tools package. It will automatically be added to the Tools menu the
next time MARS is run and launched when its menu item is selected. It can also
be launched from outside MARS as a free-standing Java application that uses the
Mars API to control the assembly and execution of MIPS programs.

It is also possible to write your own application from scratch using the Mars API. This
should be considered only for very specialized applications and should be undertaken
with great care. The AbstractMarsToolAndApplication class provides full
support for assembling and running MIPS programs in the background and is the
preferred approach.

MyTool implements MarsTool approach

1. Extract the MARS distribution from its JAR file. The JAR file does not have an
outermost folder to contain everything, so you'll want to create one and extract it into
that folder.

2. Develop your class in the mars.tools package (mars/tools folder).

3. Your class must implement the MarsTool interface, which is in that package. This
has only two methods: String getName() to return the name to be displayed in

Page 11

its Tools menu item, and void action() which is invoked when that menu item
is selected by the MARS user. These will assure its inclusion in the Tools menu
when MARS is launched.

4. The user interface should be based on the javax.swing.JDialog class. The
tool interacts with simulated MIPS memory and registers through the
mars.mips.hardware.Memory and mars.mips.hardware.Register
classes, both of which extend java.util.Observable. The Memory class
provides several addObserver() methods that permit an Observer to register for
selected memory addresses or ranges. Javadoc-produced documentation is available
in the doc folder of the MARS distribution.

5. After successful compilation, MARS will automatically include the new tool in its
Tools menu.

MyTool extends AbstractMarsToolAndApplication approach

A better alternative is to extend the AbstractMarsToolAndApplication class,
which is also in the mars.tools package. By doing so, you get the following elements:

 ability to run either from the Tools menu or as a free-standing application
 basic user interface JDialog with Tool Control section (for tools)
 basic user interface JFrame with Application Control section (for applications)
 basic user interface layout (BorderLayout) and rendering algorithm
 basic MIPS memory and register observer capabilities

1. Extract the MARS distribution from its JAR file if you have not already done so.

2. Develop your class in the mars.tools package (mars/tools folder).

3. Your class must extend the AbstractMarsToolAndApplication abstract
class, which is in that package. Nineteen of the 21 methods in this class have default
implementations.

4. Define at least the two abstract methods: String getName() to return the tool’s
display name, and JComponent buildMainDisplayArea() to construct the
central area of the tool’s graphical user interface. It will automatically be placed in
the CENTER of a BorderLayout, with title information to its NORTH and tool
control buttons to its SOUTH. Several addAsObserver() methods are available for
registering as a memory and/or register observer.

Page 12

5. Override additional methods as desired. Some do nothing by default.

6. After successful compilation, MARS will automatically include the new tool in its
Tools menu.

7. To run it as a stand-alone application, you either need to add a main() to create the
tool object and call its go() method or write a short external application to do the
same.

For a better idea of the GUI elements that come with this abstract class, launch MARS
and select Introduction to Tools from the Tools menu.

By extending the provided abstract class
AbstractMarsToolAndApplication, you
get everything in this figure except the
scrolled JTextArea displayed in the
center.

You build the main user interface of your
tool by defining the inherited abstract
buildMainDisplayArea() method. This
method returns a JComponent that will
automatically be displayed in the center of
the default BorderLayout.

Javadoc-produced documentation of the
AbstractMarsToolAndApplicati
on class is available in the doc folder of
the MARS distribution.

Source code files for the MARS Tools are
included together with their bytecode files
in the mars/tools folder. Feel free to
refer to them. All MARS source files,
including tools, are included in the src
folder.

If you develop a nifty MARS Tool, feel free to send it to us and with your permission
we'll post it on the MARS web site for others to use!

Page 13

2. Writing a system call (syscall) and plugging it into MARS

Abstract

MIPS System calls are functions that interface with the operating system to perform I/O
and related operations. They are accessible to MIPS assembly programs through service
numbers and the syscall instruction. MARS provides the 17 system calls documented
in Computer Organization and Design Third Edition, but you can develop and add your
own by writing a class that implements the Syscall interface or extends the
AbstractSyscall class.

MIPS system calls perform operating system functions and input/output operations in
particular. A system call is used in MIPS assembly by loading its identifier (an integer)
into register $v0, loading any required arguments into registers as specified by the call's
protocol, then issuing the syscall instruction.

MARS supports the MIPS system call specifications given in Appendix A of Patterson
and Hennessy's Computer Organization and Design Third Edition. This appendix is
freely available on the web at http://www.cs.wisc.edu/~larus/HP_AppA.pdf.
MARS provides all 17 of the system calls specified there.

Page 14

MySystemCall implements Syscall approach

1. Extract the MARS distribution from its JAR file, if you have not done so.

2. Develop your class in the mars.mips.instructions.syscalls package
(mars/mips/instructions/syscalls folder).

3. Your class must implement the Syscall interface, which is in that package. This
has four methods: String getName() to return an assigned name for this
service, setNumber() and getNumber() to set and get its associated service
number, and simulate() to simulate the execution of the system call at MIPS
runtime.

4. After your class compiles successfully, it will be automatically plugged in and
available to MIPS programs the next time you launch MARS.

MySystemCall extends AbstractSyscall approach

1. Extract the MARS distribution from its JAR file, if you have not done so.

2. Develop your class in the mars.mips.instructions.syscalls package
(mars/mips/instructions/syscalls folder).

3. Your class must extend the AbstractSyscall class, which is in that package. It
provides a constructor and defines the three Syscall getter and setter methods. The
simulate() method is abstract so you must define that yourself.

4. After your class compiles successfully, it will be automatically plugged in and
available to MIPS programs the next time you launch MARS.

Additional Information

Implementation of the simulate() method may require access to one or more
simulated MIPS memory and register objects. The pertinent classes are
mars.mips.hardware.Memory and mars.mips.hardware.RegisterFile.
Also study the source code of existing system calls. Source code files for the 17 MARS
system calls are located in the src folder. Follow the folder hierarchy
mars/mips/instructions/syscalls.

Page 15

The MARS distribution includes a text file Syscall.properties which you can edit
to override any system service number assigned in a constructor. This allows you to
change number assignments without re-compiling any Java source files.

The Syscalls help page is static at this time so it will not reflect any additional system
calls or renumbering.

If you develop a nifty system call, please send it to us and with your permission we'll post
it on the MARS web site for others to access!

We have had philosophical discussions concerning the development of additional system
calls and so far have resisted doing so. On one hand, it would be very useful to have a
small library of handy functions such as random number generators available through the
syscall mechanism. On the other hand, such functions are not considered operating
system operations that would be performed in kernel mode and it would be misleading to
infer such status. Let us know what you think!

Page 16

3. Modifying the set of pseudo (extended, macro) instructions

Abstract

To define a new pseudo-instruction, edit the PseudoOps.txt file included in the
MARS distribution. The instruction specification is one line long and consists of a tab-
separated list containing an example usage of the instruction followed by the one or more
basic instructions that the assembler will expand it to. Use specification language
symbols to control the substitution of program statement operands into the generated
basic instruction(s).

The MIPS instruction set includes a large number of pseudo-instructions. These are
instructions that follow MIPS instruction syntax specifications but are not directly
supported by the MIPS architecture. They are instead expanded into a sequence of one or
more basic instructions by the assembler. For this reason they are sometimes called
macro instructions.

The classic example of a pseudo-instruction is la, or load address. Here's an example:

la $t0, number

where number is the label for a data item. A corresponding MIPS machine instruction
would have to include the operation code, the 5 bit register number and the 32 bit
address. But since machine instructions are only 32 bits long, this is not possible. It
requires two instructions.

Pseudo-instructions are provided entirely for the programmer's convenience, and MARS
includes an assembler setting that will disallow their use.

To modify the pseudo-instruction set, follow this process:

1. Extract the MARS distribution from its JAR file if you have not already done so.

2. Edit PseudoOps.txt appropriately. Each pseudo-instruction and its macro
expansion are specified on one line in this file. Details below.

3. Launch MARS and test your instruction.

Page 17

Here's an example specification, for the absolute value instruction abs

1. Example instruction use. This instruction takes two register operands. The $1 and $2
represent generic registers and are used only to generate a token sequence for syntax
analysis. There is no relationship between register references in the example
instruction (item 1) and register references in the macro expansions (items 3 and 4)!

2. Each item in the specification must be separated by a single TAB character. Only the
first one is pointed out but there is also a TAB between each of the remaining items.

3. The first instruction of the macro expansion. RG1 is a formal parameter that will be
replaced by the actual first register operand of the statement being assembled. RG2 is
similarly replaced by the actual second register operand of the statement being
assembled.

4. Second and third instructions of the macro expansion. Perform similar substitutions.

Statement to assemble Macro expansion

abs $t3, $t4 addu $t3, $0, $t4
bgez $t4, 2
sub $t3, $0, $t4

This example uses the simple substitutions RG1 and RG2. Other macro substitution
symbols are more complex, such as VL2P3 which means to substitute the low order 16
bits of the 32 bit value in source operand 2 after adding 3 to it (used in the expansion of
certain unaligned loads and stores).

The macro substitution language is described in detail in the file itself.

If you add any pseudo-instructions, they will automatically be included in the instruction
list produced by the Help feature's Extended (pseudo) Instructions subtab. If the
instruction specification ends with a comment on the same line (# is the comment marker,
just like in MIPS), that comment will be included in the list along with the example
instruction use.

Page 18

abs $1,$2 addu RG1,$0,RG2 bgez RG2,2 sub RG1,$0,RG2

1 2 3 4

4. Modifying the set of Basic Instructions

Abstract

It is possible to modify the basic instruction set recognized by MARS. This requires you
to edit and re-compile the mars.mips.instructions.InstructionSet class.
The specification of a basic instruction includes four components: (1) an example of
instruction use, (2) the instruction format – R, I, or J, (3) a template for generating the 32
bit machine code from a program statement, and (4) a method to simulate the execution
of that program statement.

This is the one type of MARS extension that requires re-compilation of a standard MARS
source file. Specifications for the MIPS basic instruction set are contained in the
mars.mips.instructions.InstructionSet class. Each specification follows
the same format. Here is an example, for the and instruction that performs logical AND.

instructionList.add(new BasicInstruction(
 "and $1,$2,$3", 1. example use
 BasicInstructionFormat.R_FORMAT, 2. instruction format
 "000000ssssstttttfffff00000100100", 3. machine code template
 new SimulationCode() 4. execution simulator
 {
 public void simulate(ProgramStatement statement)
 {
 int[] operands = statement.getOperands();
 RegisterFile.updateRegister(
 operands[0],
 RegisterFile.getValue(operands[1]) &
 RegisterFile.getValue(operands[2]));
 }
 }
));

The BasicInstruction constructor takes four parameters, annotated on the
example:

1. Example instruction use. This instruction takes three register operands. The $1, $2
and $3 represent generic registers and are used only to generate a token sequence for
syntax analysis.

Page 19

2. MIPS instruction format. MIPS defines the R-format (works with registers), I-format
(works with immediate value), and J-format (jump instruction). MARS defines a
second version of the I-format called I-branch-format when the immediate value is
used in a branch instruction.

3. Machine code template. This String of length 32 consists of the characters 0, 1, f, s,
and t. When the MIPS program statement syntactically matches this instruction, the
32 bit machine code instruction is constructed by substituting low order bits from the
first operand for f, low order bits from the second operand for s and low order bits
from the third operand for t. The result is converted to 32 bit binary. This example
has register numbers which are 5 bits because MIPS32 defines 32 integer registers.

4. Constructs the object whose simulate() method will be called to simulate the
execution of the program statement at MIPS runtime. The object is constructed from
an anonymous subclass of the SimulationCode class defined right here. The
simulate() method receives information about the program statement as a
parameter and manipulates MIPS registers and/or memory to carry out the instruction.

To modify the basic instruction set, follow this process:

1. Extract the MARS distribution from its JAR file if you have not already done so.

2. Copy InstructionSet.java from the src/mars/mips/instructions
folder into the mars/mips/instructions folder.

3. Make a backup copy of InstructionSet.java for safe keeping.

4. Edit InstructionSet.java appropriately. Implementation of the
simulate() method will likely require access to one or more simulated MIPS
memory and/or register objects. The pertinent classes are
mars.mips.hardware.Memory and
mars.mips.hardware.RegisterFile. Javadoc-generated documentation for
all MARS classes is provided in the distribution's doc folder. Also study the source
code of existing instructions.

5. Compile InstructionSet.java and test your instruction.

NOTE: This technique applies to MARS release 3.2.1. It is possible that the technique
for specifying basic instructions will change in a future release of MARS. If so, it would
be converted to a technique similar to that now used for system calls.

Page 20

