
Modelo de Von Newman

First Draft of a Report on the EDVAC,

John Von Neumann,

Moore School of Electrical Engineering,

Univ of Pennsylvania, 1945

define um computador com programa armazenado

no qual a memória é um vetor de bits

e a interpretação dos bits é determinada pelo programador

Prinćıpios de Projeto em Arquitetura

Prinćıpio 1: simplicidade favorece regularidade

Prinćıpio 2: menor é mais rápido (quase sempre)

Prinćıpio 3: um bom projeto demanda compromissos

Prinćıpio 4: o caso comum deve ser o mais rápido

Cui prodest?

Actio?

repeat?

quo vadis?

Linguagem de montagem

• Extremamente simples (progr. montador em ≈ 200 linhas de C)

• poucos tipos de dados: byte, meia-palavra, palavra, float, double

• dois conjuntos de variáveis: 32 registradores e vetor de bytes

• tipicamente, um resultado e dois operandos por instrução

Fases de execução de uma instrução (cont.)

rrrrrrrrrrrrrrrrrrrrrr

♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣

♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣

♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣

α

β

ULA

γclk

clk

rr

rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr
rr

rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrr
r

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣

+

add r3,r1,r2 # r3 ← r1+r2

r2

r1

r3

acessa registradores
executa

decodifica instrução
grava resultado

com operandos

Fases de execução de uma instrução

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣

♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣

rr

rrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrr
r

rrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrr
rrrrrrrr

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣

♣♣

♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣

rrrrrrrrrrr
rrrrrrrrrrrr
rrrrrr

rrrrrrrrrrrr
rrrrrrrrrrrr
rrrrr

memória
de

dados

ender

PC

instr

ender

instr.

instruções

memória
de

regs
B

A

C dados

Processador:

1) busca na memória a instrução apontada por PC busca

2) decodifica instrução decodificação

3) executa operação execução: A + B

4) acesso à memória memória: mem[A + desl]

5) armazena resultado da operação resultado: regs[c] ← . . .

Linguagem de montagem (cont.)

• Instruções aritméticas/lógicas com 3 operandos risc

→ circuito que decodifica as instruções é mais simples

• Operandos SEMPRE em registradores risc

• Palavra do MIPS é de 32 bits = |regs| = |ULA| = |vias|

• 32 registradores viśıveis: r0 a r31 (montador chama $0 a $31)

Último exemplo com registradores: rN identifica registrador N

f = (g+h)-(i+j); add r8, r17, r18 # f..j ❀ r16..r20

add r9, r19, r20

sub r16, r8, r9

Por convenção

r0 contém sempre zero (fixo no hardware)

r1 é variável temporária para montador, não deve ser usada

Linguagem de montagem (cont.)

/* programa C */ # equivalente em assembly MIPS

a = b+c; add a, b, c # a ← b + c

a = b+c+d+e; add a, b, c # a ← b + c

add a, a, d # a ← a + d

add a, a, e # a ← a + e

f = (g+h)-(i+j); add t0, g, h # t0 ← g + h

add t1, i, j # t1 ← i + j

sub f, t0, t1 # f ← t0 - t1

Programa montador (assembler) traduz “linguagem de montagem”

(assembly language) para “linguagem de máquina” = binário que é

interpretado pelo processador

Linguagem de montagem – sintaxe

Uma instrução por linha,

label: denota endereço da linha indicada (opcional, note o ‘:’),

comentário vai do ‘#’ ou ‘;’ até o fim da linha (opcional).

label instrução # comentário

.L1: add r1, r2, r3 # r1 ← r2 + r3

sub r5, r6, r7 # r5 ← r6 - r7

fim: j .L1 # salta para endereço

apontado por .L1

← denota atribuiç~ao

Instruções de Lógica e Aritmética (cont.)

Como obter constantes em 32 bits? & = concat do VHDL

addi e ori tem operandos de 16 bits

lui r1, cnst # r1 ← {cnst(15..0) & x0000}

ori r2, r1, cnst # r2 ← r1 or {x0000 & cnst(15..0)}

lui r5, %hi(0x0080.4000) # r5 ← 0x0080.0000

ori r5, r5, %lo(0x0080.4000) # r5 ← 0x0080.4000

r5 ← 0x0080.0000 or 0x0000.4000

la r5, 0x0080.4000 # la é uma pseudoinstruç~ao

que substitui lui ; ori

%hi() e %lo() são operadores do montador que extraem as partes

MAIS/menos significativas dos operandos

Instruções de Lógica e Aritmética

add r1, r2, r3 # r1 ← r2 + r3

addi r1, r2, cnst # r1 ← r2 + extSinal(cnst)

addu r1, r2, r3 # sem sinal - n~ao causa exceç~ao

addiu r1, r2, cnst # sem sinal - n~ao causa exceç~ao

ori r1, r2, cnst # r1 ← r2 or {016 & cnst(15..0)}

constantes lógicas não têm sinal

Por que estender o sinal?

Para transformar constante de 16 bits em número de 32 bits:

0x4000 ❀ 0x0000.4000 4 = 01002
0x8000 ❀ 0xffff.8000 8 = 10002

Aritmética com e sem sinal (signed e unsigned)

A representação de inteiros usada no MIPS é complemento de dois

Operações aritméticas possuem dois sabores:

signed (“com-sinal”) ❀ overflow causa exceção

unsigned (“sem-sinal”) ❀ ignora detecção de overflow

Operações com endereços são sempre sem-sinal:

addu r1, r2, r3 porque todos os 32 bits compõem

o endereco: 0xffff ffff = −110 é um endereço válido

Operações com inteiros podem ter operandos positivos/negativos,

e (talvez) programa deva detectar a ocorrência de overflow :

a soma de dois números de 32 bits produz resultado de 33 bits

Movimentação de dados entre CPU e memória (i)

LOAD WORD: end efetivo = desloc + regIndice

lw rd, desloc(regIndice)

STORE WORD: end efetivo = desloc + regIndice

sw rd, desloc(regIndice)

lw r8, 8(r15) # r8 ← M[8 + r15]

sw r8, -16(r15) # M[-16 + r15] ← r8

Programador é responsável por gerenciar o acesso a todas as

estruturas de dados; palavras devem ser acessadas de 4 em 4 bytes

Registradores Viśıveis e Memória

s ss

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

$15

$14

$13

$12

$9

$10

$11

$8

$7

$6

$5

$4

$3

$2

$1

$0

PC

$31

$30

$29

$28

$27

$26

$25

$24

$23

$22

$21

$20

$18

$19

$17

$16

stat
0 1 32

4G-4

4

8

12

16

20

24

4G-8

4G-12

0

Memória

Variáveis em memória

Programas usam mais variáveis que os 32 registradores!

Variáveis, vetores, etc são alocados em memória

Operações com elementos necessitam da

carga dos registradores antes das operações

Memória é um vetor: M[232] bytes

Endereço em memória é o ı́ndice i do vetor M[i]

Bytes são armazenados em endereços consecutivos

Palavras armazenadas em endereços múltiplos de 4 230 palavras

bytes end % 1 = ?

meia-palavras end % 2 = 0 alinhado!!

palavras end % 4 = 0 alinhado!!

double-words end % 8 = 0 alinhado!!

Vetores e Matrizes em C

Vetores em C

ender 20 21 22 23 24 25 26 27

char c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

short s[0] s[0] s[1] s[1] s[2] s[2] s[3] s[3]

int i[0] i[0] i[0] i[0] i[1] i[1] i[1] i[1]

Matrizes em C

uma matriz é alocada em memória

como vetor de vetores

&(M [i][j]) =

&(M [0][0]) + |τ |(λ · i + j)

para elementos de tipo τ , linhas

com λ colunas e µ linhas

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣
♣♣

1

0 λ-1

i

j

µ-2

0

µ-1

i

Estruturas de Dados em C

tipo de dado sizeof

char 1

short 2

int 4

long long 8

float 4

double 8

char[12] 12

short[6] 12

int[3] 12

char * 4

short * 4

int * 4

A função sizeof(x) retorna

o número de bytes necessários

para representar x

Elementos de vetores são

alocados em endereços

cont́ıguos: V[i+1] é alocado

no endereço seguinte a V[i].

Ponteiros (char *, int *)

são endereços e tem sempre o

mesmo tamanho, que é de

4 bytes no MIPS

Movimentação de dados entre CPU e memória (ii)

rrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrrr
rrrrrrr
rrrrrrrr
rrrrrrrrr
rrrrrrrrrrrrr
rr
rrrrrrrrrrr
rrrrrrrrr
rrrrrrrr
rrrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrrr
rrrrr
rrrrrr
rrr

rrrrrrrrrrrrrrr
rrrrrrrrrrrrrr

rrrrrrrrrrrrrrr
rrrrrrrrrrrrrr

rrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rrrrrrrrrrrrrrr
rrrr rr

rrr

rr

rr
rr

&(V[0])

M[]

&(V[4])

&(V[8])

lw r12, r15 0x0008

lw r12, 8(r15) # r12 ⇐ M[r15+8]

&(V[c])
&(V[0])r15

Estruturas de Dados em C (cont.)

Registros podem ser usados

para definir novos tipos:

o typedef declara o registro

aluno como sendo o novo

tipo alunoType, e este tipo

pode ser usado na declaração

do vetor ufpr[60000].

typedef struct aluno {

char nome[100];

int GRR;

short anoIngresso;

float IRA;

} alunoType;

alunoType ufpr[60000];

...

for (i=0; i<60000; i++) {

ufpr[i].GRR = 0;

ufpr[i].IRA = 0.0;

}

Estruturas de Dados em C – structs

Registros (structs) agregam informação relacionada:

struct aluno {

char nome[100];

int GRR;

short anoIngresso;

float IRA;

}

...

aluno.GRR = 12345;

aluno.anoIngresso = 2010;

aluno.IRA = 0.666;

Componente do registro é selecionado com o operador ‘ . ’

for (i=0; i<100; i++) { aluno.nome[i] = candidato[i]; }

Movimentação de dados entre CPU e memória (iii)

Exemplo: acesso à vetor

int V[NNN];

...

V[0] = V[1] + V[2]*16;

la r1, V # r1 ←&V[0]

lw r4, 4(r1) # r4 ← M[r1+1*4]

lw r6, 8(r1) # r6 ← M[r1+2*4]

sll r6, r6, 4 # r6*16 = r6<<4

add r7, r4, r6

sw r7, 0(r1) # M[r1+0*4] ← r4+r6

Re-escreva o código para:

V[i] = V[j] + V[k]*16;

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣

♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

8

V[1]

V[2]

4

V[0]

0

.

Movimentação de dados entre CPU e memória (vi)

Exemplo: acesso à estrutura com 4 elementos

typedef struct A {
int x; int y; int z; int w;

} aType;

i elmtos ∗ 4 pals/elmto ∗ 4 bytes/pal → i*16

la r1, 0x00800030

endereços DEVEM ser computados

em tempo de execuç~ao

m = V[i].y; sll t0, ri, 4 # (i * 16)

add t1, t0, r1 # V + i*16

lw r8, 4(t1) # r8 ← V[i].y

n = V[i].w; lw r9, 12(t1) # r9 ← V[i].w

V[i].x = m+n; add r5, r8, r9

sw r5, 0(t1) # V[i].x ← r5

Movimentação de dados entre CPU e memória (v)

Exemplo: acesso à estrutura com 4 elementos

typedef struct A { ...

int x; // compil aloca V em 0x0080.0000

int y; aType V[16];

int z; ...

int w; endereços podem ser calculados

} aType; em tempo de compilação

3 elmtos ∗ 4 pals/elmto ∗ 4 bytes/pal = 0x30 = 48

la r15, 0x00800030

m = V[3].y; lw r8, 4(r15)

n = V[3].w; lw r9, 12(r15)

V[3].x = m+n; add r5, r8, r9

sw r5, 0(r15)

Movimentação de dados entre CPU e memória (iv)

Exemplo: acesso à estrutura com 4 elementos

typedef struct A {

int x;

int y;

int z;

int w;

} aType;

aType V[16];

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣♣
♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣

♣♣♣♣♣
♣♣♣♣♣
♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣

♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

x

+12

+8

+4

yx z w yx z w yx z w yx z w

+16

+32

+48

V[3]V[2]V[1]V[0]

Exerćıcios

Traduza para assembly do MIPS os seguintes comandos em C:

int P[NN];

int Q[MM];

int x,y,z,i,j,k;

i = P[4];

j = P[9];

k = i - j;

y = Q[i];

z = Q[i*4];

P[P[k]] = y + z + Q[i+j];

Instr de moviment de dados entre CPU e memória

lw r1, desl(r2) # r1 ←M[r2 + ext(desl)]

sw r1, desl(r2) # M[r2 + ext(desl)] ←r1

load-half and load-byte -- expande sinal para 32 bits

x = r2+ext(desl)

lh r1, desl(r2) # r1 ← M[x](15)16 & M[x](14..0)

lb r1, desl(r2) # r1 ← M[x](7)24 & M[x](6..0)

load-half and load-byte unsigned -- preenche com zeros

lhu r1, desl(r2) # r1 ← 016 & M[x](15..0)

lbu r1, desl(r2) # r1 ← 024 & M[x](7..0)

