Enhancing the Robustness of Linux Kernel Modules
that Rely on Netlink-based Interfaces

José Flauzino
Department of Informatics
Federal University of Parand
Curitiba, Brazil
jwvflauzino @inf.ufpr.br

Abstract—Linux is a mature and widely adopted operating
system. The robustness of the Linux kernel has been addressed
in several works in the literature. Typically, those works focus on
system calls, which represent the main interface between user-
space applications and the kernel. However, Linux also provides
an interface between the user space and the kernel space based
on message exchanges via Netlink sockets. This work proposes
the development of a comprehensive methodology for addressing
the robustness of Linux kernel modules that rely on Netlink-
based interfaces. The approach encompasses multiple stages,
including the development of a fault injection technique tailored
for Netlink interfaces and the systematic robustness assessment of
well-known kernel modules. The research plan also encompasses
the investigation of the side effects of any failures revealed and
the corresponding mitigation strategies.

Index Terms—robustness testing, dependability, networking

I. INTRODUCTION

Linux is an operating system widely adopted around the
globe and is relevant in a variety of contexts. This widespread
adoption is partly due to the high performance and flexibility
of its monolithic kernel with module support [1]. The Linux
kernel is present in a variety of contexts, from mobile devices
[2] to the world’s most powerful supercomputers [3].

Despite Linux being considered a mature software system,
developed over three decades, the vast extent of its source
code (currently exceeding 28.8 million lines of code) makes
it significantly challenging to ensure the absence of bugs,
which may lead to robustness issues. Several works have
already assessed the robustness of Linux [4]-[7]. Those works
generally propose robustness assessment methods based on the
execution of specific tests on the main interface between user
applications and the system kernel, known as system calls.

Although system calls are the primary means of interaction
between user space and kernel space, Linux also has a sec-
ondary (but fundamental) interface for this type of interaction:
Netlink sockets [8]. More specifically, Netlink sockets allow
processes (i.e., running programs) in user space to commu-
nicate with Linux kernel modules that rely on this interface.
Therefore, since modules are linked to the Linux kernel at
runtime [9], it can be said that Netlink enables interaction
with the kernel itself.

While system calls trigger an interrupt (or trap) instruction
to execute a specific kernel routine with a high privilege level,
Netlink communication is carried out through the exchange of

messages. Currently, several Linux kernel modules employ a
Netlink interface, including notable subsystems such as Netfil-
ter (iptables), the module implementing the IEEE 802.11 (Wi-
Fi) standard, and the devlink tool, a framework for managing
and configuring network devices.

Besides the relevance of such subsystems, as far as is
known, no prior work has proposed a methodology specifically
dedicated to systematically evaluating the robustness of Linux
kernel modules over Netlink. The present doctoral research
aims to fill this gap by establishing a comprehensive method-
ology comprising methods and techniques designed to evaluate
and enhance the robustness of Linux kernel modules that rely
on Netlink-based interfaces.

The proposed approach comprises multiple stages, including
the development of a fault injection technique specifically
designed for Netlink-based communication and the systematic
robustness evaluation of widely used kernel modules. Addi-
tionally, the research plan involves analyzing the potential
impact of the identified failures and formulating effective
mitigation strategies to address them. The ultimate goal is
to uncover unknown failures of kernel modules, as well as
propose technical solutions to them, contributing to an even
more robust Linux kernel.

II. RELATED WORK

The robustness of operating systems, and Linux in particu-
lar, has been extensively explored in the literature. Ballista
[10], a portable method based on fault injection on sys-
tem calls, was proposed to assess the robustness of POSIX
(Portable Operating System Interface) systems. This method
was used to evaluate the main POSIX operating systems of
the 1990s, including FreeBSD, SunOS, and Linux [4].

In [5], a state-aware approach was proposed to assess the ro-
bustness of operating systems. The solution, called SABRINE,
automatically extracts state models from system call execution
traces to generate a set of test cases that cover different states
of the operating system. The approach was demonstrated by
evaluating the robustness of FIN.X-RTOS, a Linux-based real-
time operating system used in the aviation domain.

Existing literature has also investigated the robustness of
Linux device drivers (which can be built directly into the
kernel core or as loadable modules). In [11], a fault injection
technique targeting the Driver Programming Interface (DPI)

was proposed to characterize how faulty drivers affect the
kernel. Another approach was proposed in [12], in which the
system behavior was evaluated in the presence of faulty drivers
through machine-code-level fault emulation. A third work
in this context proposed Devil [13], an Interface Definition
Language that enhances driver robustness by generating code
with built-in checks.

The Linux Test Project (LTP) [6] is a collaborative initiative
maintained by organizations such as Red Hat, SUSE, IBM,
Cisco, Oracle, and Fujitsu. Its primary goal is to support
and facilitate testing efforts aimed at validating the reliability,
robustness, and stability of the Linux kernel. In practice, LTP
offers a comprehensive suite of tools and test cases designed
to evaluate the kernel and associated components.

Fuzzing is another widely used approach to assess the
robustness of the Linux kernel. This encompasses Google’s
Syzkaller tool [14] as well as several enhancements and tools
developed from it [15]-[18].

While all these works assess the robustness of Linux with an
emphasis on system calls, efforts focused specifically on the
robustness assessment of Linux kernel modules via Netlink
interfaces remain scarce. This work aims to fill this gap by
proposing a methodology not only for assessing but also for
enhancing the robustness of the Linux kernel in the context of
Netlink-based communication.

III. LINUX KERNEL MODULES AND NETLINK SOCKETS

This section introduces essential concepts relevant to the
work. It begins with an introduction to Linux kernel modules
in Subsection III-A, followed by a brief overview of Netlink
sockets in Subsection III-B.

A. A Brief Introduction to Linux Kernel Modules

Linux has a monolithic kernel but supports modules thus
inheriting the many advantages of microkernels (such as flex-
ibility) without sacrificing performance [1]. A kernel module
is a binary object that extends kernel functionality and can be
dynamically loaded or unloaded at runtime [9]. Modules run in
kernel mode on behalf of user processes, similar to statically
linked kernel functions. Common types include device drivers,
file systems, and networking components.

B. An Overview of Netlink Sockets

A socket serves as an abstraction for inter-process commu-
nication, enabling data exchange between processes that may
reside either on the same host or across different machines.
Each socket is characterized by three key attributes: (i) the
Address Family (AF); (ii) the socket type; and (iii) the
Protocol Family (PF). Although there is generally a one-to-
one correspondence between AFs and PFs, some AFs can be
associated with multiple PFs.

Netlink [8], [19], represented by AF_NETLINK, is a
Linux address family that enables bidirectional commu-
nication between user space and kernel modules. In the
latest stable version of the Linux kernel (6.15.8), there
are 23 protocol families (PFs) registered for Netlink,

including NETLINK_NETFILTER (used by iptables)
and NETLINK_ROUTE (for managing network routes,
IP addresses, link parameters, queueing disciplines, and
more). Linux also provides a Generic Netlink family
(NETLINK_GENERIC), a flexible interface for defining cus-
tom communication protocols.

In the Linux kernel, modules can register one or more
Generic Netlink families, each representing a particular func-
tionality. Messages sent to these families are automatically
routed to the correct module without requiring a destination
address. Each family specifies a set of commands and the
attributes needed to execute them.

IV. A METHODOLOGY FOR ENHANCING THE ROBUSTNESS
OF LINUX KERNEL MODULES WITH NETLINK INTERFACES

The purpose of this doctoral work is to establish a methodol-
ogy that encompasses a set of methods and techniques aimed at
enhancing the robustness of Linux kernel modules that rely on
Netlink-based interfaces. The next subsections introduce the
research proposal, describing the core research problems that
motivate the study, and presenting the planned investigations.

A. Robustness Assessment: Testing & Analysis Techniques

Robustness is defined as the degree to which a system or
component can function correctly in the presence of invalid
inputs or stressful environmental conditions [20]. Thus, robust-
ness testing is essential to ensure that software components be-
have correctly under unexpected conditions. Therefore, it plays
a crucial role in detecting and mitigating these issues before
they impact users or systems in production environments.

In this sense, an essential part of this work is to develop
a robustness testing technique suited to the characteristics of
Netlink communication. First of all, it is necessary to consider
the differences in message formats used by the Netlink and
Generic Netlink families. In particular, it is important to care-
fully determine which header fields can be safely manipulated
to evaluate robustness without compromising the validity of
test results. Improper handling of these fields may result in
communication failures (such as messages not delivered to
the kernel module) being mistakenly interpreted as failures in
the target kernel module.

A substantial challenge is the absence of detailed specifica-
tions for kernel modules. The official Linux kernel documen-
tation for existing Netlink and Generic Netlink families [21] is
often incomplete. For some families, there is a complete lack
of documentation, while for the remaining, details such as the
range of values accepted as valid for each attribute are not
specified. This significantly makes it difficult to generate truly
invalid input sets and, consequently, makes it more challenging
to identify whether an output returned for a given input was
actually appropriate or not (in other words, it makes it more
challenging to identify failures).

To address these challenges, the investigation will focus
on a fault injection technique in which input values are
systematically generated from data type-driven rules — since
the types of attributes are specified in the documentation or

can be identified in the source code. In particular, the rules
will be defined in such a way as to explore the limits of each
attribute’s data types. This allows for the generation of reduced
test cases (compared to other techniques, such as fuzzing,
for example) that are nevertheless considerably representative.
Table I presents the initial set of rules.

TABLE I
RULES FOR GENERATING INVALID VALUES FOR NETLINK ATTRIBUTES.
Rule Name Description
StrNull Set a null value
) StrEmpty. Sets an empty §tring)
g StrNonPrintable ~ Sets a string with non-printable characters
@ StrAlphanumeric ~ Sets an alphanumeric string
StrOverflow Sets characters that exceed the maximum length
NumNull Set a null value
8 NumMinType Sets the minimum valid number for the data type
ES) . .
2 NumMaxType Sets the maximum valid number for the data type
2 NumUnderflow Sets a negative number that exceeds the data type
NumOverflow Sets a positive number that exceeds the data type
s StructNull Sets a null value
g StructPrimitive Sets a primitive value (Boolean, Int, Float, efc.)
@ StructCommon Sets a common data structure (List, Date, efc.)

To overcome the challenges of identifying robustness fail-
ures (in cases where a response is returned), the initial focus
will be on alternatives to the Netlink specification. Specifically,
the proposal is to use the POSIX standard error specification
instead of relying on the specification of accepted value limits
for each attribute (more details are given in Section V-A). The
final goal in this regard is to achieve an automatic fine-grained
failure detection approach.

Another aspect to be investigated is the side effects of any
failures revealed. In particular, efforts will concentrate on the
analysis of failure propagation and vulnerability analysis.

B. Mitigation Strategies for Enhancing the Robustness of
Kernel Modules

This work aims not only to reveal failures in Linux kernel
modules but also to propose solutions or, at the very least,
mitigation strategies to address them. The main emphasis in
this regard will be on improving the mechanisms for validating
input data. The current approach used to validate Netlink
attributes automatically is based on nla_policy contracts
(also known as Netlink Attribute Policies). Therefore, investi-
gations will focus on improving and proposing new policies,
as well as alternative solutions.

V. CURRENT STATUS AND NEXT STEPS

This section outlines the current progress of the doctoral
research and the activities planned for its completion. First,
the current status of the work is presented, followed by a
description of the investigations planned for the next stages.

A. Current Status

As an initial step in the research, an approach for assessing
robustness via Netlink-based interfaces was developed, focus-
ing on a mature and widely adopted Linux kernel module: the
Open vSwitch datapath implementation. Open vSwitch is an

open-source multilayer network switch designed for virtual-
ized environments. Its architecture includes a kernel module
dedicated to packet processing, which has been officially
integrated into the Linux kernel since version 3.3, released
in March 2012.

The proposed approach [22], employs a fault injection tech-
nique that systematically generates invalid input values (from
data type-driven rules) and submits them to the Open vSwitch
kernel module through Netlink attributes. As illustrated in
Figure 1, the robustness tests are performed using a fault
injector implemented as a user-space process. This injector
generates both the workload (valid inputs) and the faultload
(invalid inputs), which are sent to the Open vSwitch kernel
module through a Netlink socket. The module processes these
inputs and returns a response — unless a failure prevents
it. Failures are identified by monitoring the target kernel
module and manually analyzing the responses received (or

their absence).
Fault Injector R
System ¢ > s
>
Failure

Workload Analysis

& Faultload

User space

Socket API

Kernel space

Messages

v

Kernel Module
(Target System)

1

1

1

1

i

1

i

1

Response 1
1

i

1

i

1

1

____________ /

Fig. 1. An overview of the proposed approach to assess the robustness of
Linux kernel modules with Netlink-based interfaces.

Due to the current limitations of the Linux kernel documen-
tation (not providing complete specifications for all Generic
Netlink families), a system error code specification-oriented
analysis method was proposed to examine the returned re-
sponses. Thus, instead of relying only on the module spec-
ification, the proposed method allows the classification and
interpretation of failures and inconsistencies based on POSIX-
standard [23] error codes and the CRASH scale [24].

Experimental results considering four major kernel versions,
spanning 10 years of Open vSwitch development, revealed a
plethora of failures and inconsistencies. The identified failures
include cases where incorrect error codes are returned for
certain invalid input entries (i.e., hindering failures — from
the CRASH scale) and cases where a success code is returned
when an error code should have been returned (silent failures).

Figure 2 presents a comparison of different kernel versions
in terms of the failure rate (i.e., the proportion of test cases
that triggered failures). The observed behavior showed that,
in most cases, the failure rate either increased over time or
remained consistently high — often around or even exceeding
40%. This suggests that robustness has historically not been
a priority in the development of the Open vSwitch kernel
module. These findings also raise concerns that other Linux
kernel modules may exhibit similar issues, highlighting the

relevance of this work and the importance of systematically
assessing the robustness of additional modules.

100
Kernel Version
[v3.19.8
80 1 v4.20.9
— I v5.19.9
S
S N v6.14.6
o 60
]
o
<
S 40
‘©
w
20
0 & Q X X &
XS () () S
& & o ¥ F
& &7 7 ¢ < &
¥ S S ©’ &7 %
o\\c)/ [8) [

Fig. 2. Evolution of failure rates across kernel versions. The x-axis represents
Generic Netlink families implemented by the Open vSwitch kernel module.

B. Next Steps

The progress achieved so far demonstrates the potential
of the proposed approach to assess the robustness of kernel
modules via Netlink. However, further research efforts are
required to address the challenges mentioned in Section IV.

Once the methodology is established, a representative set of
Linux kernel modules will be systematically selected for ro-
bustness evaluation using the proposed approach. Insights and
results obtained from these practical assessments will guide
iterative refinements, ensuring the methodology is sufficiently
comprehensive for application to other existing modules and
future developments based on Netlink interfaces. Furthermore,
any identified failures will be reported, and suggestions for
improvements in the code and development practices will be
presented to the community.

The final stage of the doctoral work will focus on writing
and refining the dissertation. The tentative date for the thesis
defense is scheduled for mid-2026.

VI. CONCLUSION

This doctoral research proposal introduces a methodology
for assessing and enhancing the robustness of Linux kernel
modules that rely on Netlink-based interfaces. The proposed
methodology to be developed is grounded in fault injection
techniques and systematic test profiles to uncover failures that
may affect kernel module robustness. Preliminary results from
the evaluation of the Open vSwitch kernel module highlight
both the feasibility and the relevance of the work. Moving
forward, the research will refine the methodology, expand its
application to other modules, and propose mitigation strategies
aimed at contributing to an even more robust Linux kernel.

ACKNOWLEDGMENTS

The author thanks his advisors, professors Elias P. Duarte Jr.
and Marco Vieira. This work has been supported by the Coor-
dination for the Improvement of Higher Education Personnel
(CAPES) - Program of Academic Excellence (PROEX).

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

REFERENCES

D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O
ports to process management. “O’Reilly Media, Inc.”, 2005.

Statista, “Market share of mobile operating systems worldwide from
2009 to 2025,” https://www.statista.com/statistics/272698/global-market-
share-held-by-mobile-operating-systems-since-2009/, 2025, accessed in
July 2025.

TOP500, “June 2025, https://top500.org/lists/top500/2025/06/, 2025,
accessed in July 2025.

P. Koopman and J. DeVale, “Comparing the robustness of POSIX
operating systems,” in Proceedings of the 29th IEEE International
Symposium on Fault-Tolerant Computing (FTCS’1999). 1EEE, 1999,
pp. 30-37.

D. Cotroneo et al., “Sabrine: State-based robustness testing of operating
systems,” in 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE’2013). 1EEE, 2013, pp. 125-135.

LTP, “Linux Test Project,” https://linux-test-project.readthedocs.io.,
2025, accessed in July 2025.

L. Wang, X. Wang, and D. Wu, “Correlation between complex network
features and robustness in Linux kernel modules,” in Proceedings of the
2nd IEEE International Conference on Software Analysis, Testing and
Evolution (SATE’2017). 1EEE, 2017, pp. 80-89.

P. Neira-Ayuso, R. M. Gasca, and L. Lefevre, “Communicating between
the kernel and user-space in Linux using Netlink sockets,” Software:
Practice and Experience, vol. 40, no. 9, pp. 797-810, 2010.

K. N. Billimoria, Linux Kernel Programming: A comprehensive guide
to kernel internals, writing kernel modules, and kernel synchronization,
2nd ed. Packt Publishing Ltd, 2024.

N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, “Automated ro-
bustness testing of off-the-shelf software components,” in Digest of
papers. twenty-eighth annual international symposium on fault-tolerant
computing (cat. no. 98cb36224). 1EEE, 1998, pp. 230-239.

A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of the impact
of faulty drivers on the robustness of the linux kernel,” in International
Conference on Dependable Systems and Networks, 2004. 1EEE, 2004,
pp. 867-876.

J. Duraes and H. Madeira, “Characterization of operating systems behav-
ior in the presence of faulty drivers through software fault emulation,” in
2002 Pacific Rim International Symposium on Dependable Computing,
2002. Proceedings. 1EEE, 2002, pp. 201-209.

L. Réveillere and G. Muller, “Improving driver robustness: an evaluation
of the devil approach,” in 2001 International Conference on Dependable
Systems and Networks. 1EEE, 2001, pp. 131-140.

Google, “Syzkaller - kernel fuzzer,” https://github.com/google/syzkaller,
2025.

Y. Lan et al., “Thunderkaller: Profiling and improving the performance
of syzkaller,” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1EEE, 2023, pp. 1567-1578.
B. Zhao et al., “{StateFuzz}: System {Call-Based }{ State-Aware} linux
driver fuzzing,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 3273-3289.

D. Wang er al., “{SyzVegas}: Beating kernel fuzzing odds with re-
inforcement learning,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2741-2758.

M. Fleischer et al., “{ACTOR}:{Action-Guided} kernel fuzzing,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
5003-5020.

Kernel, “Introduction to Netlink — The Linux Kernel Documentation,”
https://docs.kernel.org/userspace-api/netlink/intro.html, 2025, accessed
in May 2025.

IEEE, “Systems and Software Engineering—Vocabulary,” IEEE, Standard
24765:2017, 2017.

Kernel, “Netlink Family Specifications,” https://docs.kernel.org/network
ing/netlink_spec, 2025, accessed in July 2025.

J. Flauzino, M. Vieira, and E. P. Duarte Jr, “Robustness Assessment
of the Open vSwitch Kernel Module,” in 36th IEEE International
Symposium on Software Reliability Engineering (ISSRE, 2025), 2025.
IEEE, “IEEE Standard for IEEE Information Technology - Portable
Operating System Interface (POSIX),” IEEE, Standard 1003.1-2001,
2001.

P. Koopman et al., “Comparing operating systems using robustness
benchmarks,” in Proceedings of SRDS’97: 16th IEEE Symposium on
Reliable Distributed Systems. 1EEE, 1997, pp. 72-79.

