Cálculo Numérico

Resolução Numérica de Equações — Parte I

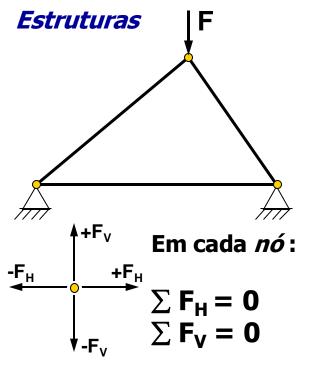
Profs.: Bruno Correia da N. Queiroz José Eustáquio Rangel de Queiroz Marcelo Alves de Barros

Cálculo Numérico – Objetivos

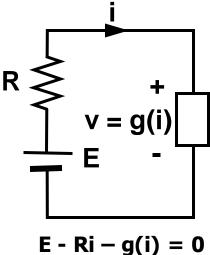
- Estudar métodos numéricos para a resolução de equações não lineares (determinar a(s) raiz(es) de uma função f(x), ou seja, encontrar o(s) valor(es) de x tal que f(x) = 0)
 - Fundamentar a necessidade de uso de métodos numéricos para a resolução de equações não lineares
 - Discutir o princípio básico que rege os métodos numéricos para a resolução de equações não lineares
 - Apresentar uma série de métodos destinados à resolução de equações não lineares

Cálculo Numérico – Motivação I

Necessidade de resolução de equações do tipo f(x) = 0



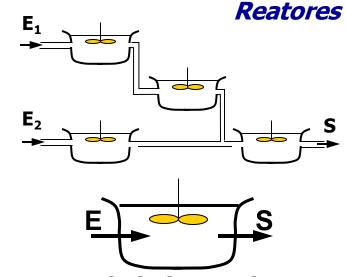
Circuitos



(Lei de Kirchhoff)

Principio da Conservação

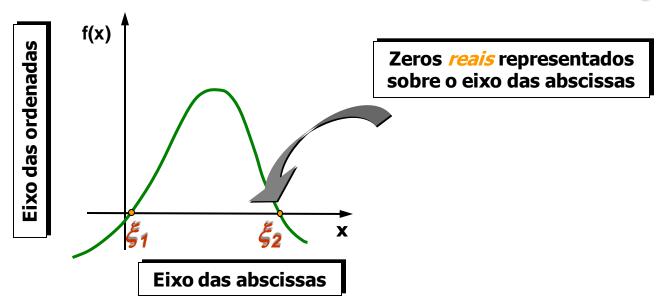
- Momento
- Energia
- Massa



Em um dado intervalo: Σ massa = entradas - saídas

Cálculo Numérico – Motivação II

- $\xi \in \Re$ é um *zero* da função f(x) ou *raiz* da equação f(x) = 0 se $f(\xi) = 0$.
- Zeros podem ser reais ou complexos.
- Este módulo trata de zeros reais de f(x).



Cálculo Numérico – Motivação III

 A partir de uma equação de 2º grau da forma

$$ax^2 + bx + c = 0$$

 Determinação das raízes em função de a, b e c

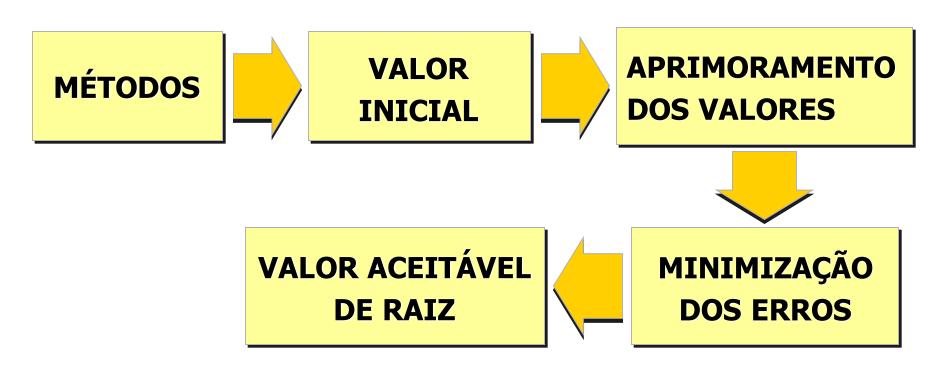
$$x = -b \pm \sqrt{b^2 - 4ac}$$

$$2a$$

- Polinômios de grau mais elevado e funções com maior grau de complexidade
 - Impossibilidade de determinação exata dos zeros

Cálculo Numérico – Motivação IV

Princípio Básico dos Métodos Numéricos



Cálculo Numérico – Motivação V

 Etapas Usuais para a Determinação de Raízes a partir de Métodos Numéricos

Cálculo Numérico – Motivação VI

- FASE I: <u>ISOLAMENTO DAS RAÍZES</u>
 - Realização de uma análise teórica e gráfica da função de interesse
 - Precisão das análises é relevante para o sucesso da fase posterior

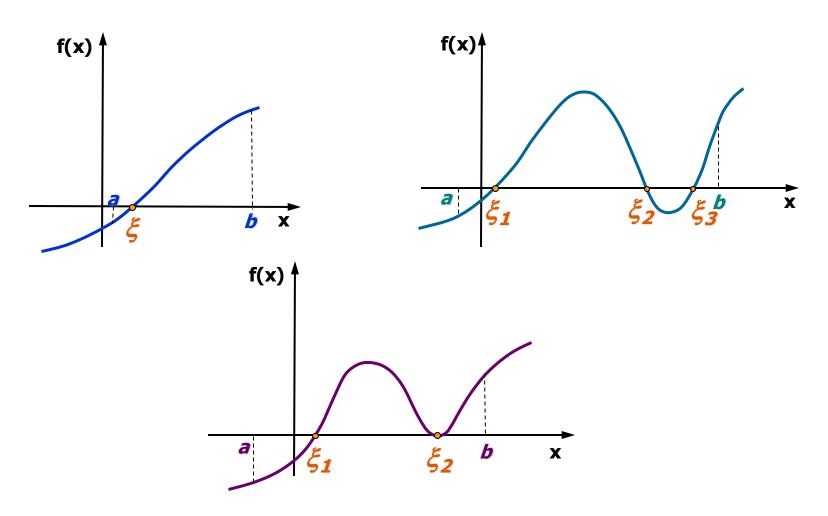
Cálculo Numérico – Motivação VII

TEOREMA 1:

Sendo f(x) continua em um intervalo [a, b], se f(a)f(b) < 0 então existe pelo menos um ponto $x = \xi$ entre a e b que é zero de f(x).

Cálculo Numérico – Motivação VIII

ANÁLISE GRÁFICA:



Cálculo Numérico – Motivação IX

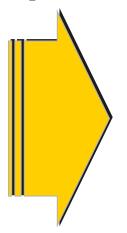
Exemplo 01: $f(x) = x^3 - 9x + 3$

• f(x) é continua para $\forall x \in R$.

$$I_1 = [-5, -3]$$

$$I_2 = [0, 1]$$

$$I_3 = [2, 3]$$



Cada um dos intervalos contém p<u>elo menos</u> um **zero**.

Cálculo Numérico – Motivação X

Exemplo 02:
$$f(x) = \sqrt{x - 5e^{-x}}$$

• f(x) admite pelo menos um zero no intervalo [1, 2] O zero é único?

Análise do sinal de f'(x)

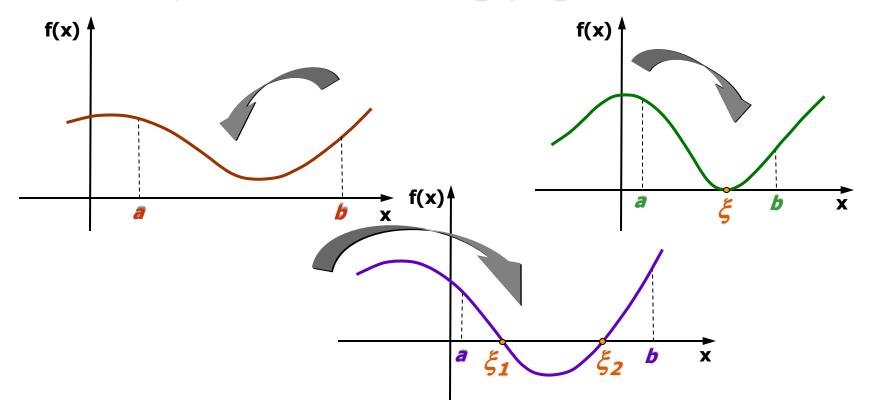
•
$$f'(x) = 1/(2\sqrt{x}) + 5e^{-x} > 0, \ \forall x > 0$$

f(x) admite um único zero em todo seu domínio de definição, localizado no intervalo [1, 2].

Cálculo Numérico – Motivação XI

OBSERVAÇÃO:

Se *f(a)f(b) > 0*, então se pode ter diversas situações no intervalo [a, b].



Cálculo Numérico – Motivação XII

ANÁLISE GRÁFICA

Construção do gráfico de f(x)

Localização das abscissas dos pontos nos quais a curva intercepta o eixo

IJ

Obtenção da equação equivalente g(x)= h(x) a partir da equação f(x) = 0

Construção dos gráficos de g(x) e h(x) no mesmo sistema cartesiano

III

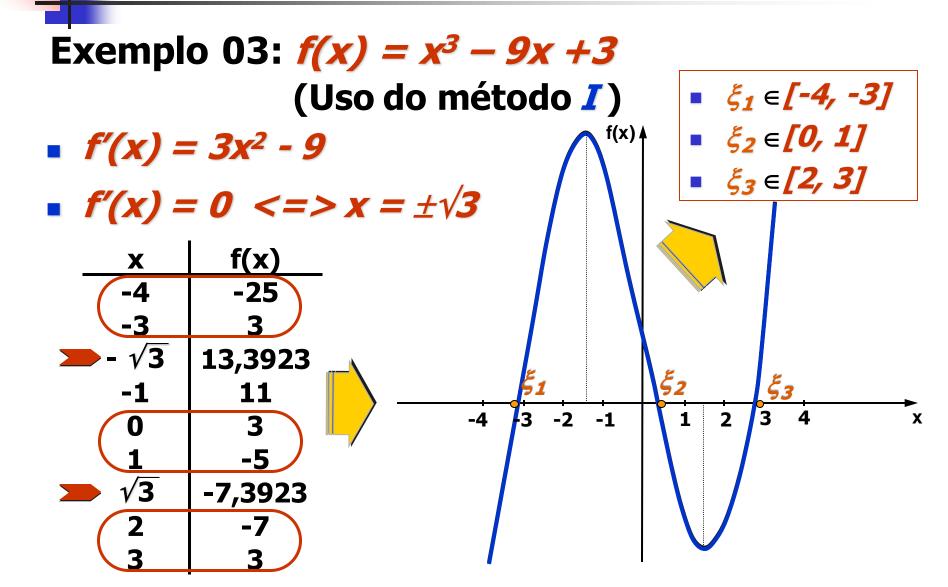
Uso de programas para traçado de gráficos de funções

Localização dos pontos x nos quais g(x) e h(x) se interceptam $(f(\xi) = 0 \Leftrightarrow g(\xi) = h(\xi))$

Cálculo Numérico – Motivação XIII

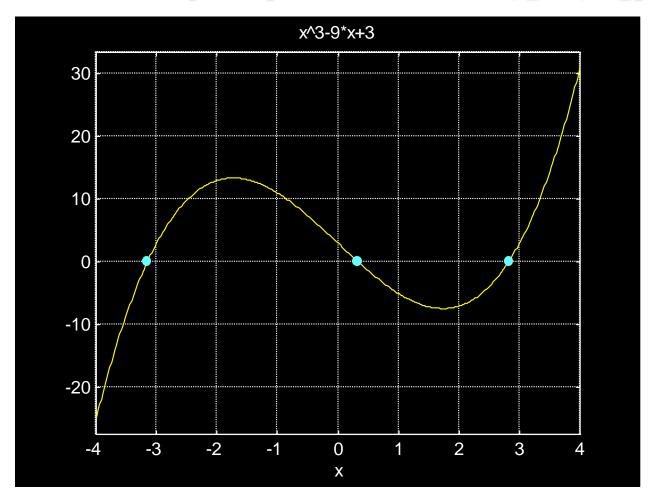
- Estudo Detalhado do Comportamento de uma Função a partir de seu Gráfico
 - Domínio da função
 - Pontos de descontinuidade
 - Intervalos de crescimento e decrescimento
 - Pontos de máximo e mínimo
 - Concavidade
 - Pontos de inflexão
 - Assíntotas da função

Cálculo Numérico – Motivação XIV

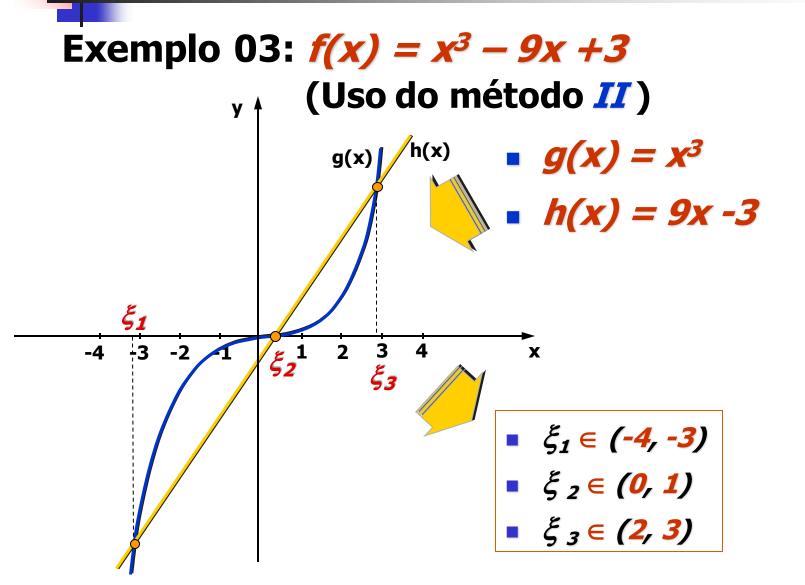


Cálculo Numérico – Motivação XV

MATLAB: ezplot('x^3-9*x+3',[-4,4])

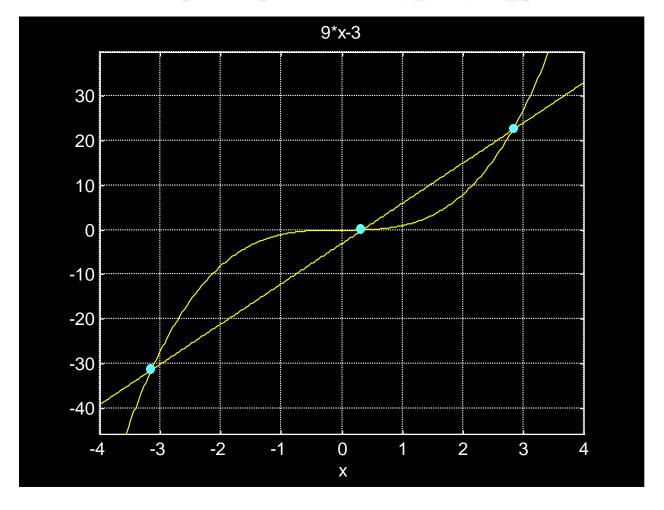


Cálculo Numérico – Motivação XVI



Cálculo Numérico – Motivação XVII

MATLAB: ezplot('9*x-3',[-4,4])



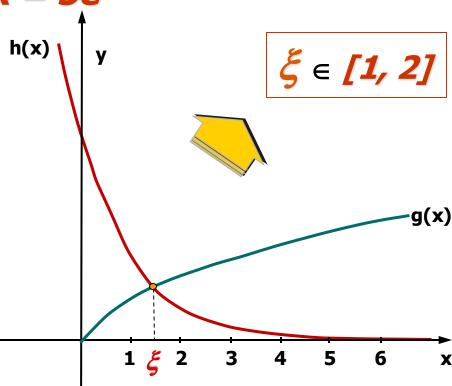
Cálculo Numérico – Motivação XVIII

Exemplo 04:
$$f(x) = \sqrt{x - 5e^{-x}}$$
 (Uso do Método II)

•
$$\sqrt{x} - 5e^{-x} = 0 <=> \sqrt{x} = 5e^{-x}$$

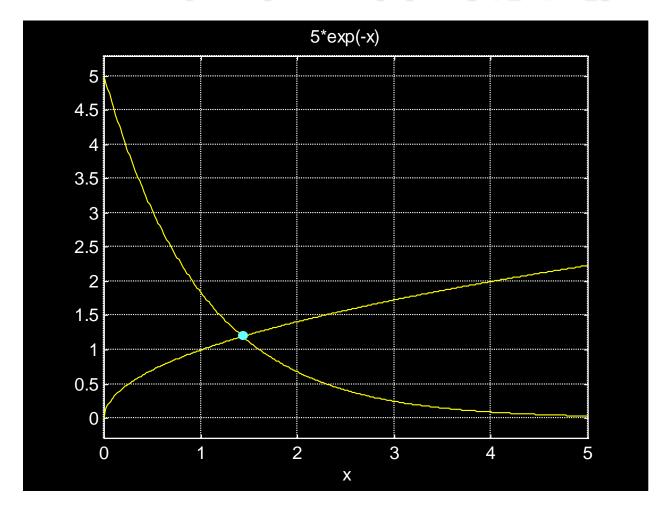
•
$$g(x) = \sqrt{x}$$

• $h(x) = 5e^{-x}$



Cálculo Numérico – Motivação XIX

MATLAB: ezplot('5*exp(- x)',[0,5])

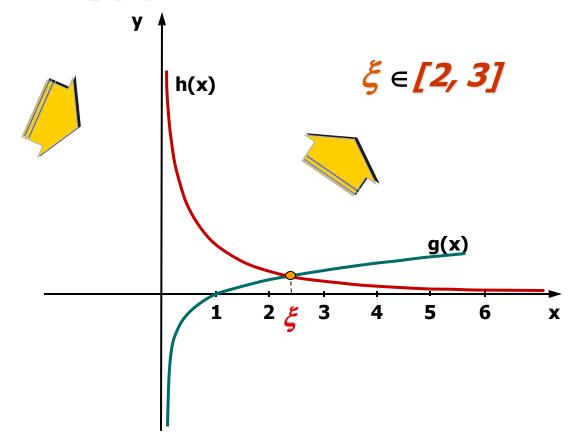


Cálculo Numérico – Motivação XX

Exemplo 05: $f(x) = x \log x - 1$

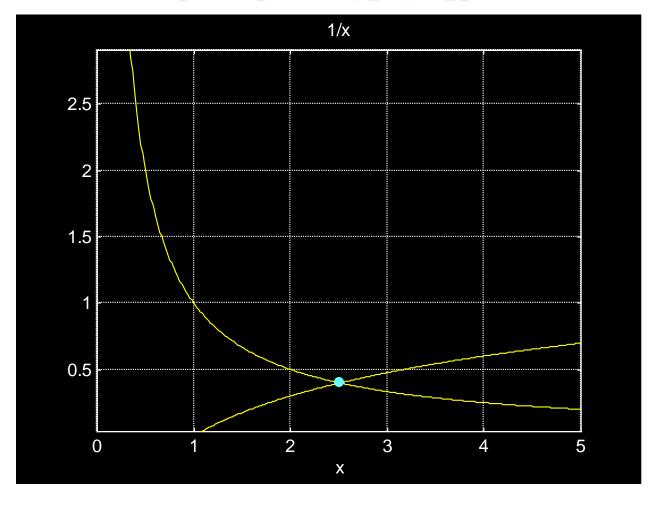
$$g(x) = log(x)$$

$$h(x) = 1/x$$



Cálculo Numérico – Motivação XXI

MATLAB: ezplot('1/x',[0,5])



Cálculo Numérico – Motivação XXII

- FASE II: <u>REFINAMENTO</u>
 - Aplicação de métodos numéricos destinados ao refinamento de raízes
 - Diferenciação dos métodos ⇒ Modo de refinamento
 - Método *Iterativo* ⇒ Caracterizado por uma série de instruções executáveis seqüencialmente, algumas das quais repetidas em ciclos (*iterações*)

Cálculo Numérico – Motivação XXIII

- CRITÉRIOS DE PARADA
 - Teste: x_k <u>suficientemente</u> próximo da raiz exata?
 - Como verificar tal questionamento?
 - Interpretações para raiz aproximada
 - x̄ é raiz aproximada com precisão ε se:

i.
$$|\overline{x} - \xi| < \varepsilon$$
ou
ii. $|f(\overline{x})| < \varepsilon$

Como proceder se não se conhece ξ?

Cálculo Numérico – Motivação XXIV

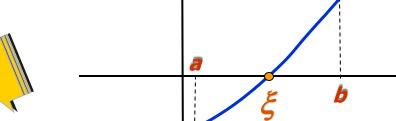
- Redução do intervalo que contém a raiz a cada iteração
 - Obtenção de um intervalo [a,b] tal que:

•
$$\xi \in [a,b]$$

e

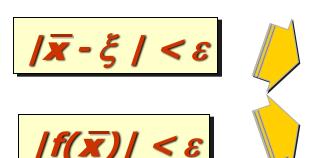
•
$$b-a < \varepsilon$$

f(x)

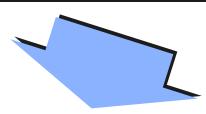


 $\forall x \in [a,b]$ pode ser tomado como \overline{x}

Cálculo Numérico – Motivação XXV



Nem sempre é possível satisfazer ambos os critérios



Métodos numéricos são desenvolvidos de modo a satisfazer *pelo menos* um dos critérios

Cálculo Numérico – Motivação XXVI

PROGRAMAS COMPUTACIONAIS

Teste de Parada

Estipulação do *número* máximo de iterações

Prevenção contra loopings

- erros do programa
- inadequação do método ao problema