A Synthetic Database to Assess Segmentation Algorithms

Luiz S. Oliveira, Alceu S. Britto Jr., and Robert Sabourin
Pontificia Universidade Catélica do Parand, Curitiba, Brazil
Ecole de Technologie Supérieure - Montreal, Canada
soares@ppgia.pucpr.br

Abstract

In this paper we describe a synthetic database com-
posed of 278,452 handwritten touching digits pairs to
assess segmentation algorithms. It contains several dif-
ferent kinds of touching and it was generated by con-
necting 2,000 images of isolated digits extracted from
the NIST SD19. In order to get a better insight on the
proposed database and establish some parameters for
further comparisons, we carried out erperiments using
four state-of-the-art segmentation algorithms.

Keywords: Handwriting Recognition, Segmenta-
tion, Synthetic Data.

1 Introduction

Automatic reading of numerical fields has been suc-
cessfully attempted in several application areas due to
the availability of relatively inexpensive CPU power,
and the possibility to reduce the manual effort involved
in this task. This kind of system usually is composed of
several steps, such as image acquisition, preprocessing,
segmentation, representation, and recognition. One of
the main bottlenecks is the segmentation step, which
consists in reading a string of characters (usually dig-
its, but sometimes non-digits can appear, e.g., systems
to read bank cheques) and segmenting it into isolated
characters. The main problem lies in the fact that usu-
ally we do not know the number of characters in the
string, hence, the optimal boundary between them is
unknown.

Some authors have devoted efforts in order to
build more robust segmentation algorithms, which
can be divided into two classes: segmentation-then-
recognition (sometimes called segmentation-free) and
segmentation-based recognition. In the former, the seg-
mentation module provides a single sequence hypothe-
sis where each sub-sequence should contain an isolated
character, which is submitted to the recognizer. This

technique shows its limits rapidly when the correct seg-
mentation does not fit with the pre-defined rules of the
segmenter. Very often, contextual information is used
during the segmentation process to improve the robust-
ness of the system. In the latter, the algorithm yields
a list of segmentation hypotheses and then assess each
of them through the recognition. The literature shows
that this kind of approach produces good results, but it
is computationally expensive since all hypotheses gen-
erated must be evaluated. Moreover, the recognition
module has to discriminate various configurations such
as fragments, isolated characters and connected char-
acters. In this strategy, segmentation can be explicit
when based on cut rules or implicit when each pixel
column is a potential cut location.

In the case of explicit segmentation several algo-
rithms have been proposed during the last years. They
normally take into consideration a set of heuristics and
information of the foreground [6, 7, 8, 13], background
[4, 9, 11], or a combination of them [3, 10] in order to
generate potential segmentation cuts. The main draw-
backs of most of these algorithms are the elevated num-
ber of cuts, which must be evaluated by the recognition
algorithm, and the number of heuristics that must be
set. In order to avoid explicit segmentation and the
complexity of setting several heuristics, some authors
have tried implicit segmentation to recognize strings
of digits [1]. The literature has shown that explicit
segmentation has achieved better results, but implicit
segmentation offers very interesting perspectives. The
main drawback of implicit segmentation is the high sen-
sibility to slanted images, which makes it obligatory the
use of a pre-processing step to correct the slant.

In spite of all efforts made in this direction, it is
difficult to effectively assess the performance of the
algorithms. The main reason lies in the fact that in
order to evaluate new algorithms, authors use differ-
ent databases or even different subsets of the same
database, which can have different levels of complex-
ity. We can cite for example the NIST SD19, which

contains strings ranging from 2- to 10-digits. This
database does not provide a directory of touching digit
strings, so that each author must extract them to build
his own database. Therefore, if we scan the literature
from 1992 until nowadays, we can find several works us-
ing NIST database reporting the most different levels
of accuracy.

Another problem found in works describing new seg-
mentation algorithms is the lack of information about
the number of segmentation cuts generated. It is not
difficult to find algorithms working fine under several
different conditions, but the cost for that (strong set of
heuristics, great number of segmentation cuts, etc.) is
very often omitted. Such an information is vital, espe-
cially when dealing with a segmentation-based recog-
nition.

In this paper we describe a synthetic database of
touching digits to be used in the assessment of seg-
mentation algorithms. It was generated by connecting
isolated handwritten digits of NIST SD19 database. It
is composed of 273,452 images of 2-digit strings and
contains several different kinds of touching. In addi-
tion, we carried out experiments using four different
state-of-the-art algorithms on this dataset.

2 The Database

In a recent paper, Bunke [2] discussed the past,
present, and future of handwriting recognition, and
pointed out some recent trends that have emerged re-
cently. According to him, and the authors agree on
that, one of the trends in handwriting recognition con-
cerns the generation of synthetic data for training and
testing systems. Most of the works in this vein regard
the generation synthetic data through distortions and
shape variations in order to increase training or testing
sets. In this work we address a different use for syn-
thetic data, i.e., algorithm evaluation. To the best of
our knowledge, no similar data have been built so far.
Choi and Oh [5] did some efforts towards this, but their
goal was to generate samples of touching pairs to train
a hundred classifiers (one for each possible touching
pair) in order to avoid explicit segmentation.

The database introduced here contains 273,452 im-
ages of touching pairs (300 dpi, bi-tonal) and it was
generated based on 2,000 isolated digits of NIST SD19
extracted from hsf_0 series. Wang et al [12] presented
statistics indicating that 85% of the touching occur be-
tween two consecutive numerals while the remaining
occurs among three or more consecutive numerals. Be-
sides, most of the algorithms in the literature deal with
the problem of 2-digit strings. For this reason, we de-
cide to focus in a first moment in building a database

of touching pairs. Regarding the style of touching, 89%
of images contains single-touching pairs, while the re-
maining 11% contains multiple-touching pairs. Figure
1 presents some images extracted from the database.

W o AKZeY 5 06 O] %6 /7
O N\ BWAL kN R
ROAS/PFRRI MY R 2782
20 X a3R33H 35 36 37. 98 39
“0 HUAL/Z YL YW U ¥ 1A
50 A 7)) F3FHRRRL BT 58 ¥q
WO LBIMNGS bl &7 65 &5
7 RIOEBIMNE W78 77
0 ¥ 25359 BHBlBT18BKA
LA NIEH B V19819

Figure 1. Some images extracted from the
synthetic database.

In most of the existing databases such as NIST,
CEDAR, and CENPARMI, the occurrence frequencies
are severely unbalanced. We have noticed and Choi
and Oh [5] corroborate that samples from some classes
such as 89, 20, 44, 56, and 69 are abundant while the
ones from classes 10, 11, 47, and 81 are rare. This
could be a problem when one wants to learn something
from the data. The idea of generating this database
is to assess segmentation algorithms, but in the long
run it could be useful to train a segmentation-free sys-
tem like in [5]. For this reason we have considered a
uniform distribution to generate the data. However
some of the classes involving the digit 1 still contain
less samples than other classes. Due to the US hand-
writing style, very often the digit 1 is fused into the
other digit. Figure 2 illustrates this problem, which
were manually removed from the database.

I A

Figure 2. Problems faced when connecting
the digit “1".

The algorithm responsible for building the synthetic
database is very simple and it is based on two rules:

1. It connects just the digits coming from the same
writer. The information about the writer is pro-
vided in the NIST SD19. Fifty different writers
were considered.

2. The reference axis along which they slide is the
center line.

The aim of those rules is to avoid unreasonable con-
nections (e.g., very small digits connected to very big
ones) and make the synthetic data more real. Figure
3a shows some examples of the original data extracted
from NIST SD19, while Figure 3b depicts the different
styles of touching available in the synthetic database.

Style of
Touching

<y 57 33

lqgﬁ

Up572-3

M\ 7D

Q& 3
(b)

Examples

ing

Single
Touchi

|0h?3’-f.5‘é 7?’?' '
270 (oo

(a)

Multiple
Touching

Figure 3. Examples of NIST SD19 fields (a)
Original fields and (b) Touching pairs gener-
ated by the algorithm.

In addition to the image, the algorithm also pro-
duces its ground truth, which contains the label of
the image and the starting and ending coordinates of
the optimal segmentation paths (P = {p1,p2,...,Pn})-
Figure 4a shows an example of the ground truth file.
The first line indicates the label of the image, and
the remaining indicates the starting and ending coor-
dinates of the optimal segmentation paths (p; and po
in this case). Figure 4b shows the points in the corre-
sponding image.

A common way of verifying the performance of a
given segmentation algorithm consists in using a clas-
sifier to evaluate the segmented pieces. However, it
is difficult to measure, especially in a huge database,
whether the error is due to the segmentation failure or
due to a mistraining of the classifier. For a given im-
age I, most of the segmentation algorithms generated

(34,25)
38 (27, 46)
pl: (34,25)(34,27) (34,27)
p2: (27,46) (26,53)
(26,53)

(@) (b)

Figure 4. Example of the ground truth gener-
ated by the algorithm (a) The ground truth in-
formation (b) The starting and ending points

a set of potential cut S = {s1,52,...,8,}. Theoret-
ically, an image I could be considered correctly seg-
mented if S C P. However, a perfect match is very
difficult since different algorithms can produce slightly
different segmentation cuts. Figure 5 exemplifies this
problem where the segmentation cut is different from
the optimal one, but still segments correctly the image.

Cut produced by the
segmentation
algorithm \ Optimal cut

Figure 5. The ground truth region

In order to avoid such problems and be able to use
a classifier to assess the segmentation, the 2,000 iso-
lated digit images were selected so that they would be
correctly classified by a neural network recognizer [?]In
this way, if after the segmentation process the digits
are not recognized anymore, we can conclude that the
segmentation is not correct. Using this approach we
can surpass the problem depicted in Figure 5, and still
focus just on segmentation.

3 Segmentation Algorithms

In order to get a better insight on the proposed
database and establish some parameters for further
comparisons, we have used four state-of-the-art algo-
rithms to segment these data. The choice of the algo-
rithms was based on the features they use to generate
the segmentation cuts. The first algorithm takes into
account just the points of the contour and profile to
produce the cuts. This algorithm was first proposed

by Fenrich [6] and successfully used by Lethelier et al
into system to recognize numerical amount of French
bank cheques [8]. The second algorithm, proposed by
Oliveira et al [10], is complementary to the first one in
the sense that it adds some features extracted from the
skeleton in order to improve the quality of the segmen-
tation cuts. Differently to the first two, the third al-
gorithm considers both foreground and background of
the image to generate the segmentation cuts [3]. The
last algorithm considered in this study is based on the
concept of water reservoir, and it was proposed by Pal
et al [11].

4 Experiments

Table 1 reports the performance of the aforemen-
tioned algorithms on the proposed database. Since 89%
of the database is composed of single-touching pairs,
Table 1 also reports the performance on single- and
multiple-touching pairs separately. The segmentation
is deemed correct if the recognizer classifies correctly
both digits of the image. Since our focus in this study is
the segmentation, we evaluated just the best segmen-
tation cut produced by the algorithms, i.e., the cut
closest to the ground truth. We want to assess if the
algorithms can produce segmentation cuts close to the
optimal ones. It is a matter of fact that sometimes a
classifier can produce high scores for wrong segmen-
tation hypotheses, but this is out of the scope of this
work.

Table 1. Performance of the segmentation al-
gorithm.

Algorithm Correct Segmentation (%)
Global Single Multiple

1 87.0 95.0 27.0

2 89.5 97.5 27.0

3 88.0 92.0 60.0

4 61.0 65.0 29.8

The best performance for single-touching images
was achieved by the algorithm #2, while the best per-
formance for multiple touching was achieved by the
algorithm #3. However, the global performance of the
algorithms #1, #2, and #3 is similar. Among the four
algorithms, the #4 is the only one that tries to iden-
tify whether the image contains connected numerals
or not. It first classifies the image into connected, con-
fused, or isolated and then it tries to segment just those
classified as connected. The performance reported by
the authors in [11] is very good and it was computed

in a database of 1189 touching pairs extracted from
French cheques. It seems that the thresholds presented
in [11] do not work well in the proposed database since
a considerable part of the database was classified as
isolated or confused, hence, the segmentation process
was skipped. We have realized that it occurs very of-
ten when the this algorithm faces a touching pair with
the digit “1”. In such cases, the image is very often
classified as isolated.

Figure 6. Example of a segmentation graph.

All the algorithms discussed here, except algorithm
#4, can be classified as heuristic over-segmentation,
where the basic idea is to segment the image as much
as necessary to produce the optimal segmentation cuts.
As stated before, this approach gives good results, but
it is computationally expensive since all hypotheses
generated must be evaluated. This is a very impor-
tant issue that has been ignored very often in the lit-
erature. Figure 6 shows an example of an image seg-
mented by the algorithm #1 and its corresponding seg-
mentation graph. We can see that the algorithm pro-
duced three segmentation cuts (SPg, SPy, and SPs)
and four sub-images (Cp, C1, Cq, and Cs). In the case
of segmentation-based recognition, the classifier must
be invoked ten times (one for each sub-image of the
graph) in order to produce a score for each sub-image
and then the path that maximizes the score is supposed
to represent the optimal segmentation cut.

The algorithm #4 produces just one segmentation
cut, i.e., a single sequence hypothesis where each sub-
sequence should contain an isolated character. This
strategy reduces the cost involved in calling the rec-
ognizer, but its limits appears when the correct seg-
mentation does not fit with the pre-defined rules of
the algorithm. Table 2 reports the average number of

sub-images generated by the three over-segmentation
algorithms as well as the average number of times the
recognizer must be invoked.

If performance is the only criterion adopted to
choose a segmentation algorithm, then based on Ta-
ble 1 the algorithm #2 should be picked. As discussed
previously, the algorithm #2 is more complex than the
first one since it uses characteristics form the skeleton
of the image in addition to the contour and profile.
Consequently, it can segment more efficiently slanted
images. On the other hand, the number of sub-images
yielded by this algorithm and the number of classifier
calls is quite bigger. The algorithm #3 is much better
for segmenting multiple-touching images, but it is very
expensive.

Table 2. Average of the number of sub-images
generated by the over-segmentation algo-
rithms.

Algorithm Number of Sub-images Recognizer
Average Std. Dev. Calls
1 3.2 1 10
2 5.0 1.5 18
3 7.3 2.2 66

In spite of the relatively inexpensive CPU power,
the cost of segmentation algorithms still is a big issue
in the field of handwritten numeral string recognition.
Real systems, for example, have to process a numerical
amount in about one second. In light of this, a cheaper
algorithm such as the #1, would be preferable than the
others discussed here.

5 Conclusion and Future Works

In this work we have described a database to assess
segmentation algorithms but that could be used for
other purposes as well. So far we have considered just
touching pairs, but we plan to improve this database
generating string with 3, 4, 5, and 6 digits. As soon as
we finish generating all these data, we plan to make it
available to the handwriting recognition community.

We also performed several experiments using dif-
ferent segmentation algorithms. In addition to the
performance of the algorithms we have address their
cost, which is very important when dealing with
segmentation-based recognition applied to real sys-
tems.

For future works we plan to extract some knowl-
edge of the synthetic database in order to reduce the
number of segmentation cuts produced by the over-
segmentation algorithms.

Acknowledgements

This research has been supported by The National
Council for Scientific and Technological Development
(CNPq) grant 150542/2003-8. The authors would like
to thank Felipe Ribas and Leonardo Prates for their
important contribution in this work.

References

[1] A. S. Britto, R. Sabourin, F. Bortolozzi, and C. Y.
Suen. The recognition of handwritten numeral strings
using a two-stage HMM-based method. IJDAR, 5:102—
117, 2003.

[2] H. Bunke. Recognition of cursive roman handwriting:
Past, present, and future. In 7" ICDAR, pages 448
459, 2003.

[3] Y. K. Chen and J. F. Wang. Segmentation of single-
or multiple-touching handwritten numeral string using
background and foregound analysis. IEFE Trans. on
PAMI, 22(11):1304-1317, 2000.

[4] M. Cheriet, Y. S. Huang, and C. Y. Suen. Background
region based algorithm for the segmentation of con-
nected digits. In 11'"* ICPR, pages 619-622, 1992.

[5] S.-M. Choi and I.-S. Oh. A segmentation-free recogni-
tion of handwritten touching numeral pairs using mod-
ular neural networks. IJPRAI, 15(6):949-966, 2001.

[6] R. Fenrich. Segmentation of automatically located
handwritten words. In 2"¢ IWFHR, pages 33-44,
1991.

[7] K. K. Kim, J. H. Kim, and C. Y. Suen. Segmentation-
based recognition of handwritten touching pairs of dig-
its using structural features. Pattern Recognition Let-
ters, 23(1):13-21, 2002.

[8] E. Lethelier, M. Leroux, and M. Gilloux. An
automatic reading system for handwritten numeral
amounts on french checks. In 3" ICDAR, pages 92—
97, 1995.

[9] Z. Lu, Z. Chi, W. Siu, and P. Shi. A background-
thinning-based approach for separating and recog-
nizing connected handwritten digit strings. Pattern
Recogniton, 32:921-933, 1999.

[10] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y.
Suen. Automatic recognition of handwritten numerical
strings: A recognition and verification strategy. IEEE
Trans. on PAMI, 24(11):1438-1454, 2002.

[11] U. Pal, A. Belaid, and C. Choisy. Touching numeral
segmentation using water reservoir concept. Pattern
Recognition Letters, 24:261-272, 2003.

[12] X. Wang, V. Govindaraju, and S. Srihari. Holistic
recognition of touching digits. In 6" IWFHR, pages
295-303, Taejon, Korea, 1998.

[13] D. Yuand H. Yan. Separation of touching handwritten
multi-numeral strings based on morphological struc-
tural features. Pattern Recognition, 34(3):587-598,
2001.

