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Abstract—In this paper we assess the use of textural de-
scriptors for the problem of parking space detection. We focus
our experiments on two descriptors (Local Binary Patterns and
Local Phase Quantization) that have attracted a great deal of
attention because of their outstanding performance in a number
of applications. We show through a series of comprehensive
experiments that both descriptors are able to achieve very
low error rates on a database composed of 105,837 images of
parking spaces. We also show that the combination of the diverse
classifiers developed in this work can bring further improvement
achieving an error rate of 0.16%. The results reached in this
work compare favorably to other published methods.

Index Terms—intelligent transportation, vehicles, image pro-
cessing, parking detection, LBP, LPQ.

I. INTRODUCTION

The impressive growth of the automotive industry allied

with the lack of urban planning have caused innumerable

problems in most major cities, such as traffic jam, air pollution,

driver frustration and so on. Finding an empty parking space is

another problem that drivers must face in most of major cities,

since the cost for parking expansion is usually prohibitive,

especially in large metropolitan areas. To mitigate the stress of

finding an empty space in a parking lot, over the last years the

industry has been developing different technologies dedicated

to parking detection systems, which can be categorized into

counter-based, sensor-based, and image-based [1].

Counter-based systems use sensors to count the number of

vehicles entering and exiting a car park area. This can be

gate-arm counters and induction loop detectors located at the

entrances and exits. This kind of system can inform the total

number of vacant lots in a closed car park area, but does not

help much in guiding the driver to the exact location of the

vacant lots. It is commonly employed in great outdoor parking

lots due to its relatively low cost.

Sensor-based systems take into account detection sensors

such as ultrasonic sensors which are installed at each parking

space [2], [3]. This information is then relayed to display

panels at strategic locations in the parking lot. The display

panels provide information, direction and guide the drivers to

vacant parking lots. The main drawback of the sensor-based

approach is the cost for developing the system because the

large amount of sensors units required to cover the entire

parking lot.

The third category is based on image or video processing.

Those who advocate against the use of image-based techniques

say that video cameras are remarkable expensive sensors which

generate large amount of data that may be difficult to transmit

over a wireless network [4]. On the other hand, the literature

shows that image-based parking space detection systems can be

deployed using existing surveillance cameras that are already

connected to a central monitoring system [5]. It turns out

that image-based systems are a good alternative for large and

outdoor parking lots where the installation of hundreds or even

thousands of sensors is unfeasible.

Huang and Wang [6] show that image-based systems can

be classified into two categories: car-driven and space-driven.

In the former, algorithms are developed to detect cars, which

are the objects of interest. In this vein, there are several object

detection algorithms that can be used [7], [8]. Because of the

perspective distortion, observed in most images of parking

lots (e.g. Figure 1) a car far away occupies a small area,

hence, features few details which degrades considerably the

performance of the object detection algorithms.

Figure 1: Example of a parking lot

For the space-driven, the focus lies on detecting empty

spaces rather than vehicles [9], [10]. For static cameras, such

as the surveillance cameras, the most used strategy is the

background subtraction [11], which assumes that the variation

of the background is statistically stationary within a short

period. Since this hypothesis does not hold for outdoor scenes,

this strategy shows rapidly its limits. A more robust approach

was proposed by Sastre et al. [12] where they used Gabor

filters to train a classifier with empty spaces under different

light conditions.
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A mix of both car- and space-driven approach has been

proposed by several authors by modeling both vehicles and

empty spaces using different sort of features and classification

algorithms. Support Vector Machine (SVM) is certainly the

most used machine learning algorithm, while color is the most

employed descriptor [1], [6], [13], [14]. The performance of

color-based systems, however, may be considerably affected

by changes of lighting conditions. With this in mind, other

families of features have been investigated, such as Edges [15],

Principal Component Analysis (PCA) [5], and Optical Flow

[16].

The contribution of this work is two-fold. Firstly, we

introduce a database composed on 105,837 images of park-

ing spaces captured under different weather conditions. It is

available for research purposes under request1. Secondly, we

propose the use of textural descriptors to model both cars and

empty spaces. Our hypothesis is that the texture pattern of a

parking space is quite different from the texture of a vehicle. To

validate our idea, we use two descriptors, Local Binary Patterns

(LBP) and Local Phase Quantization (LPQ), that have attracted

a great deal of attention because of their performance in a

number of applications [17]. The concept of the LBP was first

proposed by Ojala et al. in [18] as a simple approach, robust

in terms of grayscale variations, which proved its ability to

efficiently discriminate among a wide range of rotated textures.

Later, they extended their work [19] to produce a grayscale and

rotation invariant texture operator. The concept of LPQ was

originally proposed by Ojansivu and Heikkila [20], and has

been shown to be robust in terms of blur, and to outperform

LBP in texture classification [21].

Through a set of comprehensive experiments on the pro-

posed database, we demonstrate that the textural descriptors

are a good alternative for parking detection systems. The

results reported in this study show that the Support Vector

Machine (SVM) classifiers trained with LBP and LPQ are

able to achieve an error rate of 0.63% and 0.31%, respectively.

Besides the standard versions of the LBP and LPQ, we also

have tested some variations such as the LBP Rotation Invariant,

LPQ with Gaussian window and LPQ Gaussian derivative

quadrature filter pair. We also show that the combination of

all these classifiers can further reduce the error rate to 0.16%.

II. DATABASE

The database used in this work contains 3,791 images

collected from the parking lot of the Federal University of

Parana, in Curitiba, Brazil. The images were acquired using

a camera Microsoft LifeCam (HD-5000 USB HD) during 30

days under three different weather conditions: sunny, overcast

and rainy. Rainy images contain light rain, heavy rain, and

after rain. We do not have night shots since the illumination

available in the parking lot was not sufficient to acquire good

quality images. The resulting images were saved in JPEG color

format with no compression in a resolution of 1280 × 720

pixels. Within the image view, there are 28 parking spaces

1http://web.inf.ufpr.br/vri/parking-lot1

in total, summing up 105,847 parking spaces. Each image of

the database was manually segmented into 28 parking spaces,

which were labeled into occupied or empty. Roughly, 46% of

them are occupied spaces, while the remaining 54% are empty

spaces. Table I summarizes the database used in this work.

Table I: Summary of the parking lot database

Condition Images Parking Spaces
Occupied Empty

Overcast 1,408 11,613 27,774
Rainy 285 2,353 5,605
Sunny 2,098 32,169 26,333
Total 3,791 46,135 59,712

Figure 2a shows an image where the 28 available spaces

are marked in green. We considered as parking spaces only the

spots marked on the floor. As one can notice, there are some

cars parked in an unauthorized manner, i.e., in the middle of

the street. Two samples of the segmented parking spaces are

depicted in Figures 2b (occupied) and 2c (empty).

(a) (b) (c)

Figure 2: Segmented image: (a) 28 delimited spaces, (b)

occupied sub-image, and (c) empty sub-image.

Figure 3 shows some images of the parking lot captured

under the three aforementioned weather conditions: sunny,

overcast, and rainy. Some challenges posed by this database

can be observed from this figure. Sunny images (Figure 3a)

feature overexposed cars and shadows caused by the trees.

Images acquired under heavy rain (Figure3c), on the other

hand, may look like night images due the lack of natural light.

III. FEATURES

As stated before, in this paper we have used two recently de-

veloped textural descriptors that have been successfully applied

into different application domains. To make this paper self-

contained, in this section we briefly describe both descriptors

assessed in our experiments, the Local Binary Patterns and

Local Phase Quantization.

A. Local Binary Patterns

Ojala et al. [19] present a model to describe texture, called

Local Binary Patterns (LBP). In this model, each pixel C
contains a set of neighbors P , equally spaced at a distance

R from C.

A histogram h is defined by the texture intensity differences

between C and its neighbors, P . When the neighbors do
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(a) (b)

(c)

Figure 3: Images captured under different weather conditions:

(a) sunny (b) overcast, and (c) heavy rain.

not correspond to an image pixel integer value, that value

is obtained by interpolation. An important characteristic of

this descriptor is its invariance to changes in the value of the

average intensity of the central pixels, when comparing it with

its neighbors.

Considering the resulting sign of the difference between C

and each neighbor P, by definition, we assign a result of 1 to a

positive sign, and 0 otherwise. This makes it possible to obtain

the invariance of the intensity value of pixels in gray scale

format. With this information, the LBP value can be obtained

by multiplying the binary elements for a binomial coefficient.

Therefore, a value 0 ≤ C ′ ≤ 2P is generated, which is the

value of the feature vector.

Observing the non uniformity of the vector obtained, Ojala

et al. [19] introduced a concept based on the transition between

0s and 1s in the LBP image. They explained that a binary LBP

code is considered uniform if the number of transitions is less

than or equal to 2, also considering that the code is seen as

a circular list. That is, the code 00100100 is not considered

uniform, because it contains four transitions, while the code

00100000 is characterized as uniform, because it only has two

transitions. Figure 4 illustrates this idea.

(a) (b)

Figure 4: LBP uniform pattern [19]. (a) the two transitions

showed identifies the pattern as uniform. (b) with four transi-

tions, it is not considered a uniform pattern.

Accumulating the patterns that have more than two transi-

tions into a single bin yields an LBP operator, denoted LBPu2
P,R,

with fewer than 2P bins. For example, the number of labels for

a neighborhood of 8 pixels is 256 for the standard LBP but 59

for LBPu2. Then, a histogram of the frequency of the different

labels produced by the LBP operator can be built [18].

LBP variants were proposed in [19]. LBPri and LBPriu2

have the same LBPP,R definition, but they have only 36 and

10 patterns, respectively. LBPri accumulates, in only one bin

(Eq. 1), all binary patterns which keep the same minimum

decimal value LBP ri
P,R when their P bits are rotated (ROR).

LBPriu2 combines LBPu2 and LBPri definition. Thus, it uses

only the uniform binary patterns and accumulates, in only one

bin, those that keep the same minimum decimal value LBP ri
P,R

when their P bits are rotated.

LBP ri
P,R = min{ROR(LBPP,R, i) i = 0, ..., P − 1}. (1)

B. Local Phase Quantization

The Local Phase Quantization (LPQ) [20] is based on the

blur invariance property of the Fourier phase spectrum. The

local phase information of an N ×N image f(x) is extracted

by the 2D DFT (short-term Fourier transform (STFT))

f̂ui(x) = (f × Φui)x (2)

The filter Φui
is a complex valued m×m mask, defined in

the discrete domain by

Φui
= {e−j2πuT

i y|y ∈ Z
2; ||y||∞ ≤ r}, (3)

where r = (m − 1)/2, and ui is a 2D frequency vector.

In LPQ only four complex coefficients are considered, cor-

responding to 2D frequencies u1 = [a, 0]T , u2 = [0, a]T ,

u3 = [a, a]T , and u4 = [a,−a]T , where a = 1/m. For the

sake of convenience, the STFT presented in Eq. 2 is expressed

using the vector notation presented in Eq. 4

f̂ui
(x) = wT

ui
f(x) (4)

where wu is the basis vector of the STFT at frequency u and

f(x) is a vector of length m2 containing the image pixel values

from the m×m neighborhood of x.

Let

F = [f(x1), f(x2), . . . , f(xN2)] (5)

denote an m2 ×N2 matrix that comprises the neighborhoods

for all the pixels in the image and let

w = [wR,wI)]
T (6)

where wR = Re[wu1
,wu2

,wu3
,wu4

] and wI =
Im[wu1

,wu2
,wu3

,wu4
]. In this case, Re{·} and Im{·}

return the real and imaginary parts of a complex number,

respectively.

The corresponding 8 × N2 transformation matrix is given

by

F̂ = wF (7)
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In [20], the authors assume that the image function f (x) is

a result of a first order Markov process, where the correlation

coefficient between two pixels xi and xj is exponentially

related to their L2 distance. Without a loss of generality, they

define each pixel to have unit variance. For the vector f, this

leads to a m2 ×m2 covariance matrix C with elements given

by

ci,j = σ||xi−xj || (8)

where || · || stands for the L2 norm. The covariance matrix of

the Fourier coefficients can be obtained from

D = wCwT (9)

Since D is not a diagonal matrix, i.e., the coefficients are

correlated, they can be uncorrelated by using the whitening

transformation E = V T F̂ where V is an orthogonal matrix

derived from the singular value decomposition (SVD) of the

matrix D that is

D′ = V TDV (10)

The whitened coefficients are then quantized using

qi,j =

{
1 if ei,j ≥ 0,
0 otherwise

(11)

where ei,j are the components of E. The quantized coefficients

are represented as integer values from 0-255 using binary

coding

bj =
7∑

i=0

qi,j2
i (12)

Finally, a histogram of these integer values from all the

image positions is composed and used as a 256-dimensional

feature vector in classification.

IV. EXPERIMENTS AND RESULTS

In our experiments the database was divided into training

(50%) and testing (50%). The classifier used in this work was

the Support Vector Machine (SVM) introduced by Vapnik in

[22]. Normalization was performed by linearly scaling each

attribute to the range [-1,+1]. The free parameters of the

system and for SVM training were chosen using 5-fold cross

validation. Various kernels were tried, and the best results

were achieved using a Gaussian kernel. Parameters cost and

γ were determined through a grid search. The Overall Error

Rate that we used for evaluation purposes in this work is given

by Equation 13. This rate is always computed on the testing

set.

Overall Error Rate =
FP + FN

TP + TN + FP + FN
(13)

where FP, FN, TP, and TN stand for False Positive, False

Negative, True Positive, and True Negative, respectively. These

Figure 5: 2× 2 confusion matrix.

statistics are defined in the 2× 2 confusion matrix depicted in

Figure 5.

One of the limitations of SVMs is that they do not work in

a probabilistic framework. There are several situations where

it would be very useful to have a classifier which produces

a posterior probability P (class|input). In our case, we are

interested in estimating probabilities because we want to try

different fusion strategies, like Sum, Max, Min, Average, and

Median. Due to the benefits of having classifiers estimating

probabilities, many researchers have been working on the

problem of estimating probabilities with SVM classifiers [23],

[24]. In this work, we have adopted the strategy proposed by

Platt in [23].

The first part of our experiments was devoted to compare

the performance of the standard LBP and LPQ. For the LBPu2

we tried eight neighbors and different distances, but distance

one presented the best results. LPQ was also tested for different

window sizes and the best results were achieved using a 3×3-

sized window. The error rates are reported in Table II

Table II: Error Rates for LPBu2 and LPQ

Features Feature Vector Size Error Rate

LBPu2 59 0.63
LPQ 256 0.31

Both classifiers achieved low error rates but the classifier

trained with LPQ performed slightly better. By looking at the

ROC curves (Figure 6a) and the confusion matrices (Figure

6b), we can see that LPQ reduces by half the number of False

Negatives and False Positives.

The success of LBP and LPQ in several different appli-

cations instigate other researchers to further improve those

descriptors. As a result of these efforts, the literature shows that

some variations of LBP and LPQ achieve yet better results than

the standard descriptors. With this in mind, we have assessed

the LBP Rotation Invariant (LBPri) [19], LPQ STFT with

Gaussian Windows and LPQ Gaussian derivative quadrature

filter pair [17]. Figure 7a compares these three classifiers while

Figure 7b presents their respective confusion matrices.

Observing Figure 7 it is clear that the LBP Rotation

Invariant is not suitable for this task. It produced a huge error

rate (8.49%) when compared to the other classifiers. Both LPQ

variants, on the other hand, surpassed the LPQ with Uniform

Window achieving a error rate of 0.22%.

In spite of the good results achieved so far we still can

reduce the number of False Negatives and False Positives
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(a)

(b)

Figure 6: (a) ROC curves for LBP and LPQ classifiers for low

false positive rates (b) Confusion matrices.

reported in the confusion matrices. An interesting way to

do that is to profit from the diversity among the different

classifiers we have built. To accomplish that, we have tried

different fusion rules but the Average and Max produced the

best results in all scenarios. The ROC curves and confusion

matrices for the combined classifiers are depicted in Figures 8a

and 8b. As one can notice, the combination was able to reduce

some of the confusion and achieved an error rate of 0.16%.

Table III summarizes the results of all experiments carried out

in this study.

Table III: Error rates of all classifiers used in this study.

Classifier Feature Vector Size Error Rate (%)

LBPu2 59 0.63
LPQ 256 0.31

LBPri 36 8.49
LPQ Gaussian window 256 0.22
LPQ Gaussian derivative 256 0.22
Fusion using Average 0.16
Fusion using Max 0.16

Comparing different works in the literature is not a straight-

forward task because of the lack of a common database.

In spite of that, Table IV summarizes some recent works

reported in the literature. Based on the results presented in

this study and the performance of the related works, we can

(a)

(b)

Figure 7: (a) ROC curves for LBP and LPQ classifiers (b)

Confusion.

assert that textural descriptors are interesting alternatives for

parking space detection problems.

Table IV: Related work reported in the literature.

Reference Features Number of Error rate
Parking Spaces (%)

Wu et al. [14] Color 1,100 6.5
Sastre et al [12] Gabor Filters 12,150 2.2
Bong et al [1] Color 80 7.0
Wang et al [25] Color 2,600 2.5
Ichihashi et al [5] PCA 54,000 2.0
Huang et al [6] Color 6,912 1.2

V. CONCLUSION

In this work we have exploited two textural descriptors for

the problem of parking space detection. Our results have shown

that LPQ surpassed the widely used LBP (and its variants)

in all experiments. To assess such descriptors we have built

a database composed of 105,837 images of parking spaces
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(a)

(b)

Figure 8: (a) ROC curves for Average and Max fusion rules

(b) Confusion matrices.

.

captured under different weather conditions. This database is

available for research purposes under request.

Through our experiments, we have demonstrated that tex-

tural descriptors are a good alternative for parking space

detection. Both LBP and LPQ are able to achieve very low

error rates with the classifier trained with LPQ and its variants

being slightly superior. Our experimental results also show

that the combination of all classifiers brings some gain of

performance. In such a case, the Average and Max fusion rules

reached an error rate of 0.16% on the proposed database.

As future work, we intend to expand the current database

by including images from other parking lots. Then, we can

assess the feasibility of using a classifier trained with images

of one parking lot to detect parking spaces in other parking

lots that were not used during the training phase.
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