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Abstract Forest species can be taxonomically divided into
groups, genera, and families. This is very important for an
automatic forest species classification system, in order to
avoid possible confusion between species belonging to two
different groups, genera, or families. A common problem
that researchers in this field very often face is the lack of
a representative database to perform their experiments. To
the best of our knowledge, the experiments reported in the
literature consider only small datasets containing few spe-
cies. To overcome this difficulty, we introduce a new database
of forest species in this work, which is composed of 2,240
microscopic images from 112 different species belonging to
2 groups (Hardwoods and Softwoods), 85 genera, and 30
families. To gain better insight into this dataset, we test three
different feature sets, along with three different classifiers.
Two experiments were performed. In the first, the classifiers
were trained to discriminate between Hardwoods and Soft-
woods, and in the second, they were trained to discriminate
among the 112 species. A comprehensive set of experiments
shows that the tuple Support Vector Machine (SVM) and
Local Binary Pattern (LBP) achieved the best performance
in both cases, with a recognition rate of 98.6 and 86.0% for
the first and second experiments, respectively. We believe
that researchers will find this database a useful tool in their
work on forest species recognition. It will also make future
benchmarking and evaluation possible. This database will
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1 Introduction

In recent years, with the advent of globalization, the safe
trading of logs and timber has become an important issue.
Buyers must certify that they are buying the correct material,
and supervisory agencies have to certify that the wood has
been not extracted illegally from forests. Millions of dollars
are spent with the aim of preventing fraud, on the part of
wood traders who might mix a noble species with cheaper
ones, for example, or even try to export the wood of an endan-
gered species.

Computer vision systems could be a very useful tool in this
effort. However, in the past decade, most of the applications
of computer vision in the wood industry have been related
to quality control, grading, and defect detection [1–3]. Only
recently have some authors begun to use computer vision
to classify forest species. Tou et al. [4–6] have reported two
forest species classification experiments in which texture fea-
tures are used to train a neural network classifier. They report
recognition rates ranging from 60 to 72% for five different
forest species.

Khalid et al. [7] have proposed a system to recognize 20
different Malaysian forest species. Image acquisition is per-
formed with a high performance industrial camera and LED
array lighting. Like Tou et al., the recognition process is based
on a neural network trained with textural features. The data-
base used in their experiments contains 1,753 images for
training, and only 196 for testing. They report a recognition
rate of 95%.
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568 J. Martins et al.

Paula et al. [8] have investigated the use of GLCM and
color-based features to recognize 22 different species of
Brazilian flora. They propose a segmentation strategy to deal
with large intra-class variability. Experimental results show
that when color and textural features are used together, the
results can be improved considerably.

Identifying a log or a piece of timber outside its natural
environment (the forest) is not an easy task, since there are
no flowers, fruits, or leaves to provide clues. Therefore, this
task must be performed by well-trained specialists. However,
good classification accuracy is difficult to achieve because
there are not enough of these specialists to meet industry
demands, in part because it takes so long to train them.
Another factor to be taken into account is that the process
of manual identification is a time consuming, repetitive pro-
cess, which might result in specialists losing their focus and
becoming prone to error. This can make the task impractical
when cargo is being checked for export.

One way to simplify the task of forest species classification
is to identify its taxonomy, i.e. to determine the group, genus,
and family to which a given forest species belongs. Of the two
groups, Hardwood species (Angiosperms), which include
flowering ornamentals and all vegetables and edible fruits
in addition to Hardwood trees, are the most sophisticated,
and have adapted to survive in a wide range of climates and
environments. Hardwood tree species are a valuable source
of lumber for furniture and construction. Softwood species
(Gymnosperms) consist of all the conifers: cedar, redwood,
juniper, cypress, fir, and pine, including the giant sequoias.
Pine and fir are used for lumber, and to make paper and ply-
wood. They also constitute the raw materials used to make
substances such turpentine, rosin, and pitch.

A major challenge to pursuing research involving forest
species classification is the lack of a consistent and reli-
able database. To the best of our knowledge, the databases
reported in the literature contain few classes, and information
about their taxonomy is not readily available. To overcome
this difficulty, we introduce a database in this work composed
of 112 species from all over the world. As well as labeling the
species, we also present their taxonomy in terms of groups,
genera, and families. This database has been built in collabo-
ration with the Laboratory of Wood Anatomy at the Federal
University of Parana (UFPR) in Curitiba, Brazil, and it is
available upon request for research purposes.1

In order to make it easier to understand the structure of
our database, we have assessed various feature sets and clas-
sifiers in two different contexts. In the first experiment, the
classifiers were trained to discriminate between Hardwoods
and Softwoods, and in the second, they were trained to dis-
criminate among the 112 different species. A comprehensive
set of experiments shows that the tuple SVM (Support Vec-

1 http://web.inf.ufpr.br/vri/forest-species-database.

Fig. 1 Microscope used to acquire the images

tor Machine) and LBP (Linear Binary Pattern) achieved the
best performance in both cases, with a recognition rate of
98.6 and 86.0% for the first and second experiments, respec-
tively. The database introduced in this work makes future
benchmark and evaluation possible.

This paper is structured as follows: Sect. 2 introduces the
proposed database. Section 3 describes the feature sets we
have used to train the classifiers. Section 4 reports our exper-
iments and discusses our results. Finally, Sect. 5 concludes
the work.

2 Database

The database introduced in this work contains 112 differ-
ent forest species which were catalogued by the Laboratory
of Wood Anatomy at the Federal University of Parana in
Curitiba, Brazil. The protocol adopted to acquire the images
comprises five steps. In the first step, the wood is boiled to
make it softer. Then, the wood sample is cut with a sliding
microtome to a thickness of about 25 µ (1µ = 1 × 10−6 m).
In the third step, the veneer is colored using the triple stain-
ing technique, which uses acridine red, chrysoidine, and astra
blue. In the fourth step, the sample is dehydrated in an ascend-
ing alcohol series. Finally, the images are acquired from the
sheets of wood using an Olympus Cx40 microscope with a
100× zoom (Fig. 1). The resulting images are then saved in
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Table 1 Softwood species (Gymnosperms)

ID Family Gender Species

1 Ginkgoaceae Ginkgo biloba

2 Araucariaceae Agathis becarii

3 Araucariaceae Araucaria angustifolia

4 Cephalotaxaceae Cephalotaxus drupacea

5 Cephalotaxaceae Cephalotaxus harringtonia

6 Cephalotaxaceae Torreya nucifera

7 Cupressaceae Calocedrus decurrens

8 Cupressaceae Chamaecyparis formosensis

9 Cupressaceae Chamaecyparis pisifera

10 Cupressaceae Cupressus arizonica

11 Cupressaceae Cupressus lindleyi

12 Cupressaceae Fitzroya cupressoides

13 Cupressaceae Larix lariciana

14 Cupressaceae Larix leptolepis

15 Cupressaceae Larix sp

16 Cupressaceae Tetraclinis articulata

17 Cupressaceae Widdringtonia cupressoides

18 Pinaceae Abies religiosa

19 Pinaceae Abies vejari

20 Pinaceae Cedrus atlantica

21 Pinaceae Cedrus libani

22 Pinaceae Cedrus sp

23 Pinaceae Keteleeria fortunei

24 Pinaceae Picea abies

25 Pinaceae Pinus arizonica

26 Pinaceae Pinus caribaea

27 Pinaceae Pinus elliottii

28 Pinaceae Pinus gregii

29 Pinaceae Pinus maximinoi

30 Pinaceae Pinus taeda

31 Pinaceae Pseudotsuga macrolepsis

32 Pinaceae Tsuga canadensis

33 Pinaceae Tsuga sp

34 Podocarpaceae Podocarpus lambertii

35 Taxaceae Taxus baccata

36 Taxodiaceae Sequoia sempervirens

37 Taxodiaceae Taxodium distichum

PNG (Portable Network Graphics) format with no compres-
sion and a resolution of 1024 × 768 pixels.

To date, 2,240 microscopic images (20 images per species)
have been acquired and carefully labeled by experts in wood
anatomy. Of the 112 available species, 37 are Softwoods and
75 are Hardwoods. Table 1 describes the 37 species of Soft-
wood species in the database, which can be divided into 23
genera and 8 families. The 75 species of Hardwood species
are reported in Table 2, and can be classified into 62 genera
and 22 families. The two groups of species, Hardwoods and

Table 2 Hardwood species (Angiosperms)

ID Family Gender Species

38 Ephedraceae Ephedra californica

39 Lecythidaceae Cariniana estrellensis

40 Lecythidaceae Couratari sp

41 Lecythidaceae Eschweilera matamata

42 Lecythidaceae Eschweleira chartaceae

43 Sapotaceae Chrysophyllum sp

44 Sapotaceae Micropholis guianensis

45 Sapotaceae Pouteria pachycarpa

46 Fabaceae-Cae. Copaifera trapezifolia

47 Fabaceae-Cae. Eperua falcata

48 Fabaceae-Cae. Hymenaea courbaril

49 Fabaceae-Cae. Hymenaea sp

50 Fabaceae-Cae. Schizolobium parahyba

51 Fabaceae-Fab. Pterocarpus violaceus

52 Fabaceae-Mim. Acacia tucunamensis

53 Fabaceae-Mim. Anadenanthera colubrina

54 Fabaceae-Mim. Anadenanthera peregrina

55 Fabaceae-Fab. Dalbergia jacaranda

56 Fabaceae-Fab. Dalbergia spruceana

57 Fabaceae-Fab. Dalbergia variabilis

58 Fabaceae-Mim. Dinizia excelsa

59 Fabaceae-Mim. Enterolobium schomburgkii

60 Fabaceae-Mim. Inga sessilis

61 Fabaceae-Mim. Leucaena leucocephala

62 Fabaceae-Fab. Lonchocarpus subglaucescens

63 Fabaceae-Mim. Mimosa bimucronata

64 Fabaceae-Mim. Mimosa scabrella

65 Fabaceae-Fab. Ormosia excelsa

66 Fabaceae-Mim. Parapiptadenia rigida

67 Fabaceae-Mim. Parkia multijuga

68 Fabaceae-Mim. Piptadenia excelsa

69 Fabaceae-Mim. Pithecellobium jupunba

70 Rubiaceae Psychotria carthagenensis

71 Rubiaceae Psychotria longipes

72 Bignoniaceae Tabebuia rosea alba

73 Bignoniaceae Tabebuia sp

74 Oleaceae Ligustrum lucidum

75 Lauraceae Nectandra rigida

76 Lauraceae Nectandra sp

77 Lauraceae Ocotea porosa

78 Lauraceae Persea racemosa

79 Annonaceae Porcelia macrocarpa

80 Magnoliaceae Magnolia grandiflora

81 Magnoliaceae Talauma ovata

82 Melastomataceae Tibouchiana sellowiana

83 Myristicaceae Virola oleifera

84 Myrtaceae Campomanesia xanthocarpa

85 Myrtaceae Eucalyptus globulus
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Table 2 Continued

ID Family Gender Species

86 Myrtaceae Eucalyptus grandis

87 Myrtaceae Eucalyptus saligna

88 Myrtaceae Myrcia racemulosa

89 Vochysiaceae Erisma uncinatum

90 Vochysiaceae Qualea sp

91 Vochysiaceae Vochysia laurifolia

92 Proteaceae Grevillea robusta

93 Proteaceae Grevillea sp

94 Proteaceae Roupala sp

95 Moraceae Bagassa guianensis

96 Moraceae Brosimum alicastrum

97 Moraceae Ficus gomelleira

98 Rhamnaceae Hovenia dulcis

99 Rhamnaceae Rhamnus frangula

100 Rosaceae Prunus sellowii

101 Rosaceae Prunus serotina

102 Rubiaceae Faramea occidentalis

103 Meliaceae Cabralea canjerana

104 Meliaceae Carapa guianensis

105 Meliaceae Cedrela fissilis

106 Meliaceae Khaya ivorensis

107 Meliaceae Melia azedarach

108 Meliaceae Swietenia macrophylla

109 Rutaceae Balfourodendron riedelianum

110 Rutaceae Citrus aurantium

111 Rutaceae Fagara rhoifolia

112 Simaroubaceae Simarouba amara

Softwoods, in the 112 species database belong to 85 genera
and 30 families.

The proposed database is presented in such a way as to
allow work to be performed on different problems with dif-
ferent numbers of classes. For the experimental protocol,
we suggest the following: 40% (eight images per species)
for training, 20% (four images per species) for validation,
and 40% (eight images per species) for testing: for example,
images 001 through 008 for training, images 009 through
012 for validation, and images 013 through 020 for testing.

Figure 2 shows four different species in the database.
It is worth noting that color cannot be used as an identi-
fying feature in this database, since its hue depends on the
current used to produce contrast in the microscopic images.
All the images were therefore converted to gray scale (256
levels) in our experiments.

Looking at these samples, we can see that they have differ-
ent structures. Hardwoods usually present some large holes,
known as vessels (Fig. 2c, d), whereas Softwoods have a

more homogeneous texture (Fig. 2b) or present smaller holes,
known as resiniferous channels (Fig. 2a).

Another visual characteristic of a of the Softwood species
is the growth ring, which is defined as the difference in the
thickness of the cell walls resulting from the annual devel-
opment of the tree. We can see this feature in Fig. 2b. The
coarse cells at the bottom and top of the image indicate more
intense physiological activity during spring and summer. The
smaller cells in the middle of the image (highlighted in light
red) represent the minimum physiological activity that occurs
during autumn and winter.

3 Features

In this section, we describe the three feature sets we used
to train the classifiers. The first was designed to explore the
structure of the wood. As mentioned above, if we take a closer
look at the images in the database, we can see that the two
groups differ in their structure. The other two feature sets we
used, GLCM and LBP, are frequently applied to solve texture
classification problems. We describe these feature sets briefly
below.

3.1 Structural features

One feature that is very often found in Hardwood species is
the vessel (Fig. 2c, d), which constitutes the major part of the
water transport system in the plant. Softwoods do not have
such vessels, but resiniferous channels (Fig. 2a), which are
very similar to vessels, are quite common in these species.
Therefore, this feature alone is not sufficient to discriminate
between the two groups. Another aspect of the Hardwood
species is that they have a denser structure (smaller cells)
than Softwoods. What we have observed in some experi-
ments is that, after segmentation, the binary images of the
Hardwood species contain large connected components. By
contrast, Softwoods have a large number of small connected
components. Therefore, the rationale behind the creation of
this feature set is to detect those connected components and
describe their structure by using simple statistical measures.
For this reason, we call it a structural feature set.

The first step in extracting the proposed feature set is to
binarize the image. To do this, we used an adaptive threshold-
ing technique with a non overlapping window. The thres-
holding algorithm applied is the well-known Otsu method
[9]. Three different window sizes (small [8 × 8], medium
[50 × 50], and large [100 × 100]) were tried, and all were
found to have little impact on performance. With the adap-
tive threshold, it is possible to tone down the darker corners
produced during image acquisition, as depicted in Fig. 3a.

Next, the binary image is inverted, so that each cell, ves-
sel, or resiniferous channel can form a connected component.
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Fig. 2 Species of the database a 21, b 33, c 58, and d 95

Fig. 3 Feature extraction. a Gray-scale images, b binary images, and
c connected components after erosion

In order to keep the main connected components and separate
those connected during the thresholding process, we applied
an erosion, which is a basic operator in the area of mathemati-
cal morphology [10]. The structuring element employed was

the square (3 × 3) and the number of iterations was deter-
mined empirically. In Sect. 4, we discuss the impact on the
recognition rate of this operation and the number of iterations
required.

Figure 3 depicts this process. As we can see in Fig. 3c,
a large number of components were removed by the erosion
process. We can also see that the Hardwoods lost more com-
ponents during this process than the Softwoods. The number
and size of the connected components allow us to discrimi-
nate between the two classes.

The next step is to compute the features for the remaining
connected components. The feature vector is composed of the
following five elements: number of connected components,
average size of the connected components, variance, kurto-
sis, and obliquity. The features are then normalized using the
Min–Max rule.

3.2 Gray level co-occurrence matrix (GLCM)

Among the statistical techniques available for texture rec-
ognition, the GLCM has been one of the most widely used
and successful. This technique consists of statistical exper-
iments conducted on how a certain level of gray occurs on
other levels of gray [11]. It intuitively provides measures
of properties such as smoothness, coarseness, and regular-
ity. Haralick [12], who originated this technique, suggested
a set of 14 characteristics, but most works in the literature
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Fig. 4 The original LBP operator

Fig. 5 The extended LBP operator [14]

consider a subset of these descriptors. In our case, we used
the following six: Energy, Contrast, Entropy, Homogeneity,
Maximum Likelihood, and 3rd Order Moment.

By definition, a GLCM is the probability of the joint occur-
rence of gray-levels i and j within a defined spatial relation
in an image. That spatial relation is defined in terms of a dis-
tance d and an angle θ . From this GLCM, some statistical
information can be extracted. Assuming that Ng is the gray-
level depth, and p(i, j) is the probability of the co-occurrence
of gray-level i and gray-level j observing consecutive pixels
at distance d and angle θ , we can use a GLCM to describe
wood texture.

In our experiments, we tried different values of d, as well
as different angles. The best setup we found is d = 5 and
θ = [0, 45, 90, 135]. Considering the six descriptors men-
tioned above, we arrive at a feature vector with 24 compo-
nents.

3.3 Local Binary Patterns (LBP)

The original LBP proposed by Ojala et al. [13] labels the
pixels of an image by thresholding a 3 × 3 neighborhood
of each pixel with the center value. Then, considering the
results as a binary number and the 256-bin histogram of the
LBP labels computed over a region, they used this LBP as a
texture descriptor. Figure 4 illustrates this process.

The limitation of the basic LBP operator is its small neigh-
borhood, which cannot absorb the dominant features in large-
scale structures. To overcome this problem, the operator was
extended to cope with larger neighborhoods. By using cir-
cular neighborhoods and bilinearly interpolating the pixel
values, any radius and any number of pixels in the neighbor-
hood are allowed. Figure 5 depicts the extended LBP oper-
ator, where (P, R) stands for a neighborhood of P equally
spaced sampling points on a circle of radius R, which forms
a neighbor set that is symmetrical in a circular fashion.

The LPB operator LBPP,R produces 2P different binary
patterns that can be formed by the P pixels in the neighbor
set. However, certain bins contain more information than oth-
ers, and so, it is possible to use only a subset of the 2P LBPs.
Those fundamental patterns are known as uniform patterns.
A LBP is called uniform if it contains at most two bitwise
transitions from 0 to 1 or vice versa when the binary string
is considered circular. For example, 00000000, 001110000
and 11100001 are uniform patterns. It is observed that uni-
form patterns account for nearly 90% of all patterns in the
(8,1) neighborhood and for about 70% of all patterns ib the
(16, 2) neighborhood in texture images [13,15].

Accumulating the patterns that have more than two tran-
sitions into a single bin yields an LBP operator, denoted
LBPu2

P,R , with fewer than 2P bins. For example, the num-
ber of labels for a neighborhood of 8 pixels is 256 for the
standard LBP but 59 for LBPu2. Then, a histogram of the
frequency of the different labels produced by the LBP oper-
ator can be built. We have tried out different configurations
of LBP operators, but the one that produced the best results
was the LBPu2

8,2, with a feature vector of 59 components.

4 Experiments and discussion

An important aspect of pattern recognition problems that is
very often neglected is class distribution. A tacit assump-
tion in the use of recognition rate as an evaluation metric is
that the class distribution among examples is constant and
relatively balanced. In the database we propose here, this is
not the case. In our context, receiver operating characteristic
(ROC) curves are attractive because they are insensitive to
changes in class distribution. If the proportion of positive to
negative instances changes in a test set, the ROC curves will
not change [16]. For this reason, we present the ROC curves
and area under the curve (AUC) values for all the experi-
ments. The AUC of a classifier has an important statistical
property: it is equivalent to the probability that the classifier
will rank a randomly chosen positive instance higher than a
randomly chosen negative instance.

The overall error rate that has been used for evaluation
purposes in this work is given by Eq. 1.

Overall error rate = FP + FN

TP + TN + FP + FN
(1)

where FP, FN, TP, and TN stand for false positive, false neg-
ative, true positive, and true negative, respectively. These
statistics are defined in the 2 × 2 confusion matrix depicted
in Fig. 6.

Hence, the recognition rate can be calculated using Eq. 2

Recognition rate = 100 − (Overall error rate × 100) (2)
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Fig. 6 2 × 2 confusion matrix

As pointed out earlier, three different classifiers were used
to assess these feature sets: k−NN, LDA, and SVM. For the
SVM, different kernels were tried, but the Gaussian kernel
produced the best results. The kernel parameters γ and C
were defined empirically through a grid search on the vali-
dation set. In our experiments, the database was divided into
training (40%), validation (20%), and testing (40%), as sug-
gested before, i.e. the validation set is used in a holdout vali-
dation scheme. In order to show that the choice of the images
used in each subset does not have a significant impact on the
recognition rate, each experiment was performed five times
with different subsets (randomly selected) for training, vali-
dation, and testing. The small standard deviation values show
that the choice of the images for each dataset is not an impor-
tant issue.

The next two subsections report the experiments for the
2-class problem and the multi-class problem, respectively.
Then in Sect. 4.3 we show some results on different config-
urations of the database.

4.1 2-Class problem

The first set of experiments was performed for the 2-class
problem using the structural feature set. Our first concern
was to determine the impact of the morphological operator
on feature extraction, and, consequently, on classifier per-
formance. To do this, we extracted features using different
numbers of iterations for the erosion operator. Figure 7 shows
the impact in terms of performance on the validation set for
the three classifiers. As we can see, all the classifiers behave
in a similar way to the different numbers of iterations used
with the erosion operator. For a small number of iterations,
a large number of connected components is considered for
feature extraction. Aggressive erosion, by contrast, removes
important components. This, of course, drastically reduces
the performance of all the classifiers. We found that the best
compromise was achieved using six iterations.

The best results in this experiment were achieved by the
SVM and k-NN with 93.1 and 92.6% of the recognition rate
on the test set respectively. In the case of the k-NN, the best
value for k was 3. The LDA classifier had the worst per-
formance, at 88.9% of the recognition rate. In all cases, we

Fig. 7 Impact of the erosion in the performance of the classifiers on
the validation set

Fig. 8 ROC curves for the classifiers trained with structural features
on the testing set

considered the features extracted from the images after six
iterations of the erosion operator. The results also show that
the size of the window used for the adaptive thresholding
has little impact on the final recognition rate. Figure 8 shows
the ROC curves and AUC values for all the classifiers. In
spite of the similar performance achieved by the SVM and
k-NN classifiers in terms of recognition rate, we can see from
Fig. 8 that the k-NN produces much higher false positive (FP)
rates for any given true positive (TP) rate. Table 3 shows the
confusion matrices for the classifiers trained with structural
features.

In the second series of experiments, all the classifiers
were trained with the GLCM feature set. As in the previ-
ous experiments, the SVM classifier outperformed the other
classifiers, achieving a recognition rate of 97.4%. The LDA
classifier performed much better with this feature set, at
95.0%, however the k-NN classifier seems unsuitable for this
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Table 3 Confusion matrices
(in %) for the classifiers trained
with structural features

kNN LDA SVM

Softwood Hardwood Softwood Hardwood Softwood Hardwood

Softwood 89.7 10.3 85.3 14.7 88.1 11.9

Hardwood 5.9 94.1 9.3 90.7 4.5 95.5

Fig. 9 ROC curves for the classifiers trained with GLCM features

representation, as it produces no better than an 89% recog-
nition rate. The superior performance of the SVM classi-
fier had an impact on the ROC curve, producing an AUC
value of 0.98. The same cannot be said for the LDA, which
improved the recognition rate substantially, by about six per-
centage points, but had little impact on the ROC curve. Fig-
ure 9 depicts the ROC curves for the classifiers trained with
GLCM. Table 4 shows the confusion matrices for the classi-
fiers trained with GLCM features.

In the last set of experiments, we trained the classifiers
using the LPB feature set. As pointed out earlier, different
configurations of LBP operators were tried, but the one that
produced the best results was LBPu2

8,2, with a feature vector
of 59 components. This feature set generates the biggest fea-
ture vector; however, achieving the best performance com-
pensates for this. For example, the SVM classifier achieved a
performance of 98.6%, while LDA and k-NN achieved per-
formance values of 95.8 and 92.3%, respectively. In spite of
this, we noted no significant improvement in the AUC values
for either LDA or k-NN. The AUC value for the SVM, by

Fig. 10 ROC curves for the classifiers trained with LBP features on
the testing set

contrast, is 0.999. Figure 10 presents the ROC curves for the
classifiers from this last experiment. Table 5 shows the con-
fusion matrices for the classifiers trained with LBP features.

Table 6 summarizes the results of all the experiments,
reporting the recognition rates achieved, as well as the stan-
dard deviations, on the test set.

In spite of the good results produced by the SVM trained
with LBP, there is still some confusion that must be resolved.
Figure 11 presents two misclassified samples. In Fig. 11a, the
Gymnosperm Cedrus sp was confused with an Angiosperm,
mainly because of its structure, which that features long and
well-defined veins. These veins are also common in Angio-
sperms. The reverse occurs as well, as depicted in Fig. 11b. In
this case, the vessels of Angiosperms Tibouchiana sellowi-
ana are quite small, and similar to the resiniferous channels
found in Gymnosperms. One point worth noting, though, is
that not all the classifiers make the same mistakes. Therefore,
combining different classifiers and feature sets could resolve
some of the confusion.

Table 4 Confusion matrices
(in %) for the classifiers trained
with GLCM features

kNN LDA SVM

Softwood Hardwood Softwood Hardwood Softwood Hardwood

Softwood 67.8 32.2 89.7 10.3 97.6 2.4

Hardwood 0.5 99.5 2.3 97.7 2.8 97.2
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Table 5 Confusion matrices
(in %) for the classifiers trained
with LBP features

kNN LDA SVM

Softwood Hardwood Softwood Hardwood Softwood Hardwood

Softwood 79.2 20.8 93.0 7.0 97.2 2.8

Hardwood 1.1 98.8 2.9 97.1 0.7 99.3

Table 6 Summary of all experiments on the testing set

Feature Number Rec. rate (%)
set of features

k-NN σ LDA σ SVM σ

Structural 6 92.6 0.8 88.9 0.5 93.1 0.8

GLCM 24 89.0 1.2 95.0 0.1 97.4 0.6

LBP 59 92.3 0.5 95.8 1.1 98.6 0.5

4.2 Multi-class problem

In this experiment, our objective was to analyze the useful-
ness and reliability of the proposed database. To do that, we
expanded the data analysis into a multi-class problem. With
this in mind, we used the same protocol as in the previous
experiment, but replaced the 2-class classifiers with multi-
class classifiers, which were built to discriminate among the
112 classes available. In the case of the SVM classifier, two
strategies are commonly used to deal with multi-class prob-
lems: pairwise, and one-against-others. In this work, we used

Table 7 Recognition rates for the multi-class problem

Feature Number Rec. rate (%)
set of features

k-NN σ LDA σ SVM σ

GLCM 24 46.6 0.6 60.6 1.4 55.3 1.2

LBP 59 70.1 0.5 80.7 0.2 79.3 1.4

Table 8 Different database configurations

Number Image size Number
of pieces of images

2 512 × 768 4,480

3 341 × 768 6,720

4 512 × 384 8,960

6 341 × 384 13,440

9 341 × 256 20,160

the one-against-others strategy, which works by constructing
an SVM ωi for each class q that first separates the class from

Fig. 11 Some confusions between the two classes

Fig. 12 Dividing the original image into smaller pieces
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Fig. 13 Performance of the classifiers on the different configurations of the database. a 2-class problem and b multi-class problem

all the other classes and then uses an expert F to arbitrate
between their SVM outputs, in order to produce the final
decision. A good reference work listing the multi-class SVM
methods is [17].

Table 7 reports the results achieved by the classifiers
trained with GLCM and LBP for the multi-class problem.
The classifier trained with structural features achieved very
poor results, and for this reason it is not reported here.

Like the results of the previous experiments, the results for
the classifiers trained with LBP surpassed those for the other
classifiers. However, in this experiment, where there is much
greater complexity, the LPB proved to be an excellent texture
descriptor, superior to the classifiers trained with GLCM by
about 20 percentage points. The best results for the 112 clas-
ses were achieved by the SVM and LDA classifiers, both of
which achieved a recognition rate of about 80%.

4.3 Working with smaller images

As explained earlier, the proposed database contains 20
images of 1,024 × 768 pixels per species, totaling 2,240
images. A larger number of samples can be useful in a num-
ber of situations, such as increasing or creating more valida-
tion sets that can be used for feature selection, for example.
Since acquiring more data is not a trivial task, we divided the
original images into several chunks, so that larger databases
could be created, as shown in Fig. 12. These databases are
reported in Table 8.

To determine the impact of dividing the original image
into smaller chunks, we used the best classifier we found in
the previous experiments, i.e. the SVM trained with the two
feature sets that yielded the best results (LBP and GLCM).
Preliminary tests with the structural feature set on smaller
images considerably reduced the performance of the classi-
fiers. This is mainly because important structural information
can find its way into several of those smaller pieces, which
compromises the structural feature vector. This is why we did
not pursue the experiments with the structural feature set.

For the experiments with GLCM and LBP on smaller
images, we followed the same scheme for dividing the images
for training, validation, and testing, i.e. 40, 20, and 40%
respectively. In Fig. 13, we can compare the recognition rates
on the testing set for both feature sets for all database con-
figurations.

We can see from Fig. 13a, b that the performance of the
SVMs trained with LBP is homogeneous across all database
configurations, from which we conclude that LBP is able
to extract the necessary information for classification from
the smaller images. In the case of the multi-class problem,
increasing the number of images improves the SVM classi-
fier. The best result in this case was achieved using configu-
ration #4 (Fig. 12c), with a recognition rate of 86%.

The same is not true for the classifiers trained with GLCM.
In the case of the 2-class problem, no configuration provided
any improvement. In the case of the multi-class problem, we
can see a slight improvement for configurations #2 and #3.
However, the enormous difference between GLCM and LBP
makes this irrelevant.

5 Conclusion

In this paper, we have introduced a new database composed
of 2,240 microscopic images of 112 different species divided
into 2 groups (Hardwoods and Softwoods), 85 genera, and
30 families. A comprehensive set of experiments using three
different feature sets and three different classifiers has shown
that an SVM trained with a 59-dimensional LBP feature vec-
tor is a good option for both 2-class and multi-class problems.
We also proposed another five configurations of the database
with a larger number of images, and show that the same tuple
SVM-LBP, is able to maintain a homogeneous performance
in all five configurations.

The results for the 2-class problem presented in this work
are very promising, since they can be used as a preclassi-
fication step in any forest species recognition system, and
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reduce the possible confusion between species of different
genera and families. In future work, we plan to refine and test
other feature sets to solve any remaining confusion, and use
this dataset to build a system to automatically identify forest
species. Our expectation is that this database will contribute
to the field of forest species recognition and motivate more
researchers to work in this field.
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