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Abstract—A modular system to recognize handwritten numerical strings is proposed. It uses a segmentation-based recognition
approach and a Recognition and Verification strategy. The approach combines the outputs from different levels such as segmentation,
recognition, and postprocessing in a probabilistic model. A new verification scheme which contains two verifiers to deal with the
problems of oversegmentation and undersegmentation is presented. A new feature set is also introduced to feed the oversegmentation
verifier. A postprocessor based on a deterministic automaton is used and the global decision module makes an accept/reject decision.
Finally, experimental results on two databases are presented: numerical amounts on Brazilian bank checks and NIST SD19. The latter
aims at validating the concept of modular system and showing the robustness of the system using a well-known database.
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1 Introduction

AUTOMATIC reading of numerical fields has been
attempted in several application areas. One such area

is the reading of courtesy amounts on bank checks. This
application has been very popular in handwriting recogni-
tion research, due to the availability of relatively inexpen-
sive CPU power, and the possibility to reduce considerably
the manual effort involved in this task. Another application
is the reading of postal zip codes in addresses written or
typed on envelopes. The former is more difficult than the
latter due to a number of differences in the nature of the
handwritten material. For example, bank check systems
have to take into account the great variability in the
representation of a numerical amount, e.g., the number of
components to be identified, which is not necessary for a
zip code system since the number of digits is fixed and
known a priori. Another important requirement from a
bank check system is its reliability. It has been estimated
that such a system becomes commercially efficient only
when the error rate is 1 percent or lower.

Methods for courtesy amount recognition belong to the

class of digit recognition techniques although in many cases

these amounts include also some nondigit symbols such as

commas, periods, strokes, currency names, etc. Strategies
for digit string recognition can be divided into segmenta-
tion-then-recognition [30] and segmentation-based recogni-
tion [26]. In the first approach, the segmentation module
provides a single sequence hypothesis where each subse-
quence should contain an isolated character which is
submitted to the recognizer. This technique shows its limits
rapidly when the correct segmentation does not fit with the
predefined rules of the segmenter. Very often, contextual
information is used during the segmentation process to
improve the robustness of the system.

The second strategy is based on a probabilistic assumption
where the final decision must express the best segmentation-
recognitionscoreoftheinputimage.Usually,thesystemyields
a list of hypotheses from the segmentation module and each
hypothesisisthenevaluatedbytherecognition.Finally,thelist
is postprocessed taking into account the contextual informa-
tion. Although this approach gives a better reliability than the
previous one, the main drawback lies in the computational
effort needed to compare all the hypotheses generated.
Moreover, therecognition module has to discriminate various
configurations such as fragments, isolated characters, and
connected characters. In this strategy, segmentation can be
explicit when based on cut rules [27], [7] or implicit when each
pixel column is a potential cut location [5], [22].

In this paper, we present a modular recognition system for
handwritten numerical strings. This system takes a segmen-
tation-based recognition approach where an explicit seg-
mentation algorithm determines the cut regions and
provides a multiple spatial representation. Contrary to the
systems that process just isolated numerals [17], [13], our
system has to solve a crucial problem: distinguishing, at the
recognition stage, a sequence corresponding to an interchar-
acter segmentation from another relative to an intracharacter
segmentation. In order to deal with this problem, we have
proposed a strategy based on Recognition and Verification
where the recognition function takes into account only a
general-purpose recognizer, while the verifiers evaluate the
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result produced by the recognizer. The integration of all

modules is done through a probabilistic model inspired by

information theory [20].
The focus of this work is to show how the verification

modules can improve the recognition rate and reliability of

the system. We introduce a new scheme of verification where

two verifiers are considered. The first one deals with over-

segmentation, while the second one deals with underseg-

mentation. A new feature set, which takes into account

multilevel concavity analysis and contextual information,

was developed to feed the oversegmentation verifier. We

present also the concept of modular recognition system and

we show how such a recognition system can deal with

different applications. We will see in the experimental results

that such a strategy of verification clearly improves the overall

performance of the system. In order to validate such a concept

and to evaluate the robustness of the system, we present

experiments on two different databases: numerical amounts

on Brazilian bank checks and digit strings on NIST SD19.
This paper is structured as follows: Section 2 provides a

brief overview of the system. Section 3 presents the

probabilistic model on which our system is based, defini-

tions related to the modularity of the system, and levels of

verification as well. Section 4 describes the overall archi-

tecture of the system. Section 5 reports the experiments

carried out and Section 6 includes some discussion and

comparison. Finally, Section 7 presents our conclusions.

2 SYSTEM OVERVIEW

Thesystemdiscussedinthisworktakesasegmentation-based

recognition approach and a Recognition and Verification

strategy. The outputs from different modules of the system

such as segmentation, recognition, and postprocessing are

combined using a probabilistic framework (described in

Section 3.1), which adds a degree of tractability to understand

the interactions among the system modules.
An explicit segmentation algorithm determines the cut

regions and provides multiple spatial representation. After

segmentation, different kinds of features are extracted in

order to feed the recognition module, which is composed of

one general-purpose recognizer and two verifiers. The goal of

the verifiers is to improve the overall performance of the

system by detecting over and undersegmentation. All

classifiers used in the system are described in Section 3.2.

Thereafter, the system generates a list of hypotheses through a

modified Viterbi algorithm and then each hypothesis is

syntactically analyzed by means of a deterministic automa-

ton. Finally, the global decision module makes an accept/

rejection decision.
Despite the fact that the verifiers presented in this work are

classifiers with probabilistic outputs, they are called verifiers

because they do not play the same role as the general-purpose

recognizer does in the system. In Section 3.3, we discuss the

verification and its different levels as well. In Section 3.4, we

present the idea of modular system employed in this work.

Finally, Section 4 describes all system modules and the

interaction between the general-purpose recognizer and

verifiers.

3 DEFINITIONS

3.1 Probabilistic Model

The goal of the probabilistic model is to define a function that
combines all the system modules in order to allow a sound
integration of all knowledge sources used to infer a plausible
interpretation. The probabilistic model that we are using has
been applied to speech recognition [24], handwritten word
recognition [6], and handwritten digit recognition [23]. Such
a model estimates the most probable interpretation of the
written amount M (noted bMM). Its input corresponds to an
image I after preprocessing.

In a probabilistic framework, bMM is given by the
maximum posterior probability:

P bMM=I
� �

¼ max
M

P ðM=IÞ: ð1Þ

We consider that the amount M can be expressed by the
writer through some variant V derived from the different
ways of expressingM. Each variant is composed of a sequence
of characters: V ¼ v1; . . . ; vm. In this way, we can represent
also the effects caused by the preprocessing. For example,
10000 is a variant of 100,00 because the comma in 100,00 may
be eliminated by the preprocessing. The amountM itself will
be a sequence of characters M ¼ m1; . . . ;mp representing
what we call the canonical form of M. The decomposition of
the image of variant V into elementary segments allows the
introduction of a segmentation term S ¼ s1; . . . ; sm, wherem
corresponds to the number of characters in V . S describes for
each character of V the types of segmentation rules that may
consider it to be composed of some fragments. Therefore,
sk ¼ rbðkÞ ; . . . ; reðkÞ , where rbðkÞ is the initial segmentation rule (b
means begin) and reðkÞ is the final segmentation rule (emeans
end) used to generate the fragment sk.

By summing up all segmentations and all variants, we
can write

P ðM=IÞ ¼
X
S

X
V

P ðM;V ; S=IÞ: ð2Þ

Considering an approximation where a sum of probabil-
ities over segmentations representing the same amount is
replaced by the maximum probability of a single segmenta-
tion, we have:X

S

X
V

P ðM;V ; S=IÞ � maxP ðM;V ; S=IÞ: ð3Þ

This approximation was checked numerically through
experimentation on the NIST SD19 database. We have used
about 2,000 images of strings of digits and we verified that
such an approximation is plausible. Thus, we can assume that
the image is analyzed by only one segmentation and one
variant, so that

9V ; S such that P ðM=IÞ � P ðM;V ; S=IÞ: ð4Þ

Using Bayes rule, we can write

P ðM=IÞ � P ðI=M; V ; SÞ � P ðM;V ; SÞ
P ðIÞ : ð5Þ

The probability of amount M is then:

P ðM=IÞ / P ðI=M; V ; SÞ � P ðS=M; V Þ � P ðM;V Þ: ð6Þ
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We assume that segmentation S only depends on M
through variant V since S describes how V (and not M) is
mapped onto elementary segments in I:

P ðM=IÞ � P ðI=V ; SÞ � P ðS=V Þ � P ðM;V Þ: ð7Þ

This equation makes explicit the terms to be estimated: the
recognition P ðI=V ; SÞ, the segmentation term P ðS=V Þ, and
the joint probability of amounts and their variants P ðM;V Þ.

We also assume that the shapes of digits and other
symbols only depend on their class and their segmentation
configuration. This is an approximation since characters are
written by only one writer and because some ligatures
cause contextual effects in the shapes of characters. It is
important to remark that, in our system, the union of all
segments is equal to the whole image and also that the
system does not allow intersection between segments
unless characters overlap. However, overlaps occur only
rarely. In this way, we can derive the joint probability
P ðI=V ; SÞ from individual terms through:

P ðI=V ; SÞ �
Y
i;k

P ðibðkÞ . . . ieðkÞ=vk; sk ¼ rbðkÞ . . . reðkÞ Þ; ð8Þ

where ibðkÞ is the initial segment of the image and ieðkÞ is the
final segment of the image.

We assume that the shape of each character does not
depend on the way that it is segmented from its neighbors,
i.e., character shapes are not significantly affected by the
segmentation rules. Moreover, even if they are slight, the
improvement that we may expect from injecting segmenta-
tion information into the model to estimate character
probabilities, is balanced by the increase of the number of
model parameters needed to estimate these probabilities.
So that:

P ibðkÞ . . . ieðkÞ=vk; sk ¼ rbðkÞ . . . reðkÞ

� �
� P ibðkÞ . . . ieðkÞ

h i
=vk

� �
;

ð9Þ

By applying Bayes rule, we have the following
approximation:

P ðM=IÞ �
Y
i;k

P vk= ibðkÞ . . . ieðkÞ

h i� �
� P ibðkÞ . . . ieðkÞ

h i� �
P ðvkÞ

� P ðS=V Þ � P ðM;V Þ;

ð10Þ

where P ðvk=½ibðkÞ . . . ieðkÞ �Þ represents the result supplied by
the recognizer, P ð½ibðkÞ . . . ieðkÞ �Þ are a priori probabilities of
the images to be recognized, P ðvkÞ are a priori probabil-
ities of classes recognized by the recognition module,
P ðS=V Þ defines the probability of the fragmentation of

characters in the variant considered, and P ðM;V Þ is the
joint probability of amounts and their variant.

3.2 Neural Classifiers

Although many types of neural networks can be used for
classification purposes [25], we opted for a Multilayer
Perceptron (MLP) which is the most widely studied and used
neural network classifier. Moreover, MLPs are efficient tools
for learning large databases [21]. Therefore, all classifiers
presented in this work are MLPs trained with the gradient
descent applied to a sum-of-squares error function [2]. The
transfer function employed is the familiar sigmoid function.

In order to monitor the generalization performance during
learning and terminate the algorithm when there is no longer
an improvement, we have used the method of cross-
validation. Such a method takes into account a validation
set, which is not used for learning, to measure the general-
ization performance of the network. During learning, the
performanceof thenetworkon thetraining setwill continue to
improve, but its performance on the validation set will only
improve to a point, where the network starts to overfit the
training set, that the learning algorithm is terminated.

MLP is a measurement-level classifier, i.e., it attributes to
each possible label a measurement value to address the
degree or probability that the input sample has the label. In
this work, we will interpret the measurement value as
estimation of a posterior probability. In order to accurately
estimate Bayesian probabilities, network output values must
lie in the range (0,1) and they must sum to unity. In our MLP
networks, the value of each output necessarily remains
between zero and one because of the sigmoidal functions
used, but the criterion used for training did not require the
outputs to sum to one. Nevertheless, as shown by Richard and
Lippmann in [29] the summed outputs of the MLP network
are always close to one. As such, normalization techniques
proposed to ensure that the outputs of an MLP network are
true probabilities such as softmax [4] may be unnecessary.
This is further supported by results of experiments per-
formed by Bourlard and Morgan [3], which demonstrated
that the sum of the outputs of MLP networks is near one for
large phoneme-classification speech-recognition problems.

Let S be a pattern space which consists of A mutually
exclusive sets S ¼ C1 [ . . . [ CA, each of Ci, i 2 � ¼ 1; . . . ; A
representing a set of specified patterns called a class. Let x
be an input pattern that should be assigned to one of the A
existing classes. e means the classifier and eðxÞ ¼
miðxÞj8ið1 � i � AÞ means that the classifier e assigns the
input x to each class i with a measurement value miðxÞ. This
definition is used for all classifiers of the system. Table 1
describes our classifiers as well as where they are used in
the system.
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All networks presented in Table 1 have one hidden layer
where the units of input and output are fully connected with
units of the hidden layer. The number of hidden units used in
this work are 70, 80, 20, 30, and 30 for e3, e10, e13, vo, and vu,
respectively. These architectures were determined empiri-
cally. The learning rate and the momentum term were set at
high values in the beginning to make the weights quickly fit
the long ravines in the weight space, then these parameters
were reduced several times according to the number of
iterations to make the weights fit the sharp curvatures.

The rule that defines how the classifier assigns an input
pattern x to a class i is known as decision rule. In this work,
the decision rule applied to e13 and e10 (when it is used as a
general-purpose recognizer) is defined as:

e13ðxÞ ¼ max
i2�

miðxÞ: ð11Þ

The goal of the verifiers vo and vu is to validate whether
an input pattern x is an isolated character or not. We will
see in Section 4.3.4 that this is achieved by multiplying three
measurement values (classifier and both verifiers). Then, if
the outputs of the verifiers that represent the posterior
probability of an input pattern x be an isolated character
(first output) are low, the output supplied by the classifier
will be penalized, otherwise, it will be confirmed. For this
reason, the decision rule used by the verifiers simply takes
the measurement value produced in their first output,
which contains the posterior probability of an input pattern
x to be an isolated character. Thus, vo shares the same
decision rule of vu, which is defined as:

vuðxÞ ¼ m1ðxÞ: ð12Þ

3.3 Levels of Verification

The Recognition and Verification scheme looks straightfor-
ward, with a verification module embedded in the traditional
classification system, which has a general-purpose recogni-
zer only. The goal of the general-purpose recognizer is to
assign a given input to one of the n existing classes of the
system, while the pattern verifier assumes the role of an
expert to evaluate precisely the result of the recognizer in
order to compensate for its weakness due to particular
training and, consequently, to make the whole system more
reliable. Usually, a pattern verifier is applied after a general-
purpose recognizer and it is designed to “plug and play,” i.e.,
it is used without knowing the implementation details of the
recognition modules.

Takahashi and Griffin in [31] define three kinds of
verification: absolute verification for each class (Is it a “0”?),
one-to-one verification between two categories (Is it a “4” or
a “9”?), and verification in clustered, visually similar,
categories (Is it a “0,” “6,” or “8”?).

In addition to these definitions, we introduce the concept
of levels of verification, where two levels are considered:
high-level and low-level. We define as high-level verifiers
those that deal with a subset of the classes considered by the
general-purpose recognizer. The goal of the verifiers at this
level is to confirm or deny the hypotheses produced by the
general-purpose recognizer by recognizing them [31], [32].
We define as low-level verifiers those that deal with meta-
classes of the system such as characters and parts of them. The
purpose of a low-level verifier is not to recognize a character,
but rather to determine whether a hypothesis generated by
the general-purpose recognizer is valid or not [8].

In this work, we propose two low-level verifiers to cope
with the oversegmentation and undersegmentation pro-
blems. The objective of these verifiers is to validate the
general-purpose recognizer hypotheses by using the follow-
ing metaclasses: characters, parts of characters, and under-
segmented characters. Section 4 will present more details
about these verifiers.

3.4 Modular System

Since a handwritten digit string recognition system has
several potential applications, it is very interesting to build a
system adaptable to as many different contexts as possible.
Due to the magnitude and complexity of this kind of system,
they are usually divided into several modules, where each
one assumes specific functions in order to facilitate the
construction of the system. In order to gain a better insight of
the modules in terms of a generic system, we introduce two
definitions related to the system modules: Application
Dependent (AD) modules and Task Dependent (TD)
modules.

We define as AD those modules that should be changed
(replaced or removed) to cope with another context. The best
example of an AD module is the postprocessor which is
usually the part of the system that has more knowledge about
the application. We define as TD those modules related to the
task, e.g., digit string recognition. These modules can be used
for various applications. In Fig. 1, the white boxes represent
TD modules while the grey boxes represent AD modules.

In Fig. 1, we can see two different versions of the same
system. The first version, which considers all modules (white
and gray boxes), was designed to process numerical amounts
of Brazilian bank checks, while the second version, which
does not consider the gray boxes, was designed to process
strings of digits from the NIST database. As we can notice,
through the exclusion of four AD modules (Contextual Feature,
Structural Features, e3, and e13) and the modification of the
Syntactic Analysis module, we have built a new system
specialized in another context. Fig. 1 also presents the
relationship between the system modules and its estimators.
As we can see, the proposed system takes into account the
estimators of recognition (P ðvk=½ibðkÞ . . . ieðkÞ �Þ) and postproces-
sing (P ðM;V Þ) presented in (10). Since our classifiers are
based on neural networks which provide direct estimation of
theposterior probabilities, we decided not to use theestimator
related to a priori probabilities (P ð½ibðkÞ . . . ieðkÞ �Þ) of the images
to be recognized. We will see that the verifiers can replace this
estimator successfully. Lethelier et al. in [23] use the empirical
frequencies of segmentation configurations for each class in
order to compute the probability of fragmentation of char-
acters (P ðS=V Þ). However, we have observed that our
segmentation algorithm does not supply discriminative
information about the classes of the system. This is illustrated
in Fig. 2.

Fig. 2a presents the distribution of the segmentation
points provided by our segmentation algorithm [27] for four
different isolated digit classes (1, 4, 7, and 8) of the training
set of the NIST database. We can observe that even for
different classes the segmentation algorithm provides a
very similar distribution of segmentation points, hence, it
will be difficult to improve the performance of the system
using the primitives generated by the segmentation algo-
rithm. The second problem can be observed in Fig. 2b. In
this case, the segmentation algorithm will not produce any
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segmentation point due to the lack of minima and maxima
on the superior and inferior contours, respectively. For
these reasons, we choose not to use the estimator P ðS=V Þ.

4 Description of the Modules

In this section, we describe all system modules depicted in
Fig. 1. We are using binary images (300 dpi). The system
output provides a list of hypotheses associated with a
probability.

4.1 Component Detection

The goal of this module is to divide an image into groups of
components, called partial images, where each group should
represent an integral number of components. This allows us
to convert the recognition of a string image to that of its partial
images thus reducing the complexity of the subsequent tasks.
This module operates in three steps: connected component
analysis, delimiter detection, and grouping. The first one
segments the string image into connected components and
eliminates very small ones by filtering.

The second step aims at identifying specific parts of the
numerical amount, namely, period (“.”) and comma (“,”). By
inspecting our numerical amount database, we noticed that
such components are located in the inferior part of the image.
Thus, we consider as delimiters those components located
entirely below the median line of the numeral string.

The last step tries to overcome the effects of fragmentation.
A connected component can represent either an integer
number of characters or not. The second situation is critical

and should be avoided. Basically, the grouping step tries to
group a character composed of several components by
detecting potential parts and grouping each of them to its
nearest neighbor. We have adopted a strategy similar to the
one presented by Ha et al. in [14].

4.2 Segmentation

The segmentation module that we have used in this system is
based on the relationship of two complementary sets of
structural features, namely, contour/profile and skeletal
points.

The segmentation hypotheses are generated through a
segmentation graph (Fig. 3b). This initial graph is then
decomposed into linear subgraphs which represent the
segmentation hypotheses. Fig. 3c shows the linear subgraphs
that represent the best hypothesis of segmentation. More
details about this method can be found in [27].

4.3 Recognition and Verification

In this section, we describe all modules defined previously in
Section 3.2. In addition, we present the feature set used by
each classifier and also describe how the low-level verifiers
and general-purpose recognizer interact with each other.

4.3.1 General-Purpose Recognizer

Our general-purpose recognizer is composed of three
modules: e10, e3, and e13 (see Fig. 1). e10 and e3 are
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Fig. 1. Block diagram of a numeric string recognition system.

Fig. 2. Problems of using segmentation estimator: (a) Distribution of the

segmentation points for isolated digit classes 1, 4, 7, and 8. (b) Samples

of isolated digits where the segmentation will not provide any

segmentation point.

Fig. 3. Management of the segmentation: (a) Original image, (b) initial
segmentation graph where Pi means the segmentation path and Ci
means the subcomponent, and (c) best hypothesis of segmentation.



specialized in 10 numerical and three nonnumerical (“#,”
“,”, and “.”) classes, respectively. Both classifiers use a
mixture of concavity, contour-based features and surface of
the characters.

The basic idea of concavity measurements [15] is the
following: for each white pixel in the component, we search in
4-Freeman direction (Fig. 4d), the number of black pixels that
it can reach as well as which directions the black pixel is not
reached. When black pixels are reached in all directions (e.g.,
point x1 in Fig. 4b), we branch out into four auxiliary
directions (s1 to s4 in Fig. 4c) in order to confirm if the current
white pixel is really inside a closed contour. Those pixels that
reach just one black pixel are discarded.

Thereafter, we increment the position in the feature vector
that fits with results returned by the search (Figs. 4a and 4b). In
Fig.4b,werepresent the featurevectorwhereeachcomponent
has two labels. The superior label means the number of black
pixels found during the search while the inferior label means
the directions where the black pixels were not reached. For
example, the pixel x2 (Fig. 4a) reaches the black pixel in all
directions except in direction 3. Therefore, the position 7 of the
feature vector is incremented. For pixel x1, the position 9 is
incremented because it reaches the black pixel in four
directions. However, using the auxiliary direction s1 we
confirm that it is not inside a closed contour. When the pixel is
inside a closedcontour, theposition incremented is the eighth.

Since we are dividing the image into six zones, we consider
six feature vectors of 13 components each. Therefore, in the
example presented above, the pixel x2 will update the second
vector while the pixel x1 will update the fifth vector. Finally,
the overall concavity feature vector is composed of (13� 6)
78 components normalized between 0 and 1.

The contour information is extracted from a histogram of
contour directions. For each zone, the contour line segments
between neighboring pixels are grouped regarding 8-Free-
man directions (Fig. 5c). The number of line segments of each
orientation is counted (Fig. 5b). Therefore, the contour feature
vector is composed of (8� 6) 48 components normalized
between 0 and 1. Finally, the last part of the feature vector is
related to the character surface. We simply count the number
of black pixels in each zone and normalize these values
between 0 and 1. Thus, the final feature vector, which feeds e10

and e3, has (78þ 48þ 6) 132 components.
As depicted in Fig. 1, the classifier e13 combines the e10 and

e3 outputs, one contextual feature of position, and four
structural features. Therefore, e13 has 18 inputs. Such a
scheme of combination has produced the best recognition
rates in our experiments that consider the database of
numerical amounts on Brazilian bank checks. The contextual
feature of position, which was detected at the component
detection phase, is responsible for minimizing the confusion
between the digit “1” and the symbol “,”. As discussed in
Section 4.1, we have observed that the symbol comma is
always located entirely below the median line of the numeral
string. In this way, when the component is located entirely
below the median line, the 14th position of the feature vector
used by e13 receives 1, otherwise 0. As we can observe in Fig. 6,
the sole information capable of removing the confusion
between the digit “1” and the symbol “,” is the position of the
component in the image context.

In order to reduce the confusion between the numerical
classes “4” and “7” and the nonnumerical symbol “#,” we
have used feature points of the skeleton. Four components
have been considered: end points, crossing points, and two
directional points, which are detected when the skeletal path
changes its direction in the horizontal or vertical axis. These
points are represented in Fig. 6c by the numbers 1, 2, 3, and 4,
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Fig. 4. Concavities measurement: (a) Concavities, (b) feature vector,

(c) auxiliary directions, and (d) 4-Freeman directions.

Fig. 5. Contour measurement: (a) Contour image of the upper right corner zone, (b) feature vector, and (c) 8-Freeman directions.

Fig. 6. Contextual and structural features: (a) Numerical amount with the

median line detected, (b) similarity between digit one and symbol

comma, and (c) structural features extracted of the skeleton.



respectively. Once the skeletal points were detected, the

points of each configuration are counted, normalized

between 0 and 1, and the last four positions of the feature

vector used by e13 updated.
We show in Section 5 that this classifier reaches very

interesting recognition rates when dealing with isolated

digits. However, when it is used within a complete system,

it faces more complex problems such as oversegmentation

and undersegmentation. In the first problem, the intrachar-

acter segmentation hypothesis provides better results than

any of the intercharacter segmentation hypotheses. Figs. 7a,

7b, and 7c show some examples of this problem. The second

problem, the lack of segmentation cuts, produces better

results than the correct segmentation hypothesis (Fig. 7d).
Instead of using heuristics to overcome these problems, we

opted for the use of a strategy based on low-level verifiers

which is more robust and reliable. Initially, we developed a

strategy based on an isolated verifier which was responsible

for detecting both oversegmentation and undersegmentation

[28]. After some experiments, we realized that a more

specialized verifier could produce better results than a

generic one. In the following sections, we present both

verifiers, their respective feature sets, and how they interact

with the general-purpose recognizer.

4.3.2 Oversegmentation Verifier

The main objective of this verifier is to improve the
performance of the general-purpose recognizer by detecting
oversegmented characters (Figs. 7a, 7b, and 7c). Thus, the
verifier takes into account two classes: isolated characters and
oversegmentation. In order to discriminate these two classes,
we developed a new feature set called Multilevel Concavity
Analysis. First of all, we introduce the definitions of Concavity
Levels. We define as Initial Concavity Level (ICL) for a
background pixel, the number of black neighbors that it has
in the 4-Freeman directions. We also consider one label to
identify the background pixels located outside of a closed
contour but with four black neighbors. Those pixels that have
only one black neighbor are not considered. Fig. 8 shows an
image labeled with the four possible labels used in ICL.

The first step of this analysis consists of labeling with ICL
the background pixels of the oversegmented piece (Iseg) and
its corresponding original piece of handwriting (Iorig). Fig. 9
exhibits two examples of this procedure. Afterwards, the
following verification is carried out: for each background
pixel found in both images (Iorig and Iseg), we assigned to the
final image (represented by the MCA in Fig. 9) a specific label
(represented by the black area) when the ICLs are different,
otherwise, we assigned the same ICL found in both images.
The same verification procedure is carried out over the
foreground pixels. However, in such a case, we assigned a
specific label (represented by the bold dot) to MCA when the
pixels found in both images share the same label. The latter
procedure aims at computing the relative area of the
oversegmented part.

The second part of this analysis concerns with
Iseg contextual information (represented by CI in Fig. 9)
which is extracted by taking into account the Iseg comple-
ment. As we can observe in Fig. 9, the complement that we
are using is limited to Iseg width and it is composed of the
Iorig background which was labeled with ICL and the
surface of the Iorig (represented by the dot in Fig. 9). Fig. 9
also shows the final labeling which is composed of multi-
level concavity analysis (MCA) and contextual information
(CI) about the oversegmented piece.

Therefore, this feature set has seven possible labels: the
four labels of ICL, the label that represents the difference
between concavity levels of Iorig and Iseg, the label that
represents the surface of the oversegmented piece, and the
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Fig. 7. (a), (b), and (c) Misclassification caused by oversegmentation. (d) Undersegmentation.

Fig. 8. Image labeled with ICL where the four possible labels are

represented.



label that represents the surface of the original image in the
context of the segmentation. Finally, the multilevel con-
cavity analysis with contextual information is divided into
six regions (the same division shown in Fig. 4b) and (7� 6)
42 components normalized between 0 and 1 are considered.

4.3.3 Undersegmentation Verifier

To complement the previous verifier, this one is devoted to
reduce the confusion between isolated and undersegmen-
ted characters. Thus, this verifier considers two classes:
isolated characters and undersegmentation.

After analyzing the system errors, we observed that
touching digits with strong concavities, e.g., “00,” often are
recognized as “0” with a high probability. After trying some
features such as, horizontal transitions, profile distances,
and structural information, we conclude that the same
concavity analysis and information about the surface used
by the general-purpose recognizer is a good feature set to
discriminate isolated characters from undersegmented ones.

However, a different way of zoning which divides the image
into three vertical parts has been employed. Such a strategy
aims at emphasizing the region of the image where the
connections between characters occur often (Fig. 10). As a
result, (ð13þ 1Þ � 3) 42 components normalized between 0
and 1 are considered.

4.3.4 How the Classifier and Verifiers Interact with

Each Other

According to the probabilistic model presented in (10)
(Section 3.1), the final probability for a hypothesis of
segmentation-recognition is given through the product of
the probabilities produced by its subcomponents. The
probability of a subcomponent is given by the product of the
probabilities produced by the general-purpose recognizer,
oversegmentation verifier, and undersegmentation verifier.

In Fig. 11, we present an example of how the verifiers
interact with the general-purpose recognizer. In order to
better illustrate this, we reproduced the problem depicted in
Fig. 7a, where the oversegmented hypothesis got a better
result than the correct one. The schema in Fig. 11 is carried all
the way through, from segmentation, feature extraction, to
recognition, and verification. In the column “outputs,” we
can see the outputs of the neural networks (represented by a
black box) as well as the probability produced by them.
According to the decision rules presented in Section 3.2, the
verifiers always consider their first output which contains a
posterior probability of an input pattern of isolated character.
Thus, when these probabilities are low, the output supplied
by the general-purpose recognizer (e13) is penalized, other-
wise, it is confirmed.

We can visualize this penalty in the first two components of
the second segmentation hypothesis. In such cases, the
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Fig. 9. (a) and (b) Two samples of Multilevel Concavity Analysis (MCA) and Contextual Information (CI).

Fig. 10. Zoning used by the undersegmentation verifier.



probabilities of these components of isolated character are
very low (0.010) and, hence, the probability generated by the
general-purpose recognizer is penalized. The opposite hap-
pens to both components of the first segmentation hypothesis
as well as the last component of the second segmentation
hypothesis. In these cases, both verifiers confirmed the output
produced by the general-purpose recognizer.

In the above example, we have seen how the over-
segmentation verifier eliminated the confusion presented in
Fig. 7a. Since the oversegmented pieces of the second
segmentation hypothesis were penalized, the first segmenta-
tion hypothesis, which is the correct one, got a higher final
probability.

4.4 Hypothesis Generation

The generation of k best hypotheses of an amount is carried
out by means of a Modified Viterbi Algorithm [10] which
ensures the calculation of the k best paths of the segmenta-
tion-recognition graph. Fig. 12 shows the three best
hypotheses of segmentation-recognition.

Basically, the algorithm computes the ðiþ 1Þth best path
with the shared subpaths calculated from rank 1 to rank i. For
each node n of the graph, a stack at time t describes all the
paths already computed going through this node. In order to
save the predecessors for the noden at time tÿ 1, pointers are
also used. Thus, it is possible to show that the ðiþ 1Þth best
path of nodenat time t is conducted by one of the paths to each
node at time tÿ 1 driven by such pointers. When the terminal

node of the graph is reached, the path is backtracked to extend
the stacks and increment the pointers. Since the k best
hypotheses are computed incrementally, we obtain a list of
decreasing probabilities (Fig. 12c). Afterwards, each hypoth-
esis is submitted to the postprocessor module which verifies
whether it satisfies the application rules or not.

4.5 Postprocessor (pp)

In order to improve the overall performance of the system,
all the hypotheses generated by the recognition module
should be analyzed syntactically. Compared with the legal
amount, the grammar for numerical amount is not very
rich. Consequently, all the syntactic rules must be based on
the nonnumerical symbols found in the numerical amount.

In spite of the fact that numerical amounts produce a poor
grammar, we can find in the literature various works that use
some kind of syntactic analysis. Knerr et al. in [19] consider
the segments below the baseline in order to obtain the final
interpretation of the numerical amount. Dimauro et al. in [9]
use nonnumerical symbols such as “#” in order to identify the
beginning and the end of the numerical amount. Heutte et al.
in [16] present a postprocessing module for French bank
checks which takes into account specific nonnumerical
symbols such as the characters “F” and “C”.

Usually, in Brazil, two delimiters (“#”) are affixed at the
beginning and at the end of the numerical amount, a period
“.” is sometimes used to delimit a 3-tuple of digits and a
comma “,” is used to identify the cents portion in the
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Fig. 11. Interaction between the general-purpose recognizer and verifiers.



numerical amount. In addition to these rules, the Central
Bank of Brazil decided that the cents portion should be
present in the numerical amount [1]. In order to deal with
such rules we have developed a deterministic automaton
which is associated with the term P ðM;V Þ of (10). This
automaton is depicted in Fig. 13.

Once such an automaton is formed, we fit it to the
probabilistic model in the following way: if the current
hypothesis is verified by the automaton, then

P ðM;V Þ ¼ 0:99, otherwise P ðM;V Þ ¼ 0:01. These values
aim at reranking the list of hypotheses generated
previously. Consider, for example, list of hypotheses (a)
presented in Table 2, where the correct hypothesis is the
second one (140,00). Since the automaton did not verify
the first hypothesis of the original list, its probability will
be multiplied by 0.01, while the probabilities of others
will be multiplied by 0.99. List (b) of Table 2 shows the
decreasing probabilities after postprocessing.
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Fig. 12. Generation of global hypotheses: (a) Original image, (b) segmentation hypotheses with rank-2 hypotheses of recognition, and (c) three

best paths.

Fig. 13. Syntactic graph used to carry out the syntactic analysis, where N stands for noise such as “#,” 0 for the digit “0,” S for separators “.” and “,”, i

for the digits ranging from 1 to 9, and d for the digits ranging from 0 to 9.



It is worthy of remark that we just choose a value near 1
(0.99 in this case, but it could be 1) to confirm the hypotheses
verified by the automaton and a value near to 0 to penalize
those not verified. We just do not use 0 because we opted to
keep all hypotheses generated by the system in the final list.
An efficient and very often used strategy for postprocessing is
to estimateP ðM;V Þ from some data. For example, Lethelier et
al. in [23] use an ergotic HMM model to express P ðM;V Þ. It
was possible because they had a real and huge database to
train such a model. In our case, we are working with a
laboratory database where the probability of occurrence of all
amounts is the same. For example, the fact that very small
amounts and very large amounts are less likely on checks does
not happen in our database. Moreover, we are dealing with a
small database (about 1,300 images in the training set) and,
consequently, it is impossible to model all variability of the
numerical amount from such a small data.

4.6 Global Decision

The global decision module decides either to accept the
recognition result or reject it. The goal of rejection is to
minimize the number of recognition errors for a given
number of rejects. A direct scheme of rejection is to reject
the image that has a global probability less than a determined
threshold. However, due to the probabilistic model used, a
10-digit string usually supplies a global probability (Pglobal)
smaller than a 2-digit string. Among the different strategies
that we have tested, the one proposed by Fumera et al. [11]
provided the better error-reject tradeoff for our system.

Basically, this technique suggests the use of multiple
reject thresholds for the different data classes (T0; . . . ; Tn) to
obtain the optimal decision and reject regions. In order to
define such thresholds, we have developed an iterative
algorithm which takes into account a decreasing function of
the thresholds variables RðT0; . . . ; TnÞ and a fixed error rate
Terror. We start from all threshold values equal to 1, i.e., the
error rate equal to 0 since all images are rejected. Then, at
each step, the algorithm decreases the value of one of the
thresholds in order to increase the accuracy until the error
rate exceeds Terror. The error rate is defined in (14).

Thereafter, the rejection of an image is straightforward. We
just compare the probability of the components, which are
recovered by backtracking the best path produced by the
Viterbi algorithm, with their correspondent threshold. If any
of the components has the probability less than its correspon-
dent threshold, the entire string is rejected, otherwise, it is
accepted.

Fig. 14 exemplifies the global decision. In such a case, the
string will be accepted ifP ð1Þ > T1,P ð3Þ > T3, etc. We will see
in the next section that this strategy of rejection produces
interesting error-reject tradeoffs. We will present experi-
ments considering different Terror.

5 EXPERIMENTS AND RESULTS

In order to validate theconcept of modular system as well as to
show the robustness of our system, we ran experiments on
two databases. The first database is composed of 2,000 images
of numerical amounts and it aims at evaluating the perfor-
mance of the system on recognition of numerical amounts on
Brazilian bank checks. The second database is the NIST SD19
(hsf_7 series) and it aims at validating the concept of modular
system as well as to show the robustness of our system on a
well-known database. For all reported results, we used the
following definitions of the recognition rate, error rate,
rejection rate, and reliability rate. Let B be a test set with NB

string images. If the recognition system rejectsNrej, classifies
correctlyNrec, and misclassifies the remainingNerr, then

Recognition Rate ¼ Nrec

NB
� 100; ð13Þ

Error Rate ¼ Nerr

NB
� 100; ð14Þ

Rejection Rate ¼ Nrej

NB
� 100; ð15Þ

Reliability ¼ Recognition Rate

Recognition Rate þ Error Rate
� 100:

ð16Þ

Therefore, the recognition rate, error rate, and rejection rate
sum up to 100 percent.

5.1 Experiments on Numerical Amounts

For our experiments a database containing 2,000 images of
numerical amounts was used. Most images of this database
have a nonnumerical symbol (“#”) affixed at the beginning
and at the end of the numerical amount, a period “.” to delimit
a 3-tuple of digits, and a comma “,” to identify the cents
portion in the numerical amount. This database was divided
in the following way: 1,300, 200, and 500 images for training,
validation, and testing, respectively. From these three
databases, we extracted 11,400, 2,000, and 4,000 isolated
characters for training, validation, and testing, respectively.
For all three sets, 80 percent of the database consists of digit
images while the rest is composed of nonnumerical images
(“#,” “,”, and “.”). Therefore, we have used the numeric part of
the databases (80 percent) to train e10 and the rest (20 percent)
to train e3. The recognition rates achieved by e10, e3 on the test
set were 99.2 percent, 99.0 percent, respectively (zero-
rejection level). Thereafter, we submitted the training set to
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Fig. 14. Rejection mechanism: (a) Digit string, (b) probability of each

component, and (c) thresholds for the different classes.

TABLE 2
The Original List of Hypotheses and the

Same List after Postprocessing



e10 and e3 and trained the classifier e13 with the outputs
provided by e10 and e3 plus the five components described in
Section 4.3.1. e13 achieved a recognition rate of 98.9 percent on
the test set.

As discussed in Section 4.3.2, the verifier vo has two
outputs: isolatedcharactersandoversegmentation. Inorderto
train this verifier, we have used the following data: 8,000
correctly segmented characters, 8,000 naturally isolated
characters, and 12,000 oversegmented parts which were
generated automatically by the segmentation algorithm
through the segmentation of the isolated and touching
characters. The first two parts are devoted to train the first
class of the verifier, while the third one is devoted to train the
second class. Therefore, the training set used by vo is
composed of 28,000 samples. The validation and test sets
were built in the same manner, and they have 14,000 samples
each. This verifier reached a recognition rate of 99.40 percent
on the test set.

Finally, we have built the database for vu. As described in
Section 4.3.3, the task of such a verifier is to detect the
undersegmentation. Thus, it considers two classes: isolated
characters and under-segmentation. The database used in
this case is composed of 9,000 samples which are divided
into 5,000 images of isolated characters and 4,000 images of
touching characters. The validation and test sets were built
considering the same distribution of samples and they are
composed of 4,000 samples each. This verifier reached a
recognition rate of 99.17 percent on the test set.

After training the classifier and verifiers, we carried out
some experiments using the test set of numerical amounts
(500 images). The number of characters per image in this
database (average length) is about nine. Fig. 15 shows some
examples of numerical amounts on Brazilian bank checks
extracted from our database.

Table 3 shows the recognition rates (zero-rejection level)
achieved in four different configurations of the system. A
numerical amount image is counted as correctly classified if
all characters composing it are correctly classified. This table

allows us to evaluate all possible configurations of the
recognition system and also verify the superiority of the
configuration that considers all system modules. By analyz-
ing the recognition rates of all system configurations, we can
notice that the verifiers and the postprocessor are comple-
mentary in some respects, once the postprocessor resolved
some problems where the verifiers failed and vice versa.

Basically, the postprocessor differentiates the digits from
symbols, e.g., 140,00 confused with 1#0,00. In such a case, the
automaton does not accept a symbol between two digits.
Considering the last experiment (e13; vo; vu; pp), we divided
the total error of the system into three classes: segmentation,
recognition, and verification. The segmentation errors are
caused by undersegmentation which is due to a lack of basic
points in the neighborhood to the connection stroke [27]
(1.9 percent). The recognition errors are confusions of the
general-purpose recognizer (51.7 percent), confusion gener-
ated by segmentation effects, such as ligatures and noises
produced by segmentation cuts (30.8 percent), and confusions
generated by fragmentation (7.6 percent). The latter occurs
when the system misclassifies a broken character, which
usually are due to natural fragmentation caused by the
handwriting style (Fig. 18c) and noises acquired during
scanning or preprocessing. (Fig. 18d).

In spite of the fact that the verifiers supplied a remarkable
improvement in terms of recognition rates, they produced a
new class of errors, which is related to the confusion between
the isolated and the oversegmented characters (verifier vo)
and the confusion between the isolated and the under-
segmented characters (verifier vu) (13.1 percent). In the next
section, we discuss in more detail this kind of errors.

Since bank check systems demand low error rates, we ran
two experiments (based on the configuration “e13; vo; vu; pp”),
where we fixed the error rates at 0.5 and 0.1 percent,
respectively. Table 4 presents recognition, rejection, and
reliability rates at these two error levels while Fig. 16 shows
the error-reject tradeoff for the same experiment.
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Fig. 15. Examples of numerical amounts on Brazilian bank checks: (a) Recognized and (b) not recognized (the correct string is the one in parentheses).

TABLE 3
Recognition Rates (%) for the

Numerical Amounts (Zero-Rejection Level)

TABLE 4
Recognition Rates (Rec.), Rejection Rates (Rej.), and Reliability
Rates (Rel.) on the Numerical Amounts for Different Error Rates



5.2 Experiments on NIST SD19

The SD19 database, which is an update of SD3 and SD7 [12],
is provided by the American National Institute of Standards
and Technology (NIST). This database contains the full page
binary images of 3,699 Handwriting Sample Forms (HSFs)
and 814,255 segmented handprinted digit and alphabetic
characters from those forms.

Since this database is composed of digit strings only, all
Task Dependent Modules (gray boxes in Fig. 1) related to the
numerical amount task were removed, except the Postpro-
cessor module which was changed to verify the length of the
string. Since we are dealing with different handwriting styles
(Brazilian and North American), the general-purpose recog-
nizer, in this case (e10), oversegmentation verifier (vo), and
undersegmentation verifier (vu) were retrained.

In order to train e10, we have used the NIST SD19 in the
following way: the training and validation sets were
composed of 195,000 and 28,000 samples from hsf_{0, 1, 2,
3}, respectively, while the test set was composed of 60,089
samples from hsf_7. The recognition rates (zero-rejection
level) achieved by e10 were 99.66 percent, 99.65 percent, and
99.13 percent on the training, validation, and test sets,
respectively. The verifiers were trained using the same
methodology and number of samples described in the
previous section. The recognition rates achieved by the
oversegmentation and undersegmentation verifiers were
99.41 percent and 99.25 percent, respectively. The experi-
ments using numeral strings are based on 12,802 numeral

strings extracted from the hsf_7 series and distributed into six
classes: 2_digit (2,370), 3_digit (2,385) 4_digit (2,345), 5_digit
(2,316), 6_digit (2,316), and 10_digit (1,217) strings, respec-
tively. These data exhibit different problems such as touching
and fragmentation and they have also been used as a test set
by Britto Jr. et al. [5].

Table 5 summarizes the results for these experiments. In
this table, we can see the performance at the zero-rejection
level for four different versions of the system. These results
aim at showing the importance and contribution of each
module to the global system. For the second experiment,
which does not consider the postprocessor module (number
of digits) we present also the performance at three error levels:
2, 1, and 0.5 percent. By comparing the two first experiments,
we can observe the efficiency of the proposed verifiers on the
NIST database, as well as conclude that such verifiers clearly
improve the performance of the system. Fig. 17a shows the
behavior for strings of different lengths (from 2 to 10 digits),
while Fig. 17b exhibits the error-reject tradeoff for all used
fields in the test set.

By analyzing the system errors, we observed that they can
be classified into four classes: confusions generated by e10

(67 percent), errors caused by segmentation (9 percent), errors
caused by fragmentation (11 percent), and confusions
generated by the low-level verifiers vo and vu (12 percent).
The first class, which is the most frequent one, is related to the
weakness of the general-purpose recognizer but also the
difficult cases found in the test database as shown in Fig. 18a.
In this case, the digits 8 and 9 were classified as 6 and 7,
respectively. The second class of errors is caused either by
undersegmentation (20 percent) which is due to a lack of basic
points in the neighborhood to the connection stroke or effects
generated by the segmentation algorithm such as ligatures
(80percent) which can bevisualized in Fig. 18b. The third class
of errors is produced when the grouping algorithm fails.
Usually, it happens to images with poor quality (Fig. 18d and
sometimes images composed of two strokes (Fig. 18c)).

The last class of errors is produced by the low-level
verifiers, where vu is responsible for 87 percent and vo for
13 percent of the verification errors. The most frequent
confusions generated by vu are related to specific config-
urations of the digits “6,” “0,” and “8” (Fig. 18e). In such
cases, the digits have strong concavities and often they are
damaged by preprocessing tools. Fig. 19a shows some
examples of misclassified images, while Fig. 19b shows
examples of images containing touching or broken char-
acters that were correctly recognized by the system.

As we can notice, the part of the system that produces more
errors is the general-purpose recognizere10. In order to reduce
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TABLE 5
Recognition Rates for the NIST Experiment

Fig. 16. Error rate versus rejection rate for numerical amounts.



such errors and make the overall system more reliable, our
next efforts will be focused on the optimization of the feature
sets used by both the general-purpose recognizer and
verifiers.

6 DISCUSSION AND COMPARISON

So far, we have described all system modules and how they
interact with each other in order to make the entire system
more reliable. We have also presented experiments on two
different databases. We have shown that the low-level
verifiers have brought remarkable improvements to the
recognition system. We have seen that the modular frame-
work proposed is suitable to process numerical fields in
different applications. Thus, the results reported on
numerical amounts and NIST database have been carried
out using an identical system with the following exceptions:
The optimization of the parameters for digit detection and
grouping was carried out on different databases and the
classifiers were trained on different databases as well.

Comparison with published methods is very delicate
when we consider bank check recognition systems since
different databases and formats are used, different nonnu-
merical classes are involved, and different sizes of databases
are considered. For example, Lethelier et al. [23] present a
system for French bank checks which copes with four
nonnumerical classes ( “-”, “.”, “,”, “F”). They claim a
recognition rate of 60 percent (zero-rejection level) on a test set

of 10,000 images of French bank checks. Kaufmann and
Bunke [18] propose a system for Swiss postal checks that
neither considers nonnumerical classes nor the cents portion.
The result achieved by this system is 79.3 percent (zero-
rejection level) and 58.1 percent with an error rate of
0.2 percent.

Regarding the publications using the NIST database a
more detailed comparison is possible. Table 6 summarizes
the recognition rates at different error levels for the papers
[5], [22], [14]. Ha et al. [14] used about 5,000 strings of the
NIST SD3. Lee and Kim [22] used 5,000 strings but they did
not specify the used data. Britto Jr. et al. [5] used the same
database we are using, i.e., 12,802 strings of the NIST SD19
(hsf_7 series), however, they used the knowledge about the
number of numerals composing the string. In Table 6, the “-
” indicates that no recognition rate has been reported for the
specified error rate. By comparing the results reached by
our system (Table 5) with those reported by other authors
(Table 6), we can confirm that our system provides very
good recognition rates at zero-recognition level and a very
encouraging error-reject tradeoff.

7 CONCLUSION

We have proposed a modular offline system that can cope
with different applications. Our main focus has been the
recognition of numerical amounts on Brazilian bank checks
and numeral strings of the NIST SD19 (hsf_7 series). Our
system takes a segmentation-based recognition approach
where an explicit segmentation is employed. Combination of
different levels such as segmentation, recognition, and
postprocessing is made within a multihypothesis approach
and a probabilistic model which allows a sound integration of
all knowledge sources used to infer a plausible interpretation.

We have shown a very efficient scheme of verification to
deal with oversegmentation and undersegmentation pro-
blems. Such a scheme takes into account two low-level
verifiers. The first verifier uses a new feature set which is
based on multilevel concavity analysis and contextual
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Fig. 17. Error rates versus rejection rates for the NIST database: (a) Error-reject tradeoff for strings of different lengths. (b) Error-reject tradeoff for all

used fields in the test set.

Fig. 18. Different classes of errors generated by the system:

(a) Recognition errors, (b) ligature between two digits, (c) natural

fragmentation, (d) fragmentation caused by noise, and (e) isolated digits

classified as undersegmentation by vu.



information, in order to reduce the confusion between
isolated and oversegmented characters. The second one
works on the opposite problem, i.e., eliminating the confusion
between isolated and undersegmented characters.

In order to improve the overall performance of the
system that deals with numerical amounts on Brazilian
bank checks, we have developed a simple and efficient

postprocessor which is based on a deterministic automaton.
This module provided an improvement of about 6 percent
in the recognition rate. Finally, the rejection mechanism
employed minimizes the number of rejection errors for a
given number of rejects.

Comprehensive experiments on numerical amounts and
NIST SD19 databases have been conducted. High recognition
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Fig. 19. Examples of digit strings (NIST SD19): (a) Not recognized (the correct string is the one in parenthesis) and (b) recognized.

TABLE 6
Recognition Rates on NIST Databases Reported by Other Authors



rates at zero-rejection level and a very encouraging error-

reject tradeoff have been obtained. The results reached by our

system compare favorably to other published methods.
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