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Abstract
Forests have been disorderly exploited, and many species are considered endangered. Some initiatives have been taken in
order to prevent forests from being destroyed. A good alternative would be to plan a spatial distribution of plants, with higher
number of females than males. Determining the gender of seedlings would provide important information for a possible
strategy. Another common problem that researchers in this field very often face, in order to perform their experiments, is the
lack of a representative database. To overcome this difficulty, we introduce a new database in this work, which is composed
of nuclear magnetic resonance of adult Araucaria angustifolia plants. In order to gain better insight into this database, we
have tested different strategies and classifiers. A first set of experiments took three classifiers trained to discriminate males
from females considering the original database. A second round of experiments applied the genetic algorithm technique to
select subsets of attributes based on single-objective and two-objective functions. After analyzing the achieved results, we
have also proposed a new strategy based on statistical measures for selecting subsets from the attributes. A comprehensive set
of experiments has shown that the proposed selecting strategy has achieved better performances, with an accuracy of 80.3%
(AUC = 79.4). We believe that researchers will find this database a useful tool in their work on determining the Araucaria
angustifolia gender. On the other hand, the proposed selecting strategy would be useful for reducing the complexity of
databases and accelerating the process of building classification models.

Keywords Pattern recognition · Gender plant classification · Feature selection

1 Introduction

Natural resources have been misused. Minerals are widely
employed in civil construction and several industries. Forests
are beingwidely destroyed around theworld. Rivers, seas and
oceans are being polluted. Animals have been expelled from
their original environments and left under improper living
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conditions. Many vegetable and animal species are at risk of
extinction because they are not able to produce new individ-
uals.

Under the described scenario, there is the Araucaria
angustifolia specie. Popularly known as araucaria or pine
of Paraná, it is an endemic conifer in the Brazilian southern
and southeastern region. Besides the extraction of its wood,
two facts reinforce this species as being endangered. Firstly,
Araucaria is a dioecious plant, and only the female plants
produce seeds. Consequently, there must be individuals from
both genders, male and female, close enough to each other in
order to allowapossible fecundation. Suchphenomenonhap-
pens by pollination, when pollen is transferred frommales to
females, mainly through the wind. Secondly, seeds are used
as food and have an important economic influence on people
who collect and sell them in order to make a living (Freitas
et al. 2009; Guerra et al. 2002).

In natural populations of Araucaria angustifolia, where
there is no human interference, the relationship between
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females and males is 1:1 (Bandel and Gurgel 1967; Carvalho
2003; Zanon et al. 2009). However, it is possible to find a
slight predominance of males (Atanazio et al. 2018; Ban-
del and Gurgel 1967; Carvalho 2003; Zanon et al. 2009). In
this context, some studies with a focus in the maximization
of seed production define the ideal conditions to maximize
the earnings of planted areas with proportion of females and
males in 80%-20% (Zanette 2014), and 70–30% (Zanette
et al. 2017).

Determining the sex of seedlings would provide important
information for a possible strategy to plan their spatial distri-
bution in fields and forests. A good option could be planting
a higher number of females than males. It could solve both
previously presented problems, by simply increasing the seed
production. The existence of more seeds would provide a
higher number of new individuals, making this species much
more attractive for reforestation purposes and, at the same
time, preserving the existent areas. Simultaneously, seed col-
lectors would have higher earnings.

In spite of the perspectives mentioned before, there is no
technique for identifying the sex of the seedlings before they
express their sexuality. This takes place after twenty years
when the trees are natives. The samedegree ofmaturity canbe
developed after twelve or fifteen years, when the individuals
are planted.However, if plants are planted close to each other,
it could take up to 26 years (Freitas et al. 2009; Guerra et al.
2002).

Some studies have unsuccessfully tried to find out phe-
notype features related to the Araucaria angustifolia indi-
viduals’ gender. Bandel and Gurgel (1967) were not able to
define a relationship between morphological features of the
individuals and their genders. Amaral et al. (1971) studied
36 individuals, 18 males and 18 females. They analyzed a
possible influence of growing rates and wood density, but
they did not find any relation between them and the individ-
ual genders. Males and females presented the same behavior
and patterns for both analyzed features.

Zanon et al. (2009) studied the diameter sizes in a popula-
tion of 4888 individuals, being 2754males and 2134 females.
The authors found a higher number of females in the classes
with bigger diameters and a higher number of males in the
classes with smaller diameters. However, there was no sig-
nificant difference between the medium diameter from one
class to another, having the diametrical distribution followed
a normal distribution.

Stefenon et al. (2008) assessed the influence of genetic
diversity levels in natural and planted populations of Arau-
caria angustifolia. The study was conducted on 512 seeds,
where 192 were collected from five plantations and 320 were
collected from five natural populations. They used Ampli-
fied Fragment Length Polymorphism (AFLP) and nuclear
microsatellites, in order to assess the usefulness of planted
forests in programsof species’ genetic resource conservation.

In general, the genetic structures found were not capable of
differentiating planted from natural populations.

Murakami (2003) performed DNA (deoxyribonucleic
acid) tests in young leaves of 20 adult individuals, 10 males
and 10 females. The author applied RandomAmplified Poly-
morphic DNA in order to find genes that could be used to
identify the gender. No element was found that could be
useful to distinguish males from females. The author con-
cluded that a possible region of the genome involved in
determining the gender of individuals is relatively restricted
or the gene that controls the sexual expression could be found
in a genomic region, not very frequent, while recombina-
tion events take place. Murakami reassured that Araucaria
angustifolia genders cannot be identified by morphological
or physiological features, and there are no sex chromosomes
or differences in karyotype that could help to differentiate
males from females (Murakami 2002, 2003).

Carvalho (2012) suggested that possible plants’ metabolic
differences could support a gender definition, furthermore,
those supposed differences would be a consequence of
genetic and environmental variations. The author used a total
of 61 samples: 26males, 26 females and 9 undefined genders.
The author was not able to discriminate males from females
using such a theory as supervisioned chemometric analy-
sis. Oliveira (2016) also analyzed genetic and environmental
variations and their influence on metabolic differences. The
author used 18 from the 61 original samples from Carvalho
(2012) and 80 new samples with Infrared and Nuclear Mag-
netic Resonance (NMR). The author concluded that none of
them were able to differentiate males from females. Oliveira
(2016) reassured that genetic and environmental differences
are intrinsically related to each other. Usually, individuals
close to each other have a higher probability of generating
new ones, which creates a microenvironment in which there
is a lower genetic variation.

So far, grafting has been the base for techniques that try
to identify the sex of seedlings before a definitive transplant.
Herein, we have two different types of stems: orthotropic and
plagiotropic. Orthotropic stems grow vertically and bifurca-
tions are uncommon. Although they have a normal crown, it
is difficult to use them in large scale because they are rare.
Plagiotropic stems have branches and produce seeds preco-
ciously, but they also grow horizontally and have a short life
cycle. Grafting demands a great level of knowledge from
botanists and, even though it grants increased productivity
andmore homogeneous forests, it reduces the plants’ genetic
variability by an unnatural process (Constantino and Zanette
2016; Wendling 2011; Zanette et al. 2011).

A major challenge to pursue any pattern recognition
research is the lack of consistent and reliable databases. To
overcome this difficulty, we have introduced a database in
this work composed of NMR of adult Araucaria angusti-
folia plants. We have also presented a new strategy, based
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on statistical analysis, in order to select subsets of attributes.
We have evaluated the proposed selecting strategy on the new
database through a comprehensive set of experiments. Our
best result was an accuracy of 80.3% (σ = 0.0, AUC= 79.6),
using selected subsets of only 13.7 (σ = 6.0) attributes. The
database introduced in this work will make future bench-
mark and evaluation possible. The proposed strategy to select
attributes can also be useful to reduce the complexity of any
database and accelerate the process of building classification
models.

This paper is structured as follows: Section 2 presents the
used materials and methods. Section 3 reports our experi-
ments and discusses the results. Finally, Sect. 4 concludes
the work.

2 Materials andmethods

Here, we briefly present the NMR technique (Sect. 2.1) and
the proposed database (Sec. 2.2). Section 2.3–2.6 describes
strategies applied to identify the gender of Araucaria angus-
tifolia plants. In order to show that choices, in terms of
experiment settings, do not have a significant impact on the
accuracy, each experiment was performed three times. The
low values for standard deviation demonstrate the stability
of our methods and results.

2.1 Nuclear magnetic resonance

Plants are affected by their gender and such influence car-
ries on distinct metabolic behaviors. Thus, further studies
could provide a good alternative to distinguish betweenmales
and females. In spite of there being other options, such as
Mass Spectrometry, Raman and Infrared, we have chosen
the well-known Nuclear Magnetic Resonance (NMR) tech-
nique, because of its superiority in terms of repeatability and
accuracy. It simultaneously provides information about a set
of metabolites in a single run, without specifying a particular
element. In addition, NMR can also be used to identify struc-
tures of metabolites and quantify their absolute and relative
concentration measures (Nicholson and Lindon 2008).

NMR spectroscopy was originated with the development
of pulsed Fourier transform (Ernst and Anderson 1966) and
the concept of multidimensional NMR spectroscopy (Jeener
and Broekaert 1967). Nuclear magnetism and NMR spec-
troscopy are the manifestations of a nuclear spin angular
momentum (Cavanagh et al. 1995). Good references can be
found in Butterworth et al. (2001), Cavanagh et al. (1995),
and Rith and Schafer (1999).

Ernst and Anderson (1966) reassure that the frequency
response function and the unit impulse response of a linear
system form a Fourier transform pair. Both of them contain
the exact same information. In magnetic resonance, the first

one is usually called spectrum, while the second is repre-
sented by the free induction decay. The authors have shown,
theoretical and experimentally, that Fourier transform spec-
troscopy is able to improve the sensitivity of the magnetic
resonance in up to a factor of 10, in sensitivity, in a restricted
time, and in up to a factor of 100, in time, for a given sensi-
tivity.

NMR spectroscopy and x-ray crystallography are the only
techniques capable of determining three-dimensional struc-
tures of macromolecules in an atomic resolution (Cavanagh
et al. 1995). NMR spectroscopy is an analytical tool
that can provide information on the chemical nature of
metabolites, and, if performed in vivo, it can also pro-
vide non-invasive information on cellular environments and
metabolism (Suarez et al. 1999). Figure 1 presents a represen-
tative 1H-NMR spectrum of Araucaria Angustifolia needles.
The intensity of the peaks in the NMR spectra is proportional
to the compounds that originated them. The challenging
problem of identifying the gender of such plants, by using
NMRspectroscopy, is tofind thepeaks havingdifferent inten-
sities in the two groups of spectra.

Analyzing spectra from different perspectives is impor-
tant, when using NMR. A possible way to do that is by
using buckets, where each bucket summarizes a set of points.
Thus, the usage of buckets decreases the resolution, due to a
set of points, which are reduced to only one point. In addi-
tion, buckets reduce the size of spectra, making chemometric
calculations faster, as well as decreasing the redundancy of
variables. However, the most important advantage of using
buckets is the alignment of spectra (Euceda et al. 2015; Keun
et al. 2003; Rinnan et al. 2009; Sousa et al. 2013; Vu and
Laukens 2013).

Different alternatives are available to determine howbuck-
ets will be defined. We can determine whether all buckets
will have the same size or each one will have a specific size.
Another important question is to define how a set of points
will be summarized. A simple way to produce buckets is to
sum the point intensities. It is not a simple task to define the
ideal bucket size. Good references can be found in Sousa
et al. (2013), and Vu and Laukens (2013).

2.2 Database

A major challenge to pursue research involving pattern
recognition is the lack of consistent and reliable databases.
Usually researchers perform their experiments on particular
databases that are not accessible to the others. Therefore, it
is difficult to develop new studies and reproduce the previ-
ous ones. Additionally, as we have shown in Sect. 1, most
databases relating to NMR or discriminating the gender of
Araucaria angustifolia plants, usually contain few instances.

It is worth noting that there is no prohibitive aspect con-
cerning the gathering of more samples to create a database.
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Fig. 1 1H-NMR spectrum of needles of Araucaria angustifolia needles (CDCl3, 600 MHz). Y -axis has arbitrary units

However, there are some restrictions in terms of logistic and
technical limitations that could, in the least case scenario,
raise the final cost. Such restrictions include the flowering
period, a botanist to identify male and female plants, as well
as a set of procedures to be followed and materials to be used
in the process.

To overcome such a difficulty, we have introduced a new
database in this work, composed of only two classes, but
useful for any research carried on to identify the gender
of Araucaria angustifolia plants. This database was built
in collaboration with the Laboratory of Nuclear Magnetic
Resonance at the Federal University of Paraná (UFPR) and
the Laboratory of Nuclear Magnetic Resonance at the Fed-
eral University of Goiás (UFG), both of them in Brazil. It is
available upon request for research purposes.1

In order to create the database, during the flowering sea-
son (July 2015), we collected needles from adult Araucaria
angustifolia plants, in the metropolitan region of Curitiba,
state of Paraná, Brazil. A botanist visually determined the
gender, based on the presence of flowers in females and stro-
bilus in males (Fig. 2). From the 76 plants used, 35 were
males, while 41 were females. Thus, the introduced database

1 https://web.inf.ufpr.br/vri/databases/araucaria-nuclear-magnetic-
resonance/.

is slightly imbalanced, with six (7.9%) more female than
male individuals.

At this stage, several pre-treatments were evaluated. In
the best one, we macerated the needles with liquid nitro-
gen until a fine powder was obtained. In our analysis, 30.0
mg of needle powder was put in a 2-mL Eppendorf recipi-
ent. After that, 600 μL of deuterated chloroform solvent was
added. Extracts were taken for 10 minutes under ultrasound
assistance. Finally, after a centrifugation process, the liquid
fraction was put in a 5-mm diameter tube.

Analysis concerning 1H NMR spectra was carried on in a
BRUKER Avance III 600 MHz. In order to proceed with the
spectra acquisition, we used the Bruker’s Quadruple (QXI)
Resonance Probes equipment and the following set of param-
eters: relaxation delay of a second, receiver gain of 145.6,
spectral window of 30 ppm (parts per million), 256 scans
and 90O -pulse sequence zg (zero-go).

Spectra processing applied the Bruker’s TopSpin 3.1 and
Amix� v. 3.9.14 software systems. By using the first one,
the baseline was automatically adjusted with an ‘absn’ func-
tion. A manual phase correction was performed. Taking
tetramethylsilane (TMS) as reference, spectra were cali-
brated to zero. While performing the acquisition, spectra
were smoothed by a function in which the factor ‘lb’ was
set to 0.3. The Amix� v. 3.9.14 software was used to define
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Fig. 2 Araucaria angustifolia:
a, b male strobilus, and c, d
female flowers

the buckets. Finally, noise and solvent spectral regions were
eliminated (Sousa et al. 2013).

Taking the original spectra, we have analyzed different
strategies to define the size of the buckets, while looking for a
perspective that could improve accuracy.We have tested rect-
angular buckets, as well as the optimized bucketing method
for NMR spectra presented by Sousa et al. (2013). For both
strategies, a new value for each bucket was taken as the sum
of intensities of those points belonging to that bucket. The
best results were produced by individuals composed of 260
rectangular buckets taken from the 3189 original attributes.
After a reduction of more than 12 times, each bucket was
taken as an attribute and each individual was represented by
a set of only 260 attributes.

2.3 Classificationmodels

After identifying the 260 buckets, we used them to build
our classifiers. While carrying out the experiments, we ana-

lyzed differentmachine learning algorithms: kNN(k-Nearest
Neighbors), LDA (Linear Discriminant Analysis) and Sup-
port Vector Machine (SVM). After that, while performing
the following experiments, we took the previous results as
a parameter and assessed the real improvements brought by
each tested strategy.

For all classifiers, the datawere normalized by theZ-Score
method in order to rescale each column to the [-1...+1] inter-
val. Different values were tested for the kNN neighborhood
size. For the SVM, different kernels were tried, but the Gaus-
sian kernel produced the best results. The kernel parameters
γ and C were defined empirically through a grid search on
the validation set.

LDA and kNN, different from SVM, do not provide prob-
abilities for each possible class. However, such information
is necessary in order to calculate the Area under the Curve
(AUC). These probabilities were provided by normalizing
the amount of votes for each class by the total of neighbors
taken in each variation in k. For the LDA, the value generated
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by each discriminant function was divided by the sum of all
of them.

The introduced database represents an important improve-
ment concerning the problem of identifying the gender of
Araucaria angustifolia plants and any experimental protocol
can be used with it. In our experiments, different strategies
were tried out, but leave-one-out produced the best results,
due to the low number of instances. Thus, each instance from
the original database was used in the testing set, while the
training set was composed of the remaining 75.

This strategy is identified as ‘A’. As we have a 2-class
problem, different measures can be calculated from a 2 × 2
confusion matrix (Fig. 3), according to Eqs. 1–4, where
FP, FN , T P and T N stand for False Positive, False Neg-
ative, True Positive and True Negative, respectively. This
representation is usefulwhile analyzing the frequency ofmis-
takes made at each class or pair of classes in terms of Type I
(FP) and Type II (FN) errors. In spite of the mentioned possi-
bility of planning a spatial distribution of males and females
in fields and forests, and the fact that there is a preference for
a higher number of females thanmales, while performing the
experiments, female was always considered as the positive
class and Type I errors should be minimized.

As stated previously, the introduced database is slightly
imbalanced. So, it is interesting to evaluate the achieved
results, through different measures other than accuracy.
Accuracy (Eq. 1) calculates howmany real positive instances
were labeled as positive (TP) and how many real negative
instances were labeled as negative (TN). In other words,
accuracy is evaluated by counting the instances that were
correctly classified, i.e., females and males truly classified as
females and males, respectively. Precision (Eq. 2) assesses
how many individuals predicted as positive were actually
positive, i.e., how many instances classified as females
belonged to the female class. This is a good measure to be
used in cases where the cost of FP is high, which for this
case would be to classify males as females. Recall (Eq. 3)
calculates how many real positive instances were labeled as
positive (TP) by a model, i.e., how many instances classi-
fied as females were actually females. By applying the same
understanding, Recall would be ametric model to be used for
selecting the best model, when there is a high cost associated
with FN, which for this case would be to classify females as
males. On the other hand, F1 Score (Eq. 4) is useful when
we are seeking a balance between precision and recall, and
where there is an uneven class distribution.

ROC (Receiver Operating Characteristic) curves are also
attractive, because they are insensitive to changes in the class
distribution. If the proportion of positive to negative instances
changes in a test set, the ROC curves will not change. The
AUC (AreaUnder the ROCCurve) of a classifier is a numeric
value that represents the ability of a classifier to rank positive
instances relative to negative instances, i.e., it is equivalent to

Fig. 3 2 × 2 confusion matrix

the probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
instance (Fawcett 2006).

The evaluation of those metrics with values in the interval
[0...100] is presented for all the experiments.

Accuracy = T P + T N

T P + T N + FP + FN
∗ 100 (1)

Precision = T P

T P + FP
∗ 100 (2)

Recall = T P

T P + FN
∗ 100 (3)

F1 Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(4)

2.4 Genetic algorithms

Optimization is in almost every aspect of life, inspiring the
development of numerical procedures that satisfy prevailing
constraints by systematically choosing the values of variables
fromwithin an allowed set (Arqub andAbo-Hammour 2014).
It is also a branch of mathematics concerned with obtaining
the conditions that give the best solution represented by an
extreme (maximum or minimum) value of a real function, or
many functions, under given circumstances to find feasible
solutions to real-life problems (Sahab et al. 2013).

Modern optimization techniques have been emerged as
powerful and popular methods for solving complex real-life
optimization problems (Sahab et al. 2013). Among them, we
can enumerate genetic algorithms (Holland 1975; Goldberg
1989a; Goldberg et al. 1989), simulated annealing (Kirk-
patrick et al. 1983), particle swarm optimization (Kennedy
and Eberhart 1995), ant colony optimization (Dorigo 1992;
Dorigo et al. 2006; Blum 2005), bee colony optimization
(Teodorović andDell’Orco 2005), harmony search algorithm
(Geem et al. 2001), firefly algorithm (Yang 2010), cuckoo
search (Yang and Deb 2009) and bat algorithm (Yang and
He 2013).

The well-known genetic algorithm (GA) is an optimiza-
tion technique based on the principles of genetics and natural
selection. GA has been widely used to build good solutions
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for different types of problems in different disciplines. Good
references for GA can be found in Arqub andAbo-Hammour
(2014), Holland (1975), Goldberg (1989a), Goldberg et al.
(1989) and Sastry et al. (2005). Looking to increase the accu-
racy achieved for the recognition of gender of the Araucaria
angustifolia plants, we have used GA to select subsets from
the 260 original attributes. GA was a useful tool in the pro-
cess of finding subsets of attributes with higher relevance for
this problem.

In the GA technique, once the problem is encoded in a
chromosomal manner and a fitness function is defined to
measure and discriminate good solutions from bad ones, we
start evolving solutions to the search problem. In this pro-
cess, there is an initialization step and a circular repeating
subprocess with the following steps: evaluation, selection,
crossover, mutation and replacement. Such a subprocess
goes on until a solution that satisfies the stop condition
is met. It repeatedly modifies a population of individual
solutions and randomly selects individuals on the basis of
fitness value from the current population to be parents and
uses them to produce the offspring for the next popula-
tion.

Evaluation is based on a fitness function. The design of
fitness function is very essential in genetic algorithm as the
desired output depends heavily on it. The fitness value of
each individual is computed by applying the fitness function
to it. A fitness function is an application-specific objective
function used to evaluate relative effectiveness of the poten-
tial solutions. For the standard optimization algorithm, it is
known as objective function.

Crossover and mutation perform two different roles.
Crossover (like selection) is a convergence operation which
is intended to pull the population toward a local mini-
mum/maximum. Mutation is a divergence operation. It is
intended to occasionally break one or more individuals of
a population out of a local minimum/maximum space and
potentially discover a better minimum/maximum space. The
parameters that guide these two operations are defined empir-
ically.

The heart of GA is its fitness function and a set of param-
eters that allows to generate and select promising solutions.
However, such GA parameters are problem specific, and
hence, success depends on the choice of them (Arqub and
Abo-Hammour 2014; Holland 1975; Goldberg 1989a; Gold-
berg et al. 1989; Sastry et al. 2005). Taking it into account,
we evaluated different combinations of parameters. For each
combination, we performed three runs from which we took
the average and standard deviations. While presenting our
results, only the best ones are discussed. It is worth not-
ing that the standard deviation was calculated for the results
achieved in each GA generation, and the general low resul-
tant values demonstrated the stability of our methods and
results.

It is known that dissimilarity among the individuals is
necessary in order to generate a diverse new population in
each GA generation. Thus, a stop condition was empirically
defined based on the similarity degree of the individuals in
the population.We identified that, at certain similarity degree,
GA was not able to generate new individuals capable of pro-
ducing an increase in accuracy and a decrease in the selected
attributes.

All GA runs started and kept populations of 1000
individuals in all their generations. Each individual was
represented by a numeric array with 260 columns filled
with ones and zeros. Columns with the value one indi-
cated that such features were present in an individual.
On the other hand, columns with zeros indicated that
such features were not present in the respective indi-
vidual. In this case, each GA individual represented an
evaluation of the original database filtered only by those
attributes set with ones among the original ones. In other
words, the leave-one-out strategy was applied for each
new configuration of each individual in the GA popula-
tion.

In the first generation, each individual had its initial con-
figuration randomly defined, i.e., its 260-column arrays were
filled with zeros and ones. Hereafter, in each new GA gen-
eration, mutation and crossover operations were performed
on individuals in order to create new ones. Such operations
were performed only if a randomly given number in the
[0...1] interval was higher than specific threshold values,
i.e., 0.5 and 0.2 for crossover and mutation, respectively.
As previously mentioned, such values were defined empir-
ically through tests with a wide range of configurations in
our experiments. In fact, the mutation probability is higher
than the reported in the literature, but in our experiments this
value produced the best results. After creating a new popu-
lation, the individual with the worst evaluation was always
replaced by the best-evaluated individual from the previous
generation. Such an option granted a stable increase in accu-
racy.

While using the GA technique, we assessed two different
objective functions. In the first one, named strategy ‘B,’ the
objective function was given by Eq. 1 and took into account
only accuracy maximization. While evaluating such a strat-
egy, we identified a stagnation concerning an increase in
accuracy and a decrease in selected attributes (nf ). Thus,
experiments based on a new strategy, named ‘C,’ were per-
formed. Here, a new criterion concerning nf was added to
the objective function used in ‘B’. Equation 5 illustrates the
new function in which we have weights for the real accuracy
(Eq. 1) and the percentage of nf attributes (Eq. 6) selected
from the N (N = 260) original attributes. Different values for
the weights pa and pf were tried out to produce the weighted
accuracy tw, but they were always complementary to each
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other (Eq. 7).

tw = Accuracy ∗ pa + t f ∗ p f (5)

t f =
(
1 − n f

N

)
∗ 100 (6)

p f = (1 − pa) (7)

2.5 Pre-selecting the initial configuration for the GA
population

When analyzing the previous results, we identified a delay of
150 to 200 GA generations until the accuracy could be sta-
bilized. Taking this into account, we looked for alternatives
to perform a pre-selection of attributes to be used in order to
initialize individuals of the first GA population. Such a strat-
egy has been shown useful, mainly for an early convergence
of accuracy in terms of GA generations, as well as a decrease
in computational complexity and cost to build classification
models.

The achieved results corroborated with the well-known
‘curse of dimensionality,’ for which the performance of sim-
ilarity measures and classification models tends to degrade
as fast as the dimensionality of the data increases (Houle
et al. 2010). In other words, when working with problems
for which the number of parameters far exceeds the number
of samples to learn from, built models are not able to distin-
guish elements from distinct classes (Kuo and Sloan 2005;
Worzel et al. 2007).

In addition, when dealing with complex problems, a high
number of attributes can cause troubles in terms of scalabil-
ity (processing, memory, time etc.). At the same time, noisy,
irrelevant or redundant attributes can confuse the learning
algorithm, as well as hide a distribution of small sets of rele-
vant attributes and harm building models and their accuracy.

The pre-selection of attributes was based on two hypothe-
ses. For the first one, instances belonging to a same class
would be close to each other. At the same time, instances
belonging to a same class would be far from those belonging
to other classes. Consequently, there would be lower vari-
ances internally to each class and higher variances when the
whole database was considered. For the second hypothesis,
class’ centroids given by vectors ofmediumvalues calculated
for each column would be far from each other.

Based on the previously stated hypotheses, a diverse set of
statistical analysis was carried out in order to select a subset
of attributes considering only average and standard devia-
tion calculated in columns, classes and the whole database.
For Eq. 8 to 13, we have N (N = 260) columns (attributes),
M (M = 76) instances, Mc instances for each class c, and
vi, j,c represents the original value for each attribute. Equa-
tions 8 and 9 provide attribute vectors with averages μ j,c

and standard deviation σ j,c calculated for each column j of

a class c, respectively. In Eq. 10, σ ∗
c represents the average

of standard deviation calculated for each column of a class c.
Equations 11 and 12 provide attribute vectors with averages
μ j and standard deviation σ j calculated for each column j
when the whole database is considered. Finally, in Eq. 13,
σ ∗ represents the average of standard deviation calculated
for each column when the whole database is considered.

As stated previously, in Sect. 2.4 each individual of the
first GA generation had its attribute configuration randomly
defined, i.e., its 260-column arrays were filled with zeros
and ones. In the present strategy, all of the 1000 individu-
als were also represented by 260-column arrays filled with
zeros and ones. However, in the first GA generation, only
the selected attributes were set with ones and the remaining
ones were set with zeros. As a result, all individuals in the
population were equal to each other, but a diversified pop-
ulation was produced by GA operations randomly applied
during each run throughout the GA generations, producing
distinct partial and final states. This way, even those previ-
ously unselected attributes in the first generation could be
included throughout the following GA generations. The low
values for standard deviation reassured the GA technique
robustness and accuracy stability.

A diverse set of arrangements of the conditions presented
in Eqs. 8 to 13 were tried out. Best results were achieved by
taking all of the 1000 individuals in the first GA generation,
initialized with only a 22-attribute subset, which simultane-
ously satisfied both conditions (Eqs. 14 and 15 ). In other
words, only the 22 selected attributes were set with ones,
while all the remaining ones were set with zeros.

μ j,c =
∑Mc

i=1 vi, j,c

Mc
j = [1, N ], c = [1, 2] (8)

σ j,c =
√∑Mc

i=1(vi, j,c − μ j,c)2

Mc
j = [1, N ], c = [1, 2] (9)

σ ∗
c =

∑N
j=1 σ j,c

N
c = [1, 2] (10)

μ j =
∑M

i=1 vi, j,c

M
j = [1, N ], c = [1, 2] (11)

σ j =
√∑M

i=1(vi, j,c − μ j )2

M
j = [1, N ], c = [1, 2] (12)

σ ∗ =
∑N

j=1 σ j

N
(13)

|μ j,1 − μ j,2| >

∑N
l=1 |μl,1 − μl,2|

N
(14)

σ j,c > σ ∗
c j = [1, N ], c = [1, 2] (15)

From Eq. 14, we have a condition in which the distance
between medium values μ j,c of a column j for classes c
(c = [1, 2]) must be higher than the average distance calcu-
lated for all columns l (l = [1, N ]). In other words, such a
condition defines that columns j that have medium values
(class centroid) μ j,c farther from each other are selected.
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Equation 15 defines that a column j is selected if its
standard deviation σ j,c calculated for instances belonging
to a class c is higher than the average standard deviation σ ∗

c
(c = [1, 2]). σ ∗

c is calculated for all columns l (l = [1, N ]),
but internally to each class c. This condition determines that
columns that have values very close to each other are useless
in the process of identifying or distinguishing individuals
from different classes, and only columns with higher disper-
sion in their values are selected.

Hereafter, all the previous experiments performed for the
original 260-attribute databasewere repeated. In strategy ‘A,’
only the 22 selected attributes were used. On the other hand,
in strategies ‘B’ and ‘C,’ all of the 1000 individuals were
represented by 260-column arrays filled with zeros and ones,
but in the first GA generation only the 22 selected attributes
were set with ones and the remaining ones were set with
zeros.

2.6 Multiple classifier systems

When looking for alternatives to improve our previous
results, we have also evaluated two alternatives for Multiple
Classifier Systems (MCS) while selecting attribute subsets.
The first onewas theRandomForest Classifier (RFC). RFC is
a meta-estimator that fits a number of decision tree classifiers
on various sub-samples of the database and uses averaging to
improve the predictive accuracy and control over-fitting. The
sub-sample size is always the same as the original input sam-
ple size, but samples are drawnwith replacements (Pedregosa
et al. 2011).

The Gradient Boosting Classifier (GBC) was also used
for classification. GBC builds an additive model in a forward
stage-wise fashion; it allows for the optimization of arbitrary
differentiable loss functions. As we are dealing with a binary
classification, a single regression tree is fit on the negative
gradient of the binomial or multinomial deviance loss func-
tion (Pedregosa et al. 2011).

3 Results

Table 1 presents the best results for the original database with
260 columns. In this case (strategy ‘A’), only one runwas per-
formed and the standard deviation (σ ) was not calculated. For
kNN, the best k is presented. SVM presented slightly higher
results and was elected as the machine learning algorithm to
be used in the following experiments.

Taking only accuracy maximization (strategy ‘B’) and the
SVM classifier into account, the best results were: 61.2%
(σ = 7.8) of accuracy; 62.1% (σ = 8.4) of precision; 63.5%
(σ = 8.9) of recall; 62.7% (σ = 8.4) of f1 score; and 65.2
(σ = 5.5) forAUC.These resultswere reached in the 53a GA
generation byusing individuals composedof 124.3 (σ = 4.7)

Table 1 Best single classifier results (in %) on the original database
using strategy ‘A’

Classifier Accuracy Precision Recall F1 Score AUC k

SVM 60.5 62.2 68.3 65.1 67.3 –

k-NN 60.5 62.8 65.9 64.3 60.8 1

LDA 57.9 60.0 65.9 62.8 57.4 –

Table 2 Best SVM results (in%) on the original database using strategy
‘B’: minimum, maximum, average and standard deviation

Classifier Accuracy Precision Recall F1 Score AUC

Mim 50.0 53.3 51.4 52.9 58.5

Max 69.7 72.5 73.2 71.6 71.8

Avg 61.2 62.1 63.5 62.7 65.2

Std 7.8 8.4 8.9 8.4 5.5

selected attributes. The achieved minimum (min), maximum
(max), average (avg) and standard deviation (std) values for
these measures are shown in Table 2.

3.1 Multi-objective genetic algorithm

Figure 4a presents the evolution of weighted accuracy (Eq. 5)
for some tested arrangements for theweights pa and pf, while
using strategy ‘C’. Legend values represent the pf weights
used in each set of experiments. The other ones are not pre-
sented in thewhole report, because they reached intermediate
results.

Figure 4a, b shows that higher values for pf imposed a
reduction in selected attributes. Such values also boosted
the weighted accuracy used as objective function by the GA
technique to select subsets of attributes throughout its gener-
ations. That fact can be explained by both Eqs. 5 and 6. From
Eq. 6, tf tends to 1 as nf tends to zero. Thus, lower values
for nf and higher values for pf produce higher values for the
weighted accuracy, which almost has no influence from the
real accuracy (Eq. 1).

While Fig. 4a shows the expected increase in weighted
accuracy, Fig. 4b, c depicts a higher instability. Sometimes,
the weighted accuracy improved by a new smaller subset of
attributes, but at other times it happened with a new bigger
subset of attributes that provided an increase in real accuracy
(Eq. 1).

By using individuals composed of 14.3 (σ = 2.5) attributes
in the 284a GA generation with pa and pf values of 0.5,
the best results were: 79.4% (σ = 0.6) of accuracy; 77.5%
(σ = 0.7) of precision; 87.0% (σ = 1.1) of recall; 82.0%
(σ = 0.6) of f1 score; and 79.2 (σ = 1.4) for AUC. The
best values for weighted accuracy were achieved by using
balanced values for pa and pf. Such values neither privi-
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Fig. 4 Results achieved by the best-evaluated individual in each GA
generation: a weighted accuracy; b number of attributes; and c real
accuracy

Table 3 Best SVM results (in%) on the original database using strategy
‘C’: minimum, maximum, average and standard deviation

Classifier Accuracy Precision Recall F1 Score AUC

Mim 78.9 76.6 85.4 81.4 77.2

Max 80.3 78.3 87.8 82.8 80.3

Avg 79.4 77.5 87.0 82.0 79.2

Std 0.6 0.7 1.1 0.6 1.4

leged only an accuracy increase nor a reduction in selected
attributes, but both of them. The achieved minimum (min),
maximum (max), average (avg) and standard deviation (std)
values for these measures are shown in Table 3.

From the three runs, 37 different attributes were selected
43 times, in order to form the best general individuals. There
was a high dispersion concerning the selected attributes.Only
four out of 37 attributeswere selected to form the best general

Table 4 Best single classifier results (in %) on the database with only
the pre-selected 22-attribute subsets and the strategy ‘A’

Classifier Accuracy Precision Recall F1 Score AUC k

SVM 68.4 67.3 80.5 73.3 69.4 –

k-NN 69.7 67.3 85.4 75.3 60.8 7

LDA 61.8 64.3 65.9 65.1 66.8 –

Table 5 Best SVM results (in %) on the database with only the pre-
selected 22-attribute subsets and the strategy ‘B’: minimum, maximum,
average and standard deviation

Classifier Accuracy Precision Recall F1 Score AUC

Mim 76.3 75.6 82.9 79.1 77.8

Max 78.9 77.8 85.4 81.4 79.8

Avg 77.6 76.9 83.7 80.2 78.7

Std 1.1 1.0 1.1 1.0 0.8

individual inmore thanone run.Additionally, considering the
original database, only three out of the 260 attributes were
never selected to form the best individual in at least one GA
generation.

3.2 Pre-selecting the initial configuration for the GA
population

Table 4 presents the results achieved by using only the 22 pre-
selected attributes and the strategy ‘A’. It is worthmentioning
that in this case we have ignored all remaining 238 attributes.
When analyzing these results, we noticed an improvement in
about eight percentual points in accuracy and a decrease in
about 91.5% in the number of attributes.

As stated previously in Sect. 2.5, in our next experiments
(strategies ‘B’ and ‘C’), all of the 1000 individuals were also
represented by 260-column arrays filled with zeros and ones.
However, in the first GA generation only the 22 preselected
attributes were set with ones and the remaining ones were
set with zeros. Consequently, all individuals in the popula-
tion were equal to each other, but a diversity population was
produced by GA operations throughout the GA generations.
Thus, even those previously unselected attributes in the first
generation could be included later in the following GA gen-
erations.

We have achieved the following results, by using strategy
‘B’: 77.6% (σ = 1.1) of accuracy; 76.9% (σ = 1.0) of preci-
sion; 83.7% (σ = 1.1) of recall; 80.2% (σ = 1.0) of f1 score;
and 78.7 (σ = 0.8) for AUC. They were achieved by individ-
uals with 21.3 (σ = 2.6) selected attributes in the 288a GA
generation. The achieved minimum (min), maximum (max),
average (avg) and standard deviation (std) values for these
measures are shown in Table 5.
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Fig. 5 Accuracy achieved by the best-evaluated individual in each GA
generation: a weighted accuracy; b number of attributes; and c real
accuracy

Figure 5a presents the evolution of weighted accuracy
(Eq. 5) for some tested arrangements for the weights pa and
pf, while using strategy ‘C’. Again, legend values represent
the pf weights used in each set of experiments. The other
ones are not presented in the whole report, due to the fact
that they reached intermediate results.

Figure 5a, b shows, once more, that higher values for pf
imposed a reduction in selected attributes. They also boosted
the weighted accuracy (Eq. 5) used as an objective function
by GA technique to select subsets of attributes through its
generations. Again, such a fact can be explained by both
Eqs. 5 and 6 .

Similar toFig. 4,while Fig. 5a shows the expected increase
in weighted accuracy, Fig. 5b, c depicts a higher instability.
Once more, sometimes weighted accuracy was improved by
a new smaller subset of attributes, but at other times it hap-
pened with a new bigger subset of attributes that provided an
increase in real accuracy (Eq. 1).

Table 6 Best SVM results (in %) on the database with only the pre-
selected 22-attribute subsets and the strategy ‘C’: minimum, maximum,
average and standard deviation

Classifier Accuracy Precision Recall F1 Score AUC

Mim 78.9 76.6 85.4 81.4 77.1

Max 80.3 78.3 87.8 82.8 80.1

Avg 79.4 77.5 87.0 82.0 78.4

Std 0.6 0.7 1.1 0.6 1.3

The best values for weighted accuracy were achieved
by using balanced values for pa = 0.7 and pf = 0.3. Such
weights represent a lower preference for an accuracy increase
than a reduction in selected attributes. The best results were
achieved by using individuals composed of 24.7 (σ = 6.7)
attributes in the 49a GA generation: 79.4% (σ = 0.6) of
accuracy; 77.5% (σ = 0.7) of precision; 87.0% (σ = 1.1)
of recall; 82.0% (σ = 0.6) of f1 score; and 78.4 (σ = 1.3)
for AUC. The achieved minimum (min), maximum (max),
average (avg) and standard deviation (std) values for these
measures are shown in Table 6.

From the three runs, 45 different attributes were selected
74 times to form the best general individuals. Considering the
22 pre-selected attributes, only 18 were selected 41 (55.4%)
times to form the best final individual in at least one run. The
remaining four attributes were never selected to form the best
general individual. Other 27 new attributes were selected 33
(44.6%) times and formed the best general individual in at
least one run.

When analyzing the 45 different selected attributes, a high
frequency of those relating to the highest buckets was identi-
fied. In addition, although the general selecting rates (55.4%
and 44.6%) for both subsets are similar, the frequencies in
which the attributes from each onewere selected are very dif-
ferent. Table 7 demonstrates that the 18 initially pre-selected
attributes were chosen more than once, while the new ones
were usually chosen only once, possibly as complementary
information.

Based on Table 7 and the 22 pre-selected attributes, we
realized that two of them were selected only once, nine were
selected twice, and seven were selected in all of the three
runs. Considering the 27 complementary attributes, 22 of
them were selected only once, four were selected twice, and
only one was selected in all of the three runs.

3.3 Multiple classifier systems

When applying the GA technique on the original 260-
attribute and 22-pre-selected-attribute databases, we evalu-
ated two alternatives for MCS. Tables 8 and 9 present the
best results achieved for the GA technique, and the RFC
and GBC algorithms. Both of them were evaluated only for
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Table 7 Frequency of attributes selected to form the best general indi-
viduals

Attribute subset/ 22 27
# Selection # % # %

1 2 4.9 22 66.7

2 18 43.9 8 24.2

3 21 51.2 3 9.1

Totals 41 100.0 33 100.0

Table 8 Best RFC and GBC accuracy while applying the GA selection
(strategy ‘C’) on the original 260-attribute and 22-pre-selected-attribute
databases

Attribute Accuracy Attributes
Subset Strategy % σ AUC # σ # Gen.

22 RFC 71.5 7.6 69.1 25.7 8.7 87

GBC 80.3 0.0 79.4 13.7 6.0 284

260 RFC 67.1 7.7 68.1 105.0 1.6 7

GBC 79.4 1.2 79.3 22.0 3.6 293

Table 9 Precision, recall and f1 score concerning the accuracy pre-
sented in Table 8

Attribute Precision Recall F1 Score
Subset Strategy % σ % σ % σ

22 RFC 72.8 7.5 75.6 6.0 74.2 6.7

GBC 80.2 2.3 84.6 4.1 82.2 0.7

260 RFC 68.2 7.2 74.0 5.7 70.9 6.4

GBC 77.5 1.0 87.0 1.1 82.0 1.1

Table 10 BestRFC results (in%)on the original database using strategy
‘C’: minimum, maximum, average and standard deviation

Classifier Accuracy Precision Recall F1 Score AUC

Mim 56.6 58.7 65.9 62.1 59.3

Max 75.0 76.2 78.0 77.1 76.6

Avg 67.1 68.2 74.0 70.9 68.1

Std 7.7 7.2 5.7 6.4 7.1

the best values found in strategy ‘C’. In general, the results
achieved by using the pre-selecting strategy surpassed the
original database for GBC and RFC. In addition, the GBC
results surpassed those achieved by RFC. The same superi-
ority was shown for the number of selected attributes. The
achieved minimum (min), maximum (max), average (avg)
and standard deviation (std) values for these measures are
shown in Tables 10, 11, 12, 13.

Considering the original database, from the three runs
of GBC, 54 different attributes were selected 66 times to
form the best general individuals. Only 4 out of the 22 pre-
selected attributes were selected 6 (9.1%) times to form the

Table 11 Best RFC results (in %) on the database with only the pre-
selected 22-attribute subsets using strategy ‘C’: minimum, maximum,
average and standard deviation

Classifier Accuracy Precision Recall F1 Score AUC

Mim 63.2 65.1 68.3 66.7 64.1

Max 81.6 82.9 82.9 82.9 71.9

Avg 71.5 72.8 75.6 74.2 69.1

Std 7.6 7.5 6.0 6.7 3.6

Table 12 Best GBC results (in %) on the original database using strat-
egy ‘C’: minimum, maximum, average and standard deviation

Classifier Accuracy Precision Recall F1 Score AUC

Mim 77.6 76.1 85.4 80.5 78.6

Max 80.3 78.3 87.8 82.8 79.9

Avg 79.4 77.5 87.0 82.0 79.3

Std 1.2 1.0 1.1 1.1 0.5

Table 13 Best GBC results (in %) on the database with only the pre-
selected 22-attribute subsets using strategy ‘C’: minimum, maximum,
average and standard deviation

Classifier Accuracy Precision Recall F1 Score AUC

Mim 80.3 77.1 80.5 81.5 77.7

Max 80.3 82.5 90.2 83.1 82.4

Avg 80.3 80.2 84.6 82.2 79.4

Std 0.0 2.3 4.1 0.7 2.2

best final individual in at least one run. Other 50 attributes
were selected 60 (90.9%) times and formed the best general
individual in at least one run. For the same database, from
the three RFC runs, 204 different attributes were selected 315
times to form the best general individuals. Sixteen out of the
22 pre-selected attributes were selected 28 (8.9%) times to
form the best final individual in at least one run. Other 188
attributes were selected 287 (91.1%) times and formed the
best general individual in at least one run.

Considering the 22 pre-selected attribute database, from
the three GBC runs, 31 different attributes were selected 41
times to form the best general individuals. Thirteen out of
the 22 pre-selected attributes were selected 22 (53.7%) times
to form the best final individual in at least one run. Eighteen
other attributes were selected 19 (46.3%) times and formed
the best general individual in at least one run. For the same
database, from the three RFC runs, 43 different attributes
were selected 77 times to form the best general individuals.
All of the 22 pre-selected attributes were selected 54 (70.1%)
times to form the best final individual in at least one run; 21
other attributes were selected 22 (28.6%) times and formed
the best general individual in at least one run.
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Table 14 Synthesis of the achieved results

Attribute Accuracy Attributes
Subset Strategy % σ AUC # σ # Gen.

22 A 68.4 – 69.4 22.0 – –

B 77.6 1.1 78.7 21.3 2.6 288

C 79.4 0.6 78.4 24.7 6.7 49

RFC 71.5 7.6 69.1 25.7 8.7 87

GBC 80.3 0.0 79.4 13.7 6.0 284

260 A 60.5 – 67.3 260.0 – –

B 61.2 7.8 65.2 124.2 4.7 53

C 79.4 0.6 79.2 14.3 2.5 284

RFC 67.1 7.7 68.1 105.0 1.6 7

GBC 79.4 1.2 79.3 22.0 3.6 293

Table 15 Precision, recall and f1 score concerning the accuracy pre-
sented in Table 14

Attribute Precision Recall F1 Score
Subset Strategy % σ % σ % σ

22 A 67.3 – 80.5 – 73.3 –

B 76.9 1.0 83.7 1.1 80.2 1.0

C 77.5 0.7 87.0 1.1 82.0 0.6

RFC 72.8 7.5 75.6 6.0 74.2 6.7

GBC 80.2 2.3 84.6 4.1 82.2 0.7

260 A 62.2 – 68.3 – 65.1 –

B 62.1 8.4 63.5 8.9 62.7 8.4

C 77.5 0.7 87.0 1.1 82.0 0.6

RFC 68.2 7.2 74.0 5.7 70.9 6.4

GBC 77.5 1.0 87.0 1.1 82.0 1.1

3.4 Discussion

Tables 14 and 15 present a general synthesis of our results,
and Fig. 6 compares the ROC curves for the best ones. Our
best results were: 80.3% (σ = 0.0) of accuracy; 80.2% (σ =
2.3) of precision; 84.6%(σ = 4.1) of recall; 82.2%(σ = 0.7)
of f1 score; and 79.4 (σ = 2.2) for AUC. Except for the
recall measure, these results were reached by using the 22-
pre-selected attributes to set the initial GA population and
the GBC algorithm in the 284a GA generation. The final
individuals were composed of only 13.7 (σ = 6.0) selected
attributes.

In order to achieve such results, 31 different attributes
were used, which were selected 41 times, from which 13
belonged to the 22 pre-selected attributes and were selected
22 (53.7%) times. In general, there is always some advantage
to the database, based on the proposed pre-selecting strategy
when its results are compared to those achieved by using the
original database. Our experiments and their results assure
the effectiveness of our proposed strategy of pre-selecting

0 50 100
fp rate

0

50

100

tp
 r

at
e

GBC    22    (AUC  =  79.6)
GBC  260    (AUC  =  79.1)
RFC    22    (AUC  =  67.8)
RFC  260    (AUC  =  68.5)
SVM    22    (AUC  =  78.6)
SVM  260    (AUC  =  79.1)

Fig. 6 ROC curves for the best results in Table 14

attributes. However, there are certainly other attribute subsets
in the original database that could produce similar or better
results.

For strategies ‘A’ and ‘B,’ accuracy was about eight and
sixteen percentage points higher, respectively. For RFC and
GBC, accuracy surpassed by about four and one percentage
points, respectively. Only for strategy ‘C,’ did the accuracy
achieve similar results, but we selected fewer attributes when
using the original database. On the other hand, even in this
case,when using the pre-selected attributes, therewas a faster
convergence in terms of increasing accuracy and reducing the
selected attributes (Fig. 7).

As we have shown, the pre-selected attributes presented a
higher frequency in the final GA individual, even when the
original 260-attribute database was used. The other attributes
usually appeared once and could be considered as comple-
mentary information. From Sec. 3.1 and 3.2 , we have 11
attributes selected by using the original database and also
the pre-selected 22-attribute database. Four attributes were
always selected to form the best general GA individual. Only
one attribute was not selected by GA using the SVM classi-
fier on the original database. Also, only one attribute was not
selected by GA using RFC on the pre-selected 22-attribute
database.

4 Conclusion

In this paper, we introduced a new database composed of 76
NMR spectra of Araucaria angustifolia plants, which have
shown to be worthy for the challenging problem of identify-
ing their gender. A new strategy based on statistical analysis
to select subsets of attributes was also presented. Such a strat-
egy helped to reduce the size of the original set of attributes
and improve the performance of the built models in rela-
tion to recognition rates and computational costs. The results
reported in Tables 1 and 4 indicate that, by using only the 22-
pre-selected attributes from the 260 original set, there was an
accuracy improvement of 9.2 percentage points and a reduc-
tion of 91.5% in the amount of attributes.
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Fig. 7 Accuracy achieved by the best-evaluated individual in each GA
generation: a weighted accuracy; b number of attributes; and c real
accuracy

While looking for improving our results, we used the GA
technique to select new subsets of attributes. Here, we carried
experiments in which the initialization step took into account
all the original 260 attributes and also only the 22-pre-
selected attributes. Although similar results were achieved,
using a smaller initial set of attributes produced a faster con-
vergence of the GA technique.

Our best results were: 80.3% (σ = 0.0) of accuracy;
80.2% (σ = 2.3) of precision; 84.6% (σ = 4.1) of recall;
82.2% (σ = 0.7) of f1 score; and 79.4 (σ = 2.2) for AUC.
Except for the recall measure, these results were reached by
using the 22-pre-selected attributes to set the initial GA pop-
ulation and the GBC algorithm in the 284a GA generation.
The final individuals were composed of only 13.7 (σ = 6.0)
selected attributes, which represent the use of only 5.3% from
the 260 original set but an accuracy improvement by about
20.0 percentage points.

The results for the 2-class problem presented in this work
are very promising, since they can be used as an alternative
to plan a spatial distribution of plants in fields and forests.
In future work, we plan to test other machine learning algo-
rithms to solve any remaining confusion, as well as apply
techniques to select and combine their results. Our expecta-
tion is that this database will contribute to the field of forest
management and motivate more researchers to work in this
field. Additionally, the proposed selecting strategy would be
useful in order to reduce the complexity of any databases
and accelerate the process of building classification models.
In this context, one more future work arises, i.e., evaluating
the GA behavior by considering only pre-selected attributes
and not allowing the remaining ones to be added throughout
the GA generations.
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