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Abstract

Cancer is a serious public health problem worldwide, presenting high mortality rates and
overloading both public and private health systems. Especially in the female population, breast
cancer emerges as the second most incident and one of the most lethal types when not properly
diagnosed and treated. In spite of the significant progress reached through the diagnostic imaging
technologies, biopsy is the only way to diagnose with confidence if cancer is really present. Final
breast cancer diagnosis, including grading and staging, still continues to be done by pathologists
applying visual inspection of histological images under the microscope. Histopathological
analysis is a highly specialized and time-consuming task, extremely dependent on the experience
of the pathologists and directly influenced by factors such as fatigue and decrease of attention.
Recent advances in image processing and machine learning techniques, which allow CAD
(Computer-Aided Diagnosis) systems to be built, which in turn can assist pathologists to be more
productive, objective and consistent in the diagnosis process. Unfortunately, there is also a lack of
comprehensive and public annotated histological image databases intended for research in CAD
systems. Annotated databases are crucial for developing and validating machine learning systems.
Moreover, the performance of most conventional classification systems relies on appropriate
data representation and much of the efforts are dedicated to feature engineering, a difficult and
time-consuming process that uses prior expert domain knowledge of the data to create useful
features. By contributing to eliminate this gap, the present work introduces a new publicly
available image dataset named BreaKHis, which contains histopathological images of breast
tumors. This work also presents an alternative approach to classify these challenging images,
avoiding any explicit segmentation. Such approach explores hand-crafted textural descriptors
and automatic representation, particularly using Convolutional Neural Networks as well as the
paradigm Multiple Instance Learning. The obtained experimental results have demonstrated the
feasibility of this proposal, giving directions for improvement in such model.

Keywords: pattern recognition, breast cancer, histopathological image, deep learning, con-
volutional neural network, multiple instance learning, image processing, machine learning,
computer-aided diagnosis.



Resumo

O câncer é um grave problema de saúde pública mundial, apresentando altas taxas demortalidade
e sobrecarga dos sistemas de saúde públicos e privados. Especialmente na população feminina,
o câncer de mama surge como o segundo mais incidente e um dos tipos mais letais quando
não devidamente diagnosticado e tratado. Apesar do progresso significativo alcançado pelas
tecnologias de diagnóstico por imagem, a biópsia é a única maneira de diagnosticar com
confiança se o câncer está realmente presente. O diagnóstico final do câncer de mama, incluindo
graduação e estadiamento, ainda continua sendo feito por patologistas aplicando inspeção
visual de imagens histológicas sob o microscópio. A análise histopatológica é uma tarefa
altamente especializada, demorada, extremamente dependente da experiência dos patologistas e
diretamente influenciada por fatores tais como fadiga e diminuição da atenção. Avanços recentes
em técnicas de processamento de imagem e de aprendizado de máquina permitem construir
sistemas CAD (Computer-Aided Diagnosis) que podem ajudar os patologistas a serem mais
produtivos, objetivos e consistentes no processo de diagnóstico. Infelizmente, há também uma
falta de bases de dados de imagem histológicas rotuladas abrangentes e públicas destinadas à
pesquisa em sistemas CAD. Bases de dados rotuladas são cruciais para desenvolver e validar
sistemas de aprendizado de máquina. Além disso, o desempenho da maioria dos sistemas de
classificação convencionais depende da representação de dados apropriada e grande parte
dos esforços são dedicados a engenharia de características, um processo difícil e demorado
que usa o conhecimento prévio do especialista no domínio para criar características úteis.
Contribuindo para eliminar esta lacuna, o presente trabalho apresenta um novo conjunto de
dados publicamente disponível chamado BreaKHis, o qual contém imagens histopatológicas de
tumores mamários. Este trabalho também apresenta uma abordagem alternativa para classificar
estas imagens desafiadoras evitando qualquer segmentação explícita. Tal abordagem explora
descritores texturais manuais e representação automática, particularmente empregando Redes
Neurais Convolucionais, bem como o paradigma Aprendizado de Instâncias Múltiplas. Os
resultados experimentais obtidos demonstraram a viabilidade desta proposta, dando indicações
para melhorar tal modelo.

Palavras-chave: reconhecimento de padrões, câncer de mama, imagem histopatológica, apren-
dizagem profunda, rede neural convolucional, aprendizado de instâncias múltiplas, processa-
mento de imagens, aprendizado de máquina, diagnóstico auxiliado por computador.
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Chapter 1

Introduction

Despite remarkable current advances in diagnosis and treatment, cancer continues

constituting a massive public health problem around the world. Factors such as population aging

and adoption of unhealthy habits [84] — before restricted to industrialized countries — are

now contributing to expand the incidence of this disease. There was a 20% increase in the last

decade according to World Cancer Research Fund (WCRF) [286] and 27 million new cases of

this disease are expected to occur until 2030 [37]. Considering all its types, cancer is the second

most common cause of deaths recorded in developed countries and it is recently replacing cardiac

diseases as the main cause of death in several western nations [123, 160]. There were 8.2 million

deaths in 2012 [93], according to International Agency for Research on Cancer (IARC), which is

part of the World Health Organization (WHO). Besides, WHO’s projections estimate 17 million

deaths due to cancer by 2030, and developing countries will be the ones mostly affected [93].

In Brazil, cancer is an extremely worrying health issue as well. National Institute of

Cancer José Alencar Gomes da Silva (INCA)/ Health Ministry (MS) estimates 596 thousand new

cases of cancer in 2016 [137], being skin cancer the most prevalent (182 thousand cases), followed

by prostate cancer (68 thousand), breast cancer (57 thousand), intestine cancer (33 thousand),

and lung cancer (27 thousand). Among all types of cancer, excluding skin cancer, breast cancer

(BC) is the second most common among women. And the mortality rate of BC is very high

when compared to the other types of cancer. According to IARC, while the cancer mortality rate

increased by 8% in 2012, the mortality rate of BC was 14% in the same period [93]. Furthermore,
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compared to other countries, Brazil shows higher diagnostic rates for breast and prostate cancer.

BC, especially, presents 59 cases per 100 thousand inhabitants (while the worldwide average is

about 43 per 100 thousand).

Even though cancer has a hight incidence in more developed regions, mortality rate is

relatively higher in developing countries due to difficulties in achieving early diagnosis as well

as other restrictions faced by poor women in accessing technical advances against this disease.

Quoting Dr. Christopher Wild, director of IARC, “an urgent need in cancer control today is to

develop effective and affordable approaches to the early detection, diagnosis, and treatment of

BC among women living in less developed countries” [138, p.2].

Detection and diagnosis of BC can be achieved through non invasive methods and

biopsy. Non invasive methods are basically imaging procedures: diagnostic mammograms

(x-ray), Magnetic Resonance Imaging (MRI) of the breast, breast ultrasound (sonography) and

thermography. Although the use of imaging procedures for cancer screening is widespread,

biopsy is the only way to tell with confidence if cancer is really present. Among biopsy techniques,

procedures such as Fine Needle Aspiration (FNA), Core Needle Biopsy (CNB), Vacuum Assisted

Breast Biopsy (VABB) and Surgical (open) Biopsy (SOB) stand out. Biopsy procedures collect

samples of cells or tissue. These samples must be fixed across a glass microscope slide for

subsequent staining and microscopic examination. Then, histopathologists use the benefits of a

wide range of colored dyes to obtain pretty useful information about the lesions and the tissue

compositions. Diagnosis from a histopathology image remains the “gold standard” in diagnosing

almost all types of cancer, including BC [238].

In this context, considering the cancer impact in public health, especially BC for the

female population, as well as the urgency to provide supporting tools for pathologists, an automatic

system is proposed to classify BC using digitized images from histological slides.
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1.1 Motivation

Even in face of recent advances in the comprehension of the molecular biology of BC

progression and the discovery of new related molecular markers, the histopathological analysis

remains the most widely used method for BC diagnosis [164]. Regardless of the significant

progress reached by diagnostic imaging technologies, the final BC diagnosis, including grading

and staging, still continues being done by pathologists applying visual inspection of histological

samples under a microscope. As part of the making diagnosis process, one fundamental strategy

of the pathologist — when looking at a histologic slide — is based on pattern recognition [221].

Pattern recognition is the realization that the histologic picture conforms to a previously learned

picture of the disease. In fact, current pathological diagnosis is based on the subjective opinion

of pathologists (experts). This reality can be observed in many countries, Brazil included.

Histopathological analysis is a highly specialized and time consuming task, extremely dependent

on the experience of the pathologists and directly influenced by factors such as fatigue and a

decrease in attention.

Recently, digitized tissue histopathology has become feasible to the application of

computerized image analysis and machine learning techniques. Factors such as large increases

in available computational power, cheaper storage devices and considerable improvements in

image analysis algorithms have disseminated Computer-Aided Detection (CAD)/Computer-Aided

Diagnosis (CADx) systems in the daily routine of pathology laboratories. These systems have

emerged for disease detection, diagnosis, and prognosis prediction to complement the opinion

of the human expert [113], the pathologist. Recent advances in image processing and machine

learning techniques allow the building of CAD/CADx systems that can assist pathologists to be

more productive, objective and consistent in the diagnosis. As pointed by Gurcan et al. [113],

there is a pressing need for CAD/CADx systems to relieve the workload of pathologists by

filtering obviously benign areas, so that the experts can focus on the more difficult-to-diagnose

cases [75].
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1.2 Challenges

Classification of histopathology images into distinct histopathology patterns, corre-

sponding to non-cancerous or cancerous condition of the analyzed tissue, is often the primordial

goal of the image analysis module, which is part of the computer-aided diagnosis systems for

cancer. Thus, the main challenge of this work is the development of a reliable classification

system capable of dealing with the inherent complexity of histopathological images. In order to

accomplish this task, some relevant issues should be properly addressed:

� Lack of comprehensive and public histological image databases. By reviewing the

literature, we noticed that most of the works on BC histopathology image analysis are

carried out on small datasets, which, most of the time, are not shared with the scientific

community.

� Feature extraction. Features derived from segmented nuclei and glands from histological

tissue images are usually a prerequisite for the extraction of higher-level information

regarding the state of the disease. However, segmenting this kind of image is not a

trivial task. Besides, problems in the segmentation step generally compromise the overall

performance of the system.

� Variation in staining procedure. Whether for visual analysis or computerized analysis,

the tissue must be prepared, and staining is essential in order to highlight important

cellular structures used in diagnosis. Pathologists routinely use this color information in

their practice, and some works in the literature have also included color information in

digital histopathology image analysis [253]. However, such systems have to deal with the

appearance variability of stained histological sections, which is the result of inconsistent

preparation of intra and inter-lab.

� Confounder tissue patterns. Automated classification of histopathology involves identi-

fication of multiple classes, including benign, cancerous, and confounder categories. The

confounder tissue classes can often mimic and share attributes with both the diseased
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and normal tissue classes, and can be particularly difficult to identify, both manually and

through automated classifiers [83].

1.3 Hypothesis

Considering the aforementioned aspects, the present work establishes the following

basic hypothesis: “is it possible to create an automatic method to aid BC diagnosis using

digitized image database from histological slides, avoiding explicit segmentation of these

images?”. The primary purpose consists in offering an automatic system to aid pathologists

in the BC classification task, resulting in faster, more objective and consistent diagnosis, thus

minimizing the inter- and intra-expert variability.

1.4 Goals

The primary goal of this research is to propose an automatic system to aid pathologists

in BC diagnosis. This automatic system must distinguish, in a microscopic level, breast lesions

as malignant or benign, using digitized images from histopathological slides as input. Suspect

lesions must be classified with high accuracy rates, thus minimizing the occurrence of false-

negative predictions. Furthermore, the proposed system should be usable in real conditions,

observed in current clinical routines. Recent works dealing with BC classification are focused on

Whole-Slide Imaging (WSI) [82, 104, 151, 295, 296]. However, the broad adoption of this and

other forms of digital pathology are still facing obstacles such as the high cost of implementing

and operating the technology, insufficient productivity for high-volume clinical routines, intrinsic

technology-related concerns, unsolved regulatory issues, as well as “cultural resistance” from the

pathologists [89]. Therefore, we propose an image acquisition protocol based on conventional

photomicroscopy systems, which is widely available and used by pathologists.

So as to accomplish the general goal, the following secondary goals must be satisfied:
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� To create and publicly share a database of images in high resolution — labeled by

pathologists — from digitized histopathological slides of breast tumors;

� To analyze, test and/or propose frameworks to extract discriminant features suitable for BC

classification;

� To assess classification strategies capable of recognizing similar patterns in unknown

images, through the use of discriminative features extracted from image database;

� To validate the algorithms and the developed prototypes using tests from the image database,

evaluating the performance in terms of false-acceptance and false-rejection.

1.5 Contributions

This work aims to offer some original scientific-technological contributions. Therefore,

among the scientific-technological contributions, the following are highlighted:

� Planning, collection, documenting and publishing of a histopathological image

database related to breast tumors. Unfortunately, there is a lack of comprehensive

and public histopathological image databases intended for research in the CAD/CADx

systems. In a recent review, Veta et al. [277] point out that the main obstacle in the

development of new histopathology image analysis methods is the lack of large publicly

available annotated datasets. Annotated databases are also crucial for development and

validation of machine learning systems. In order to deal with the scarcity of public

databases of histopathological images, this work introduces a novel BC histopathological

images database called BreaKHis, which is composed of microscopic images from breast

tumors surgical biopsy slides, stained with Hematoxylin-Eosin (HE). Images are divided

into benign and malignant tumors, which have been collected at four different magnification

factors: 40×, 100×, 200×, and 400×. A representative image of each magnification factor

can be seen in Figure 1.1. This database has been built in collaboration with the P&D
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Laboratory 1 – Pathological Anatomy and Cytopathology, Paraná, Brazil. The BreaKHis

database is freely available from now on upon request for research purposes2. We will

describe the dataset in more details in Appendix B. Until now, the dataset counts with

more than 1070 registered users around the world. This distribution can be seen in the

Figure 1.2. Published in [256].

(a) (b) (c) (d)

Figure 1.1: Image samples from the BreaKHis database. Distinct areas, belonging to the same
slide of breast malignant tumor (stained with HE), seen in different magnification factors: (a)
40×, (b) 100×, (c) 200×, and (d) 400×.
Source: The author (2015).

Figure 1.2: BreaKHis registered users worldwide. Each red star represents the location of a user.
Source: The author (2018).

1http://www.prevencaoediagnose.com.br/
2http://web.inf.ufpr.br/vri/breast-cancer-database

http://www.prevencaoediagnose.com.br/
http://web.inf.ufpr.br/vri/breast-cancer-database
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� Development of an efficient and robust classification system forBC classification. This

hybrid system must perform automatic image analysis in HE breast tissue digitized images,

collect quantitative information, identify pathological patterns of BC and provide correct

differentiation between types of breast lesions. The system can work as a “second opinion”

for medical experts, supporting mainly inexperienced pathologists, reducing workload

and making the final diagnosis more objective. In addition, by extrapolating this initial

application, the classifier system may, eventually, be applied to other histopathological

classification problems in which there is a similarity with the images analyzed here.

Published in [256, 257, 259].

� Assessment of transfer learning approach applied to a real-world histopathological

image dataset aiming to improve classification performance. In another perspective, a

deep learning approach combined with transfer learning should be evaluated in order to

model high-level abstractions in the database. Published in [258].

� Assessment of Multiple Instance Learning (MIL) approach applied to a real-world

histopathological image dataset aiming to deal with inherent ambiguously labeled

data of this dataset. Submitted to the journal Expert Systems With Applications

(ESWA) [262].

1.6 Document Outline

This document is composed of six chapters and two appendices.

In the current chapter, the relevance of researches to aid BC diagnosis was evidenced.

BC, especially for the female population, is still associated to high incidence and mortality rates,

making this disease a public health concern in many countries. The initial chapter also outlined

BC diagnosis through histopathologic analysis, a task executed by human experts, but very

time-consuming and prone to misinterpretation. Motivation to work with this problem, main

goals and contributions of the research were presented as well.
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In Chapter 2 we offer a pretty basic background to the reader, in aspects related to the

terminology and procedures of pathology applied in BC diagnosis. This knowledge is essential

for a proper understanding of the research, of our approach and of the achieved results. Aiming

to provide the reader with a proper comprehension of the computational techniques used in

this study, we also introduce the descriptors and classifiers selected in this Chapter, as well as

the approaches based on deep learning and MIL. However, we have assumed that the reader

is already familiar with the general theory related to image processing, machine learning and

pattern recognition. Thus, this document does not show a more detailed revision about these

topics. Additionally, the following references are recommended: [35, 108] for the subject of

image processing, [31, 85, 273] for pattern recognition and [118, 243] for machine learning.

A review of the state-of-the-art for pattern recognition in BC classification is given in

Chapter 3. Some main approaches in this field are detailed as well. In particular, the results

achieved by different methods applied to our dataset BreaKHis are also detailed.

Chapter 4 contains our proposed alternative model along with the methodology that

will be used to validate this model. We also present a brief description of our public dataset

BreaKHis in this chapter.

Chapter 5 shows the experiments. Firstly, an experimental setup and protocol to evaluate

the conventional image classification system applied on BreaKHis dataset is detailed. Chapter 5

also contains the experiments executed using an alternative deep learning approach with CNN

and MIL. These results are discussed to establish a baseline to move forward with the research.

The final considerations are presented in Chapter 6.

Finally, Appendix A presents a more detailed revision about BC and Appendix B

describes the BreaKHis database in a comprehensive way.
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Chapter 2

Fundamental Background

Firstly, for a proper understanding of the present research, this chapter provides some

fundamental background knowledge about breast cancer (BC). A much more detailed revision

can be found in Appendix A. After that, we briefly introduce the descriptors and classifiers used

in the baseline experiments. Finally, this chapter also covers a short revision of the approaches

based on deep learning as well as multiple instance learning.

2.1 Breast Cancer

Cancer is a common designation for several diseases characterized by the abnormal and

accelerated replication of the cells [160]. This disordered cellular division is named neoplasia and

produces a tissue mass called neoplasm or tumor. A tumor is not necessarly a cancer. Considering

their potential aggressivity, tumors can be classified into benign or malignant. Normally, cells in

benign tumors don’t spread to other parts of the body and these tumors do not present a risk for

the patient’s life [238]. On the other hand, cells in malignant tumors can invade surrounding

tissue, enter the circulatory system and/or lymphatic system, spread themselves to other parts of

the body (metastasis) [161] and may eventually lead to the patient’s death [238]. Cancer is a

synonym for malignant tumor [238].
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Generally, when a malignant tumor originates in connective tissues such as muscle,

tendon, fat, and cartilage, it is named sarcoma. When a malignant tumor arises in organs or

gland tissue, such as breast, cervix, liver, lung, etc., it receives the denomination of carcinoma.

BC is a type of carcinoma (with various subtypes) [126], i.e., a malignant neoplasm that arises in

the breast tissue. However, BC is not a single disease, but rather composed of several distinct

subtypes associated with different origins, evolutions and possible therapeutic interventions [226].

Using histopathological analysis, BC can be classified into different tumor types and characterized

in their specificities. Such classification is essential because it determines different prognoses,

surgery planning and distinct therapies for each type.

Detection and diagnosis of BC can be achieved by imaging procedures, such as

diagnostic mammograms (x-rays), magnetic resonance imaging, ultrasound (sonography), and

thermography [144]. Imaging for cancer screening has been investigated for more than four

decades [260]. However, biopsy is the only way to diagnose with confidence if cancer is really

present. Among biopsy techniques, the most common are Fine Needle Aspiration (FNA), Core

Needle Biopsy (CNB), Vacuum Assisted Breast Biopsy (VABB) and Surgical (open) Biopsy

(SOB) [42]. The procedure consists in collecting samples of cells or tissues, which are fixed

across a glass microscope slide (histological slide) for subsequent staining and microscopic

examination. The slides are stained with various dyes in order to make the tissue components

visible. The combination of two dyes – hematoxylin (deep blue-purple color) and eosin, known

as HE – is one of the main stain protocols used in pathology and is essential for recognizing

various tissue types and morphologic changes, which are key aspects of the contemporary cancer

diagnosis [96]. Thus, diagnosis from a histopathology image is the “gold standard” in diagnosing

almost all types of cancer, including BC [164, 238]. Staging and grading provide a general idea

on how quickly a cancer may grow and which treatments may work best. The final BC diagnosis,

including grading and staging, is done by pathologists applying visual inspection of histological

samples under the microscope. Pathologists identify abnormalities by changes in the size, shape

or arrangement of cells.



12

2.2 Feature Extraction

Humans have innate skills to process and recognize complex patterns, e.g., images.

However, even experts are normally unable to explain exactly how they take certain decisions.

By trying to incorporate the information used by a human expert in his/her analysis, feature

sets, extracted directly from images, are generated. Our approach for classification is based on

statistical model, where each pattern must be represented as d features (measurements) and is

considered a point in a d-dimensional space. Ideally, features should be meaningful. In the data

representation aspect, the main goal is to determine those features that mapped to pattern vectors

occupy compact and disjoint regions in a d-dimensional feature space [140]. Regarding the

classification aspect, or the decision making, the objective is to establish decision boundaries in

the features space which separated patterns belonging to distinct classes. Thus, in the context of

this work, features are numerical descriptors extracted directly from histopathological images.

These sorts of images are naturally complex patterns, showing very high density of biological

structures, color variations due to the staining technique, distortions, diverse illumination, artifacts

and other noises from the acquisition device.

The goal is to summarize the appearance of the entire image in a single vector descriptor.

Mainly, global features were applied, i.e., a function of the whole image. These features are

quantifications describing how gray levels are distributed over the image pixels, i.e., an attempt to

capture the image texture. Although there is no precise definition of “texture” concept, an image

can be characterized in terms of its visual appearance as: coarse, fine, smooth, homogeneous,

soft, gritty, etc. These properties are textural coefficients that describe the image and they are

obtained by exploiting space relations underlying the gray-level distribution. Figure 2.1 presents

real textures found in histopathological images (HE staining).
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Figure 2.1: Examples of real textures present in histopathological images (HE staining).
Source: The author (2015).

The idea of using texture to describe the histopathological images is to have a simple,

but powerful representation, so that we could establish some basis for further comparison.

Besides, using texture representation allows us to avoid the explicit segmentation and extraction

of structure properties such as cell nuclei size and shape, tubular formation, etc. However, these

histological images present intrinsic heterogeneity, i.e., the tissue is a complex structure not a

homogeneous texture. In Figure 2.2, three different tissues from the same ductal carcinoma

image at 40× are highlighted. It is possible to note pretty distinguished textures.
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Figure 2.2: Image example from ductal carcinoma (HE staining) at 40×, showing distinct tissues:
(a) cell nuclei, (b) fat tissue, and (c) collagen-rich stroma.
Source: The author (2015).

2.2.1 Descriptors

In this section, we briefly describe the six different operators used to extract texture

descriptors.

2.2.1.1 GLCM

Gray-Level Co-occurrence Matrix (GLCM) is proposed by Haralick [117] in 1973, and

it is widely used to characterize texture images. In our experiments, four adjacency directions 0o,

45o, 90o, 135o are used to compute the GLCM, and 8 gray levels. On the GLCM, 13 Haralick

parameters are computed [117] shown in Table 2.1: angular second moment, contrast, correlation,

sum of squares, variance, inverse difference moment, sum average, sum variance, sum entropy,

entropy, difference variance, difference entropy, information measures of correlation 1, and
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information measures of correlation 2. These individual features are computed using the GLCM

(Gray-Level Co-occurrence Matrix) G, a symmetric matrix with dimension Ng × Ng, where

Ng is the number of gray levels in a particular image. Adjacency matrix G stores in position

(i, j) the number of times that a pixel takes the value i next to a pixel with value j. Thus, each

element (i, j) is considered the probability of a pixel of value i to be adjacent to a pixel of value

j. Furthermore, given different ways to define operator nextto, it is possible to obtain slightly

distinct variations of features. Finally, we obtain a 13-dimensional feature vector by averaging

feature vectors obtained in the four directions.

Table 2.1: The thirteen co-occurrence features proposed by Haralick.

Feature Description

f1 angular second moment
f2 contrast
f3 correlation
f4 sum of squares: variance
f5 inverse difference moment
f6 sum average
f7 sum variance
f8 sum entropy
f9 entropy
f10 difference variance
f11 difference entropy
f12 information measures of correlation 1
f13 information measures of correlation 2

Source: [117].

2.2.1.2 LBP

Original Local Binary Pattern (LBP), proposed by Ojala et al. [207], in 1996 labels

the pixels of an image by thresholding a 3×3 neighborhood of each pixel with the center value.

Then, considering the results as a binary number and the 256-bin histogram of the LBP labels

computed over a region, they used this LBP as a texture descriptor. The LPB operator LBPP,R

produces 2P different binary patterns that can be formed by the P pixels in the neighbor set on a

circle of radius R. However, certain bins contain more information than others, and as a result,

it is possible to use only a subset of the 2P LBPs. These fundamental patterns are known as

uniform patterns.
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In 2002, LBP variants were proposed in [208]. LBPri and LBPriu2 have the same

LBPP,R definition, but they only have 36 and 10 patterns, respectively. LBPri accumulates all

binary patterns in only one bin, which keeps the same minimum decimal value LBPri
P,R, when

their P bits are rotated. LBPriu2 combines the definitions of LBPu2 and LBPri. Thus, it uses only

the uniform binary patterns and accumulates those that keep the same minimum decimal value

LBPriu2
P,R in only one bin when their P bits are rotated.

As mentioned above, the LBP operator [208] consists in computing the distribution

of binary patterns in the circular neighborhood of each pixel. These patterns are obtained by

thresholding neighboring pixels compared to the central pixel. The neighborhood is characterized

by a radius R and a number of neighbors P. The LBP code for a neighborhood is obtained by

combining the thresholded neighborhood with powers of two and summing up the result. In our

experiments, we chose a standard value of P = 8 neighbors, providing a 10-dimensional feature

vector. It has been observed that a vast majority of patterns have a number of spatial transitions

less than or equal to 2. Patterns with number of transitions superior to 2 are clustered into one

single bin.

2.2.1.3 CLBP

One of the latest variants of LBP is Completed Local Binary Pattern (CLBP) [110].

It provides a complete modelling of the LBP, which is based on three components extracted

from a local region: center pixel, sign and magnitude. The center pixel is simply coded by a

binary code after global thresholding, with the threshold set as the average gray level of the

whole image. For the two other components, a neighborhood of radius R and the number of

neighbors P is considered, similarly to LBP. The difference signs and the difference magnitudes

are then computed and coded by a specific operator into a binary format so that they can be

readily combined to form the final CLBP histogram [110]. Note that the operator coding the

sign component corresponds to the original LBP operator. Finally, the complete descriptor is

composed of the center gray level (C), and of these two components derived from the local

difference, sign (S) and magnitude (M).
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Similar to LBP, for a given local region, CLBP calculates the difference between the

center pixel gc and each of its P circularly and evenly spaced neighbors gp located in a circle

of radius R, defined as dp = gp − gc. However, here the difference dp is decomposed into

two components: sign, which is defined as sp = sign(dp), and magnitude, which is defined as

mp = |dp |.

The operator related to the component C , named CLBP_C, is defined in Equation 2.1,

where cI corresponds to the average gray level of the whole image

CLBP_CP,R = t(gc, cI ) (2.1)

where

t(x, cI ) =



1 if x ≥ cI

0 otherwise

While the operator defined to code the component S (CLBP_S) corresponds to the

original LBP operator, the Equation 2.2 presents the operator to code the component M

(CLBP_M). In this case, the threshold c is originally defined as the mean value of mp from the

whole image.

CLBP_MP,R =

p−1∑
p=0

t(mp, c)2p (2.2)

where

t(x, c) =



1 if x ≥ c

0 otherwise

More details about the rotation invariant version of CLBP_M and different schemes to

combine the histograms of codes provided by each operator CLBP_C, CLBP_S, and CLBP_M

can be found in [110]. We have assessed different configurations suggested in [110] and the best
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results observed in our experiments have been obtained with the combination of all components

using a 3D joint histogram, while the best values for the parameters P and R, are 24 and 5,

respectively, yielding a 1352-dimensional feature vector.

2.2.1.4 LPQ

Local Phase Quantization (LPQ) is a descriptor for texture classification robust to image

blurring and also invariant to uniform illumination changes, according to its creators [121].

The descriptor was proposed by Ojansivu and Heikkilä in 2008 [209] and it is based on the

Fourier phase spectrum. It utilizes the local phase information extracted by using the 2D DFT

or, more precisely, a Short-Term Fourier Transform (STFT) computed over a rectangular M×M

neighborhood Nx at each pixel position x of the image f (x). The quantized coefficients are

represented as integer values between 0-255, using binary coding described in [209]. These

binary codes are generated and accumulated in a 256-bin histogram, similar to the LBP method

[208]. The accumulated values in the histogram are used as the LPQ 256-dimensional feature

vector.

In our experiments, a variant of LPQ, named LPQ-TOP [213], produced better results.

Similar to the Local Binary Pattern from Three Orthogonal Planes (LBP-TOP) [297] for LBP, a

variant of the LPQ, namely Local Phase Quantization from Three Orthogonal Planes (LPQ-TOP)

has been proposed [213]. Actually, LPQ-TOP applies the original LPQ on the XY , X Z and Y Z

plans of dynamic images and concatenates the LPQ histograms, for a total of 768 elements. As

we have static images, we only used the 256 elements for the XY plan. The main difference is

that LPQ and LPQ-TOP use different default values for their parameters.

2.2.1.5 SURF and ORB

Speed-Up Robust Features (SURF) is a scale-rotation-invariant detector and descriptor

proposed by Bay et al. [23, 24], following the same principles of his predecessor Scale Invariant

Feature Transform (SIFT) [176]. But, SURF strikes a good balance between accuracy and speed.
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Local features are fast computed at automatically determined keypoints. A technique called

multi-resolution transforms the input image into coordinates. There are two steps in the SURF

algorithm: detection of interest points and description of the detected points. Each point is

represented by the tuple (y, x, σ, score, Laplacian, θ, D0, ..., D63), where y,x is the position; σ

is the scale; θ is the angle of the orientation; score; Laplacian is the sign of the detector; and

Di is the descriptor, a 64-dimensional array.

But, both SIFT and SURF require license fees for the usage of their original algorithm.

Thus, Oriented FAST and Rotated BRIEF (ORB) [239] has been proposed as a free alternative

to the traditional SIFT [176] and SURF [23] keypoint detectors in terms of computational cost

and matching performance. It is designed to be rotation invariant and resistant to noise. Their

authors claim that ORB is at two orders of magnitude faster than SIFT. The rationale behind the

keypoint detectors is to find interesting points from an image, at which, statistics of local gradient

directions of image intensities are accumulated to give a description of the local image structures

in a local neighborhood around each interest point, with the intention that this descriptor should

be used for matching corresponding interest points between different images.

ORB is based on the well-known FAST keypoint detector [237] and the BRIEF keypoint

descriptor [49]. ORB works as follows: first it employs FAST to find keypoints, then applies

the Harris corner measure to find top N points among them. Since FAST features do not

have an orientation component, an efficiently computed orientation is added. This orientation

compensation mechanism makes it rotation invariant. While BRIEF uses randomly chosen

sampling pairs, ORB learns the optimal sampling pairs. In order to compute the orientation that

is not provided by the FAST algorithm, ORB computes the intensity-weighted centroid of the

patch with the located corner at the center. The direction of the vector from this corner point to

centroid supplies the orientation. In order to improve the BRIEF descriptors against rotation,

ORB moves them according to the orientation of the keypoints. For any feature set of n binary

tests at location (xi, yi), it defines a 2× n matrix S, which contains the coordinates of these pixels.

Then using the orientation of patch, θ, its rotation matrix is found and rotates S to get the rotated

version Sθ . Then, ORB discretizes the angle to increments of 2π/30 and constructs a lookup
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table of precomputed BRIEF patterns. As long as the keypoint orientation θ is consistent across

views, the correct set of points Sθ will be used to compute its descriptor.

In this work we have used the OpenCV implementation [38] with the default parameters,

which returns a 32-dimensional vector for each keypoint. Best results have been achieved using

500 keypoints, considering a balance between runtime and improvement of recognition rate. At

the end, the image is represented by a single 32-dimensional vector that contains the average of

all keypoints. Keypoint detectors such as ORB, SIFT, and SURF, have been proposed initially

for object matching/tracking. In these cases, the keypoints are used as features to perform the

matching. When using these keypoint detectors as a texture descriptor, it is common practice to

average them out in order to produce a single feature vector. Figure 2.3 exemplifies the keypoints

detected by ORB in a benign tumor image. In this case, the keypoints highlight small terminal

duct units that proliferate in a tubular adenoma.

(a) Original image of a tubular adenoma (benign tumor)
HE stain at 40× magnification.

(b) ORB-detected keypoints.

Figure 2.3: Example of keypoints detected by ORB in a benign tumor image.
Source: The author (2015).

2.2.1.6 TAS and PFTAS

The Threshold Adjacency Statistics (TAS) method was presented by Hamilton et al. in

2007 [115], for cell phenotype image classification. The method first applies a threshold to the

image so as to create a binary image. In order to define the threshold, first, the average intensity,

µ, of those pixels with intensity of at least 30, is calculated. This value was defined empirically by
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the authors in [115], once they observed that intensities below 30 are in the general background.

Then, the experimental image is thresholded to the range µ− 30 to µ+ 30. From each white pixel

of this experimental image, nine adjacency statistics are computed according to Figure 2.4. The

first threshold statistic is then the number of white pixels with no white neighbors; the second

one is the number with one white neighbor, and so forth, up to the maximum of eight. Finally,

the 9-dimensional feature vector is normalized by dividing each by the total number of white

pixels in the threshold image. This process is repeated for two other sets of threshold: µ − 30 to

255 and µ to 255. The final feature vector is the concatenation of three 9-dimensional vectors,

giving a total of 27 statistics.

Figure 2.4: Nine threshold adjacency patterns in TAS. Each white pixel is evaluated regarding
its neighbors.
Source: Adapted from [115].

The use of a fixed value to threshold the image makes the algorithm somehow problem-

dependent. To overcome this difficulty, Coelho et al. [69] proposed using Otsu algorithm [211] to

replace the fixed parameter. This method is known as Parameter-Free TAS (PFTAS). To illustrate

the difference between TAS and PFTAS, Figure 2.5 shows the three resulting images of both

methods. Considering that BC images in BreaKHis database share some similarities with those

sorts of images for which TAS was originally thought and regarded to these descriptors, empirical

observations demonstrated that recognition rates are better for color images when compared

to grayscale images. Thus, we have used the PFTAS [69], which is the parameter-free version

of TAS, in all three RBG channels. Its principle is to accumulate the pixels in the histogram

bins, according to their number of white neighbors, in multiple-threshold binarized images.

The original image is binarized using 3 different threshold ranges: [µ − σ, µ + σ], [µ − σ,

255], and [µ, 255], where µ is an Otsu’s defined threshold, and σ is the standard deviation of

the above threshold pixels of the image. For each binarized image, a normalized histogram of

pixels having i (i ranging from 0 to 8) white pixels as neighbors is computed. All 3 histograms
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are concatenated to form a 27-dimensional feature vector for each one of three RGB channels,

yielding an 81-dimensional feature vector. Finally, the computed image binarization 81-vector

and its bitwise negated version (using bitwise not operator ∼) are concatenated, resulting in a

162-dimensional feature vector. Figure 2.6 shows intermediate thresholds applied on the original

RGB color image of a ductal carcinoma from BreaKHis dataset.

(a) TAS. From left to right, top to bottom: original
image, binarized images using threshold ranges [µ − 30,
µ + 30], [µ − 30, 255], and [µ, 255].

(b) PFTAS. From left to right, top to bottom: original
image converted to grayscale, binarized images using
threshold ranges [µ − σ, µ + σ], [µ − σ, 255], and [µ,
255].

Figure 2.5: Thresholds resulting fromTAS and PFTAS, both applied on the same image converted
to grayscale.
Source: The author (2015).
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Figure 2.6: PFTAS thresholding on an image of a malignant tumor. From left to right, top to
bottom: original image, binarized images using threshold ranges [µ − σ, µ + σ], [µ − σ, 255],
and [µ, 255].
Source: The author (2014).

2.3 Classifiers

Different classifiers were used to assess the aforementioned feature sets (Section 2.2).

These classifiers will be presented in the following sections.

2.3.1 k-NN

A k-Nearest Neighbor (k-NN) is a type of instance-based learning that stores all available

training data and classifies the testing samples based on a similarity measure (e.g., Euclidean
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distance) [85]. The algorithm k-NN assumes that the data is a feature space, more specifically,

the data points are represented in a metric space. The data can be scalars or multidimensional

arrays. It does not use the training data points to do any generalization. Therefore, there is no

explicit training phase and k-NN makes the decision based on the entire training data set (or a

subset of them). However, the testing phase is very costly, in terms of time and memory. The

arbitrary parameter k determines how many neighbors (points closer in terms of distance metrics)

will be considered in the classification phase. When the number of classes is 2, k usually is

an odd number. In particular, the 1-NN is often used to assess the discriminating power of the

features.

2.3.2 QDA

Quadratic Discriminant Analysis (QDA) is closely related to Linear Discriminant

Analysis (LDA), where it is assumed that the measurements of each class are normally distributed.

LDA was formulated by Ronald A. Fisher in 1936 [97]. Although LDA is a linear transformation

technique more commonly applied for dimensionality reduction, e.g., in the pre-processing phase

in the pattern recognition and machine learning applications, it has a practical use as classifier too.

LDA computes the directions (“linear discriminants”) that will represent the axes that maximize

the separation between multiple classes. The main goal is to project a feature space (a dataset

n-dimensional samples) onto a smaller subspace k (where k ≤ n − 1) while maintaining the

class-discriminatory information. However, unlike LDA, in QDA there is no assumption that the

covariance of each of the classes is identical [273]. So, QDA is a general discriminant function

with a quadratic decision boundary, which can be used to classify datasets with two or more

classes.

2.3.3 SVM

Support Vector Machine (SVM), a very popular classification algorithm based on

statistical learning, builds a hyperplane in a high-dimensional space, which can be used for
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classification and regression. Differently from other linear discriminant functions, it provides the

optimal hyperplane that separates two classes of data with as wide a margin as possible [70].

This leads to good generalization accuracy on unseen data, and supports specialized optimization

methods that allow SVM to learn from a large amount of data. We use a SVM with RBF kernel.

Two parameters are required to train the RBF kernel, γ the coefficient of the exponent, and C the

penalty term of the error. A grid search was performed to choose those values of γ and C.

2.3.4 Random Forest

Random Forest (RF) is an ensemble approach that combines Decision Trees (DT)

predictors. It is a hybrid of the bagging algorithm and the random subspace method, and uses DT

as the base classifier. The principle behind ensemble methods is that a group of weak learners

(in this case the decision trees) can come together to form a strong learner [46]. One of the

advantages of the RF is that it is quite fast and able to deal with unbalanced data. RF is a

combination of tree predictors such that each tree depends on the values of a random vector

sampled independently and with the same distribution for all trees in the forest. The generalization

error for forests converges to a limit as the number of trees in the forest becomes large [46]. Each

tree is constructed from a bootstrap sample of the original dataset. An important point is that

the trees are not subjected to pruning after construction, enabling them to be partially overfitted

to their own data sample. In order to further diversify the classifiers, at each branch in the tree,

the decision of which feature to split is restricted to a random subset of size n, from the full

feature set. The random subset is chosen anew for each branching point. n is suggested to be

log2(N + 1), where N is the size of the whole feature set.

A DT is a tree-structured classification model, which is easy to understand, even by

non-expert users, and can be efficiently induced from data. The induction of decision trees is one

of the oldest and most popular techniques for learning discriminatory models, which has been

developed independently in the statistical [45] and machine learning [132, 229] communities.

DT learning uses a decision tree as a predictive model which maps observations about an item

for conclusions about the item’s target value. Tree models where the target variable can take a
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finite set of values are called classification trees. In these tree structures, leaves represent class

labels and branches represent conjunctions of features that lead to those class labels. Decision

trees where the target variable can take continuous values (typically real numbers) are called

regression trees.

2.4 Deep Learning and CNNs

The performance of most conventional classification systems relies on appropriate

data representation and much of the effort is dedicated to feature engineering, a difficult and

time-consuming process that uses prior expert domain knowledge of the data to create useful

features [29]. In this sense, the descriptors presented in Section 2.2.1 are hand-crafted features by

feature engineering. On the other hand, feature learning can directly learn data representations

from raw input data (training set) and detect data-driven features, i.e., learning representations and

transformations of the raw data to facilitate the extraction of useful information from it [28, 167].

In contrast to feature engineering, feature learning can extract and organize the discriminative

information from the data, not requiring the design of feature extractors by a domain expert.

Among the representation learning techniques, deep learning can yield more non-linear

and more abstract representations, using an architecture formed by the composition of multiple

levels of representation [27, 28]. Essentially, the deep learning approach proposes learning

models with multilayer representations of the data with multiple levels of abstraction [167]. Each

layer can be seen as a “distributed representation” of the inputs, where representation is a vector

of units to extract information about specific features. Each unit in a layer is a separate feature

of input and these units are not mutually exclusive. Considering a hierarchical view of this

architecture, higher layers (levels) are built on top of lower layers. The lowest level is related

to the original raw input and the subsequent higher levels represent more abstract concepts,

ranging from lower abstract representation to higher abstract representations [27]. The overall

composition gives a deep, layered model, in which each layer encodes progress from the low-level

input details, such as image pixels and audio waveform, to high-level output concepts, such as
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the identification of a face or a spoken word. In summary, deep learning allows to build complex

concepts by using the combination stacked of simpler concepts [29].

A deep net is trained by feeding it the input and letting it compute layer-by-layer in

order to generate output for comparison with the correct answer. After computing the error at the

output, the error flows backwards through the net by back-propagation. At each step backwards,

the model parameters are tuned in a direction that tries to reduce the error. This process sweeps

over the data, thus improving the model as it goes. Typically, training is an iterative process that

involves multiple passes of the input data until the model converges.

In this context, Convolutional Neural Networks (CNNs) are a particular type of deep,

feedforward network which have gained attention from the research community and industry,

achieving empirical success in tasks such as speech recognition, signal processing, object

recognition, natural language processing and transfer learning. In particular, CNNs have achieved

success in image classification problems, including medical image analysis [67, 71, 227, 289].

CNN are biologically-inspired variants of Multi-Layer Perceptrons (MLPs), very similar to

regular Neural Networks (NNs): they are made up of neurons that have learnable weights and

biases. Each neuron receives some inputs, performs a dot product and optionally follows it

with a non-linearity. The whole network still expresses a single differentiable score function:

from the input signal (e.g., raw image pixels) on one end to class scores at the other end. And

they still have a loss function (e.g. SVM/Softmax) on the last (fully-connected) layer. In

summary, a CNN consists of multiple trainable stages stacked on top of each other, followed by a

supervised classifier, and sets of arrays named feature maps represent both input and output of

each stage [168]. Input can be signals such as image, audio, and video. For example, considering

color images, at the input each feature map is a 2D array storing a color channel of the input

image. The output consists of a set of arrays, where each feature map represents a particular

feature extracted at locations of the associated input.
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2.4.1 CNN Architecture

The simplest example of a deep learning model is the feedforward deep network or

MLP [29]. It consists of a collection of neurons connected in an acyclic graph organized into

a succession of neuron layers. A neuron computes a function on inputs from the preceding

layer and passes the result (neuron’s activation) on to outputs in the succeeding layer. Within

each layer, all neurons compute the same function, but individual neurons may have distinct

sets of inputs and outputs and may assign different weights to their inputs. The MLP receive as

input a single vector in its input layer. Then, this input is transformed thorough a sequence of

intermediary layers (hidden layers). In regular NN each hidden layer is fully-connected, i.e., each

neuron compounding the layer is fully connected to all the neurons from the preceding layer, but

neurons within a layer are not connected. The last fully-connected layer, named output layer,

represents the class scores considering classification tasks. An example of this architecture is

shown in Figure 2.7(a).

However, an otherwise arrangement used in CNNs is 3D volumes of neurons. The layers

of a CNN have neurons arranged in 3 dimensions: width, height, and depth. Every CNN layer

transforms an input 3D volume to a correspondent output 3D volume with some differentiable

function. For instance, considering as input patches of dimensions 32 × 32 pixels extracted from

the original Red-Green-Blue (RGB) image available in BreaKHis dataset (see Chapter 4, Section

4.2). For each patch, the expected output is the probability of it belonging to the benign or

malignant class. Thus, the input is a volume of activations 32 × 32 × 3 (width × height × depth)

that holds the image, where the width (32) and the height (32) are the image dimensions, and

the depth (3) encodes the three channels (Red, Green, and Blue format). The final output layer

would have dimensions 1 × 1 × 2, because the CNN will reduce the original image into a single

vector of class scores. This general processing path can be seen in Figure 2.7(b): the depicted

net transforms (intermediate blue volumes) the original image (input red volume) layer-by-layer

from the original pixel values to the final class scores (output green volume).
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(a) A regular 3-layer Neural Network with two fully
connected hidden layers.

(b) CNN highlighting the 3-dimensional (width, height,
depth) arrangement of the neurons in one of the layers.

Figure 2.7: Distribution of neurons in a regular Neural Network compared to the typical
arrangement found in CNNs.
Source: The author (2015).

2.4.1.1 CNN Layers

There are three main types of layers used to build CNN architectures: convolutional layer,

pooling layer, and fully-connected layer. Normally, a full CNN architecture is obtained by

stacking several of these layers. An example of typical CNN architecture with two feature stages

is shown in Figure 2.8.

Figure 2.8: An example of a typical CNN architecture with two feature stages.
Source: Extracted from [168].

In a CNN, the key computation is the convolution of a feature detector with an input

signal. Convolutional layer computes the output of neurons connected to local regions in the

input, each one computing a dot product between their weights and the region they are connected

to in the input volume. The set of weights which is convolved with the input is called filter or

kernel. Every filter is spatially small (width and height), but extends through the full depth of
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the input volume. For inputs such as images, typical filters are small areas (e. g., 3 × 3, 5 × 5, or

8× 8) and each neuron is only connected to this area in the previous layer. The weights are shared

across neurons, leading the filters to learn frequent patterns that occur in any part of the image.

The distance between the applications of filters are called stride. If the stride hyperparameter is

smaller than the filter size, the convolution is applied in overlapping windows.

Convolution with a collection of filters, like the learned filters (also named feature maps

or activation maps) in Figure 2.9, improves the representation: at the first layer of a CNN the

features go from individual pixels to simple primitives, like horizontal and vertical lines, circles,

and patches of color. We can see that the model learns the filters for horizontal and vertical edges,

and also learns the filters that resemble Gabor filters (edge detectors) [36, 98]. In contrast to

conventional single-channel image processing filters, these CNN filters are computed across all

of the input channels. Due to its translation-invariant property, convolutional filters yield a high

response wherever a feature is detected.

Figure 2.9: The first layer of learned convolutional filters in CaffeNet. This Caffe [141]
reference model is based on AlexNet [158]. These filters are tuned to edges of different
orientations, frequency, phase and colors. The filter outputs expand the dimensionality of the
visual representation from the three color channels of the image to these 96 primitives. Deeper
layers further enrich the representation.
Source: The author (2015).
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When different features can be learned in different spatial locations the weights sharing

scheme of the convolutional layer is relaxed and this layer is then referred to as locally-connected

layer.

The insertion of a pooling (subsampling) layer between two successive convolutional

layers is common. The main objective of this practice is to progressively reduce the spatial size

of the representation. Thus, reducing the number of parameters and computations required by the

network helps the overfitting control. The pooling layer downsamples the volume spatially in each

depth slice of the input volume independently. Thus, the pool operator resizes the input along the

width and the height, discarding the activations. In practice, the max pooling function, which

applies a window function to the input patch, and computes the maximum in that neighborhood,

has shown better results [248]. Furthermore, the pooling units can perform other functions like

L2-norm pooling or average pooling.

In a fully-connected layer, neurons have full connections to all activations in the previous

layer and their activations can be computed using a matrix multiplication followed by a bias

offset. This type of layer is standard in a regular NN. The last fully-connected layer holds the net

output, such as probability distributions over classes [90, 158].

2.5 Multiple Instance Learning

Supervised learning is a subfield of machine learning, where a predictive function is

inferred from a set of labeled training examples, in order to map each input instance to its output

label. In a conventional setting, the training dataset consists of instances equipped with their

corresponding labels. While instances are relatively easy to obtain, the expensive data-labeling

process with human-based ground-truth descriptions remains the major bottleneck in order to

obtain large-scale datasets. This issue gives rise to a novel paradigm in machine learning, with

the so-called weakly supervised learning, namely when having a partially-labeled training dataset

[302].
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Multiple Instance Learning (MIL) provides an elegant framework to deal with weakly

supervised learning, modeling incomplete knowledge of labels in the training set. In comparison

with strong (i.e., fully-labeled) supervised learning, where every training instance is assigned a

discrete or real-valued label, the rationale of the MIL paradigm is that instances are naturally

grouped in labeled bags, without the need for all the instances of each bag to have individual

labels. In the binary classification case, a bag is labeled positive if it has at least one positive

instance; on the other hand, a bag is labeled negative if all of its instances are negative [100]. With

such training data grouped in labeled bags, MIL algorithms seek to classify either unseen bags

(i.e., bag-level classification) or unseen instances (i.e., instance-level classification). Figure 2.10

shows an example of a problem naturally formulated as a MIL application: image classification

task based on its visual content. Considering that the target class is “beach”, for example, the

positive images are those displaying a beach, while the negative images will be those displaying

any other type of visual content. In Figure 2.10, the images in the top row are positive (beach

images), while the images in the bottom row are negative (non-beach images). We can notice

that there are regions of the image that are related with the target class (the regions that belong to

the sand and sea), whereas there are regions that are not specifically related to it (e.g., the sky,

umbrella, chairs, mountain, palm trees, etc.).

Basically, in order to obtain a beach image (positive bag), the simultaneous occurrence

of sea and sand regions (positive instances) is necessary, while the rest of the regions (negative

instances) are not necessary in order to make the image positive, even though such regions can

be present as well. On the other hand, a non-beach image (negative bag) contains only other

regions (negative instances) or even an insufficient number of regions, e.g., a desert containing

sand is not a beach. As a result, each image can be described as a bag, i.e., an unordered

set X = {~x1, . . . , ~xN }, where the elements ~xi are instances in a d-dimensional instance space,

~xi ∈ R
d , and N can vary across the bags. Some MIL assumptions related to bags and its instances

are presented in the following section.

While the multiple instance paradigm arose in many domains prior to the 1990’s,

MIL was first described explicitly and studied by Dietterich et al. in 1997 [78]. The original
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Figure 2.10: Each image is a labeled bag Xi and the red ellipses represent instances ~x j . Beach
images (positive bags) are depicted in the top row and non-beach images (negative bags) are in
the bottom row. Notice that some instances are in both positive and negative bags.
Source: The author (2017).

motivation in MIL was the drug activity prediction, where experts provide activity labels for bags

of molecules, labeling each individual molecule being costly and hard to set up. MIL is central

in many applications in various domains, such as in bioinformatics, text processing, computer

vision and image processing, to name a few [122]. Indeed, in many applications, ground-truth

labeling is expensive in general and instances can be often grouped in bags, where each bag has a

set of partially-labeled instances. An example is facial recognition, where several images of the

same person, taken from different angles, can be considered as instances in a bag (the bag being

the person) [122]. Note that only the MIL paradigm can apprehend these types of situations.

Of particular interest is the image-based pathology classification for medical decision making,

since it is relatively easy and part of the clinical protocol to take many images of some organs or

tissues (physiology) under study; on the other hand, labeling each image is a time-consuming

process dominated by human effort. MIL has many applications in medical imaging, as shown in

a recent review [228].

2.5.1 MIL Methods

Under the standard MIL assumption, positive bags contain at least one positive instance,

while negative bags contain only negative instances.
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We denote by LB the label of a bag B, defined as a set of instances, each one described

by its feature vector: B = {b1, b2, ..., bN }. We denote by lk the label of each instance bk . We can

now define the label of a bag, following the standard MIL assumption:

LB =




+1 if ∃lk : lk = +1;

−1 if ∀lk : lk = −1.
(1) (2.3)

There are other – more relaxed – assumptions, such as a bag is labeled positive when it

contains a sufficient number of positive instances; we refer the reader to [100] for further reading.

MIL methods are usually divided into two groups, depending on how they exploit the

information in the data [10]. The first group consists of methods that consider the discriminative

information at the instance level.

Learning algorithms do not focus at the larger scale of a bag, but at the local scale of

instances. An advantage of these methods is that they are able to classify instances, when needed.

However, they require that instances have a precise label, a requirement not all MIL problems

meet. The instance level methods include APR, DD, SVM based approaches. The second group

consists of the methods that consider the discriminative information to be at the bag level. These

methods are usually more accurate, since they can model the distribution of each class and the

relations between classes [53]. However, they cannot classify single instances, but only bags. An

example of such methods is Citation-kNN [280]. For a review on MIL methods, we refer the

reader to [10, 53, 122].

In the following subsections, we briefly describe the well-established MIL methods that

have been implemented and applied to the BreaKHis dataset.
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2.5.1.1 Axis-Parallel Hyper Rectangle (APR)

The MIL paradigm was first introduced in the seminal work of Dietterich et al. [78],

motivated mainly by an application in biochemistry. The goal was to predict whether a molecule

would be binding to a given receptor or not. Each molecule, which can be considered as a bag,

can take many different spatial conformations, namely the instances. The methodology to solve

the MIL problem is to design a hyper rectangle (called Axis-Parallel Hyper Rectangle (APR))

in the feature space aimed at containing at least one positive instance from each positive bag

while excluding all the instances from negative bags. A molecule is classified as positive (resp.

negative) if one (resp. none) of its instances belongs inside the APR.

2.5.1.2 Diverse Density (DD) and Its Variants

Diverse Density (DD) [183] is closely related to the idea of the APR. The DD defines a

function over the feature space, such that it is high at points that are both close to instances from

positive bags, and far away from instances which are in negative bags. The DD algorithm attempts

to find the local maxima of this function (called the positive instance targets or prototypes) by

maximizing diverse density (i.e. conditional likelihood) over the instance space, using gradient

ascent with multiple starting points. Usually the search is repeated using the instances from

every positive bag as the starting points. One of DD’s shortcomes is that it is sensitive to noisy

negative instance.

The DD approach has given rise to many variants. The most known is the Expectation

Maximization-Diverse Density (EM-DD) method [294]. In this variant, the DD measure is

maximized iteratively with the Expectation Maximization (EM) algorithm.

A probabilistic derivation of DD is given below. We denote positive bags as B+i , and

the jth instance in that bag as B+i j . Let’s suppose each instance can be represented by a feature

vector (or a point in the feature space), and we use B+i j k to denote the value of the kth feature of

instance B+i j . Likewise, B−i denotes a negative bag and B−i j is the jth instance in that bag. The true
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concept is a single point t defined by maximizing the diverse density defined as DD(t) = P(t | B+1

,..., B+n , B−1 ,..., B−m) over the feature space. Using Bayes rule and assuming uniform prior over

the concept location, this is equivalent to maximizing the following likelihood:

arg max
x

P(B+1 ,..., B+n , B−1 ,..., B−m | t)

By making additional assumption that the bags are conditionally independent given the concept

point t, this decomposes to:

arg max
x

∏
i
P(B+i | t)

∏
i
P(B−i | t)

Using Bayes rule once more with the uniform prior assumption, this is equivalent to:

arg max
x

∏
i
P(t | B+i )

∏
i
P(t | B−i )

which gives a general definition of the Diverse Density. Given the fact that boolean label (say, 1

and 0) of a bag is the result of “logical-OR" of the labels of its instances, P(t | Bi) is instantiated

using the noise-or model:

P(t | B+i ) = 1 -
∏

j
1 - P(B+i j)

P(t | B−i ) = 1 -
∏

j
1 - P(B−i j)

Finally, P(t | B+i j) (or P(t | B−i j)) is estimated (though not necessarily) by a Gaussian-like

distribution. Without close-form solution to the above maximization problem, gradient ascent

method is used to search the feature space for the concept point with (local) maximum DD.

Usually the search is repeated using the instances from every positive bag as the starting points.

2.5.1.3 Citation-kNN

The Citation-kNN, an adaptation of the k-NN algorithm, is the first non-parametric

approach [280]. The principle is to first apply the k-NN algorithm to bags, where the distance
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between bags is measured with the minimum Hausdorff distance. The latter is defined as the

shortest distance between any two instances from each bag:

Dist(A, B) = min
ai∈A

min
bj∈B
| |ai − b j | |

for any two bags A and B, where ai and b j are instances from each bag. This distance is used by

a k-NN to classify a new bag, as the regular k-NN approach. The citation-kNN method adds

a final step that makes the process more robust: in addition to the neighbors of the bag to be

classified, other bags, called citers, are also considered in the classification rule.

2.5.1.4 mi-SVM and MI-SVM

Two alternative generalizations of the maximum margin idea used in SVM classification

have been proposed in [12]. On one hand, the mi-SVM is based on the instance-level paradigm.

Since the instance labels are not known, they are treated as hidden variables subjected to

constraints defined by their bag labels. The mi-SVM method attempts to recover the instance

labels and, at the same time, find the optimal discriminant function.

On the other hand, the bag-level paradigm is adopted by the MI-SVM. Its goal is to

maximize the bag margin, defined between the positive instances of the positive bags, and the

negative instances of the negative bags. In this setting, the bag is not represented by all of its

instances, but only by the “extreme” ones, in the same sense as support vectors in conventional

SVM. Moreover, mi-SVM and MI-SVM inherit also the kernel trick, thus allowing to use linear,

polynomial and RBF kernels.

2.5.1.5 Non-parametric MIL

This recent technique is designed as a modified version of the k-NN classifier [276].

The non-parametric MIL approach employs a new formulation based on distances to k-nearest

neighbors. The idea is to parse the MIL feature space with a Parzen window technique, using
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different sized regions. Conversely to the majority vote used in k-NN, the vote contributions

are the kernelized distances in the feature space. Non-parametric MIL has shown enhanced

robustness to labeling noise on various datasets as well as competitive results compared to the

state-of-the-art.

2.5.1.6 MILCNN

Deep learning networks have been overwhelming machine learning, pattern recognition

and computer vision fields for a few years. MIL is no exception to this rule [127, 152, 217, 263,

281, 300]. Sun et al. proposed a Multiple Instance Learning Convolutional Neural Network

(MILCNN) in [263]. This framework was initially designed for the data augmentation problem: in

object detection, labels are not always preserved when the images are split for data augmentation.

All the images produced through the data augmentation process share the same label. Thus, the

proposed method considers data augmentation generated images as a bag, by combining a CNN

with a specific MIL loss function derived with respect to the bag.

MILCNN is a combination of deep residual network and multiple instance learning

loss layer. It is like a typical CNN containing convolutional layers, batch normalization layers,

residual network layers, rectified linear unit, fully-connected layers, pooling layers and multiple

learning loss function.
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Chapter 3

State-of-the-Art Review

This chapter reviews the literature related to pattern recognition applied to automatic

breast cancer (BC) classification, specially computer-aided detection/diagnosis (CAD/CADx)

using histopathological image processing. The present work is focused on digitized images

from the breast biopsy, in particular, surgical (open) biopsy (see Appendix 2, Section A.3.2.3).

Therefore, this state-of-the-art analysis will be limited to those works reporting classification

experiments on image databases digitized from the breast biopsy.

However, it is difficult to establish a “ground truth” in order to compare the different

methods for BC classification, particularly with histopathology image analysis methods. Despite

the significant increase of research in the field of histopathology focusing on automatic cancer

diagnosis and classification, many of the works available in literature relate results of experi-

ments performed using the own researchers’ private datasets, distinct evaluation methods and

performance metrics [139]. In short, there is a scarcity of annotated image datasets publicly

available, as well as, unified benchmarks. In this sense, the recent availability of the BreaKHis

dataset [256] constitutes a relevant unified benchmark to compare distinct approaches. Thus,

some works presenting results of BC classification in unavailable datasets are briefly discussed

in the Section 3.2.1.1 and a more detailed review focusing on BreaKHis dataset related works is

given in Section 3.1.
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3.1 Categories of Breast Cancer Classification Works

Considering the feature representation, automatic BC classification related works can

be grouped into two main categories. In the first group, those works that automatically process

images in order to acquire the feature descriptors are included. In this case, image sources can be

mammograms, breast ultrasound, magnetic resonance breast imaging, breast thermograms and

direct digitization of biopsies in microscope slides. The second group is compounded by studies

using previously extracted feature descriptors, such as the well known Wisconsin Breast Cancer

Dataset (WBCD). Figure 3.1 summarizes this categorization.

Breast Cancer

Classification

Previously

Extracted Features

Automatic

Image Processing

Biopsy

Surgical

CNB/VABB

FNA

Others

MRI

Ultrasound

Thermography

Mammogram

(x-ray)

Figure 3.1: Categories of related works on breast cancer classification.
Source: The author (2015).

3.2 Research Using Automatic Image Processing

The automatic imaging processing for cancer diagnosis has been explored as a topic of

research since the 1970s [260]. However, this subject continues to be the central point of recent
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researches. In this section, we review the latest studies related to automatic image processing for

BC diagnosis.

3.2.1 Images From Biopsy Sources

After preparing the tissue, mounting it on a glass slide, and staining it to enhance the

cellular structures, microscopes are used to acquire digital histocytologic images. In the most

commonly available configuration, named photomicroscopy, the magnified view of the sample in

light microscope is observed by the pathologist, who selects the area of interest and digitally

captures this area using a Charge-Coupled Device (CCD) camera attached to the microscope.

Thereafter, the resulting digital images are ready for input into CAD/CAD-x systems. This image

source is used in works like [82, 104, 151, 295, 296]. Notwithstanding its wide availability and

relatively low cost, the conventional photomicroscopy approach presents some limitations such as

eventual suboptimal image quality and the existence of only a few selected images (photographs)

per slide, causing the impossibility to see a high-resolution overview of the whole slide and

navigate in distinct magnifications (full objective lens zooming functionality) [284].

Avoiding limitations imposed by the photomicroscopy method, theWhole-Slide Imaging

(WSI) has more recently become popular in large centers. WSI consists of the creation of a

single, high magnification digital image of an entire microscopic slide, rather than one small

microscopic field. Current WSI systems are composed of illumination systems, microscope

optical components, and a precise focusing system to capture the images [105]. In summary, an

automated microscope scans an entire slide at one or more resolutions, combines consecutive

small images together into a single large image — normally some gigabytes 1 in size, — thus

generating a “virtual slide”. A virtual slide is a comprehensive digital rendering of the whole

slide, visible at resolutions of less than 0.5µm, using interactive software on a computer screen

[107]. This software emulates the experience of using a light microscope, thus allowing the

1Unlike conventional digital image files containing a single image view at a single resolution, WSI files are
usually formatted as multiresolution pyramids that contain multiple images comprising of multiple magnifications,
normally being a vendor proprietary file format based on TIFF package of multiple JPEG 2000 images. The images
of the same virtual slide can be assembled in various ways, depending on the particular scanner being used: tiling,
line scanning, dual sensor scanning, dynamic focusing, or array scanning [284].
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pathologist to freely navigate through histological sections in a complete range of standard

magnifications [105].

3.2.1.1 Unavailable Datasets

The BC biopsy image dataset from the Israel Institute of Technology (Technion) was

used in [293, 295, 296]. Technion BC image dataset [41] is public and composed of 361 760×570

JPEG images acquired from breast tissue biopsy slides stained with HE at 40× magnification.

During the acquisition process, a digital CCD camera attached to a microscope was used. Then,

a pathologist classified the samples as being normal, carcinoma in situ and invasive carcinoma,

from which 119 samples were normal tissue, 102 as carcinoma in situ, and 140 as invasive ductal

or lobular carcinoma.

Unfortunately, there is a notorious scarcity of public histopathological image database.

At this moment, the location of the database used by Zhang et al. [293, 295, 296], as referenced

in literature 2, is not available anymore. Moreover, other researchers use their own databases, not

publicly available [82, 95, 104, 150, 151].

Zhang et al. [295] proposed a new cascade Random Subspace ensembles scheme with

reject option for microscopic biopsy image classification. In their work, the combination of three

different feature descriptors aim to fully describe image biopsy, capturing local texture (LBP),

global texture (GLCM) and shape information (Curvelet Transform). The system achieved a

classification accuracy of 99.25% (with a rejection rate of 1.94%) for the BC biopsy image dataset

from the Israel Institute of Technology (Technion). In a new paper [296], Zhang et al. introduce

a classification scheme based on a one-class kernel principle component analysis (KPCA) model

ensemble for classification of medical images.

The analysis of histopathological images for automatic segmentation and identification

of nuclei was explored by Kowal et al.[151]. This research used 500 breast FNA biopsy images

collected from 50 patients (cases) of the Regional Hospital in Zielona Góra, Poland. Biopsy

2ftp://ftp.cs.technion.ac.il/pub/projects/medic-image
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samples were digitized using a CCD video camera mounted on top of a microscope and the images

were stored in 8 bit RBG BMP format files with 704 × 578 pixels. There are 10 images per case

in the dataset, which is distributed into 25 malignant and 25 benign cases. Four distinct clustering

algorithms k-means, fuzzy c-means, competitive learning Neural Networks and Gaussian mixture

models were evaluated for clustering in the color space. Forty two morphological, topological

and textural features were extracted from the segmented nuclei. The system accuracy rate for

correctly classifying the cases as malignant or benign was between 96-100%.

Filipczuk et al. [95] conducted a study at the same Polish Regional Hospital, using a

database with 737 images of cytological material collected from FNA biopsies of 67 patients.

This breast cytological material was digitalized into virtual slides and a pathologist manually

selected 11 distinct areas which were converted to 8-bit RGB TIFF files of 1538 × 828 pixels.

The final dataset contains 25 benign (275 images) and 42 malignant (462 images) cases. Four

different classifiers were applied in 25 features describing the nuclei. Their proposed method has

achieved an effectiveness rate of 98.51% on classifying samples as benign or malignant.

George et al.[104] presented a fully automated method for cell nuclei identification and

segmentation in breast cytological images. Extracted features through this method feed a system

which classifies image samples as malignant or benign breast tumor. The dataset of this study

was obtained in cooperation with the Early Cancer Detection Unit-Obstetrics and Gynecology

Department, at the Ain Shams University Hospital, Egypt. Fine Needle Aspiration Citology

(FNAC) samples where collected from breast lumps and stained with May-Grünwald-Giemsa3

stain or Diff4. There are 92 RGB JPEG format microscopic images of 2560 × 1920, including 45

images of benign, and 47 of malignant tumors.

In order to classify breast cancer tissues, in a recent work, Bruno et al. [48] have

presented a texture method based on the association among Fast Discrete Curvelet Transform

3This is the commonly used staining method of blood and others smears. It is used for morphological inspection
and differential counting of blood cells. It combines the effect of acidic eosin, alkaline methylene blue, and azure. As
a result, methylene blue stains the acidic components of the cell in blue tones, eosin stains the alkaline components
of the cell in orange-red, and azure stains the basic cellular components in red and purple.

4 Diff-Quik staining is used for the rapid differential staining of a variety of hematological and other smears to
yield qualitative results similar to the Wright-Giemsa stain technique
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(FDCT), Local Binary Pattern (LBP) and feature selection by Analysis of Variance (ANOVA).

They evaluated the proposed method using images from four breast cancer datasets. Three of

them containing digital/film mammography images and one containing Hematoxylin-Eosin (HE)

histopathological images acquired by a CCD camera. The fourth evaluated dataset is the UCSB

Biosegmentation Benchmark (UCSB-BB) [103], which contains 58 Red-Green-Blue (RGB)

TIFF color images with 896 × 768 pixels. Half of these images are malignant cases and the other

half benign. In this study, the authors converted the images into grey level images.

Table 3.1 summarizes these aforementioned classification methods which use histopatho-

logical images from biopsy sources.

Moreover, other relevant aspects of the breast cancer diagnosis have been explored.

Quantitative image analysis applied on HE tissue images has been done in the last decade and

some works have focused on BC grading [15, 22, 82, 148, 189, 224, 270]. Doyle et al. [82]

introduced an image analysis methodology to automatically distinguish between (1) BC and

non-cancer images and (2) between low and high grades – Bloom-Richardson (BR) grading

system – of BC from digitized histopathology. Basavanhally et al. [22] used a multi-Field-of-View

(FOV) classifier to successfully discriminate low, medium, and high Modified Bloom-Richardson

(mBR) grade and identify specific image features at different FOV sizes that are important for

distinguishing mBR grade in HE stained ER+ BC histology slides.

Human experts (pathologists) analyze and describe the slide images in terms of objects

(such as cells, nuclei), the size relationship between one object and another, the spatial relationship

between components like adjacency to tissues, the arrangement of glands and so on. For instance,

Loukas et al. [175] employed 100× magnification as applied in routine clinical practice for

deriving a diagnostic grade based on the architecture of the tissue section. Besides that, some

works have addressed the characterization of the tumors inWSI.Approaches include representation

of spatial relations of biological entity and decomposition of tumors in distinguishable patches.

Loménie and Racoceanu [174] presented a formalization of spatial relation modeling techniques,

convenient for structural representations of large image data by means of interest point sets and

their morphological analysis. These authors have applied the proposed framework to process
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large histopathological images capturing the spatial configuration of biological entities, which is

important in the prognosis process. Even being a contribution for generic applications, this work

is focused on automatic BC grading from WSI. The spatial distribution of distinct biological

entities such as nuclei, tubular formations and lumina is analyzed. In addition, a simplified

architectural/structural representation is presented to deal with large size of WSI (about eight

gigabytes of data). The goal of Nayak et al. [202] is to characterize tumors decompounding WSI

of histology section in patches such as stroma, normal, tumor, transition into necrosis and necrotic,

etc. Their method, based on a variation of the Restricted Boltzmann Machine (RBM), performs

an automated feature learning from unlabeled images for classifying distinct morphometric

regions within a WSI. A dataset of small image blocks of 1000 × 1000 was used, which has

been extracted from Glioblastoma Multiforme (GBM) and Clear Cell Kidney Carcinoma (KIRC)

from the Cancer Genome Atlas (TCGA) 5 archive. Evaluation of 1,400 and 2,500 samples of

GBM and KIRC achieved a performance of 84% and 81%, respectively. The learned model was

projected on each WSI (of size 20000 × 20000 pixels or larger) for characterizing and visualizing

tumor architecture. Zhou et al. [301] also conducted experiments using the same TCGA public

database. The authors proposed a multispectral feature learning model that automatically learns a

set of convolution filter banks from separate spectra to efficiently discover the constitutive tissue

morphometric signatures, based on Convolutional Sparse Coding (CSC). The learned feature

representations were aggregated through the Spatial Pyramid Matching (SPM) framework and

finally classified using a linear SVM.

Despite the colors being relevant for diagnosis by histological images, usually in

preprocessing for pattern recognition purpose these images are converted to grayscale. Thus,

some methods try to avoid discard the important color information. Recently, Shia et al. [253]

introduced a method for classification of color medical images, using a hepatocellular carcinoma

histological image dataset to evaluate the new method. This method, named Joint Sparse coding

based SPM (JScSPM), unlike other popular techniques such as Sparce coding based linear SPM

(ScSPM) and its variants, extract the color information in each color channel and the correlation

between channels.

5http://cancergenome.nih.gov/
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Table 3.1: Comparison among classification methods using biopsy images (unavailable datasets).

Authorship [ref](year) Dataset Biopsy Acquisition # Images Preprocessing Features Results

Doyle et al. [82] (2008) nonpublic ? CCD +M 48 ?
– Grey Level

– Haralick

– Gabor filter

SVM Ac = 95.80

Zhang [293] (2011) public [41] FNA CCD +M 361
– image enhancement and conversion – LBP

– Curvelet Trans-

form

Serial Fusion of Random

Subspace Ensemble

Ac = 97.00, ReR = 0.80

Kowal et al. [151](2013) nonpublic FNA CCD +M 500
– image enhancement and cropping

– cell nuclei segmentation

– morphometric

– GLCM

– topology

k-NN Ac = 93.11

Naive Bayes Ac = 90.22

Decision Tree Ac = 87.56

Filipczuk et al. [95](2013) nonpublic FNA WSI 737
– selection of 11 areas of interest

– cell nuclei segmentation

– shape-based

– GLCM

– GLRLM

– topology

k-NN E f R = 98.51, MCC = 0.97

Naive Bayes E f R = 98.51, MCC = 0.97

Decision Tree E f R = 97.01, MCC = 0.94

SVM E f R = 98.51, MCC = 0.97

CCD + M : CCD digital camera attached to light microscope · WSI : Whole-Slide Imaging · Ac: Accuracy (%) · ErR: Error Rate (%) · ReR: Rejection Rate (%) · E f R:

Effectiveness Rate (%) · MCC: Matthews Correlation Coefficient · Se: Sensivity (%) · Sp: Specificity (%) · ?: Non-reported
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Table 3.1: (continued)

Authorship [ref](year) Dataset Biopsy Acquisition # Images Preprocessing Features Results

Zhang et al. [295](2013) public [41] FNA CCD +M 361
– image enhancement and conversion – CLBP

– GLCM

– Curvelet Trans-

form

Random Subspace En-

semble

Ac = 99.25, ReR = 1.94

George et al. [104](2014) nonpublic FNA CCD +M 92
– image resizing, enhancement, and conversion

– cell nuclei detection

– false findings eliminations

– cell nuclei segmentation

– 10 shape-based

– 2 textural

SVM Se = 88.48, Sp = 90.99

MLP Se = 80.66, Sp = 76.28

LVQ Se = 87.95, Sp = 85.69

PNN Se = 96.32, Sp = 94.57

Ko et al. [150](2014) nonpublic FNA WSI 100
– image enhancement and cropping

– cell detection and segmentation

– cell nuclei detection and segmentation

– 9 shape-based

– 12 graph-based

– 12 Haralick’s tex-

tural

SVM with LDA Ac = 90.60

Zhang et al. [296](2014) public [41] FNA CCD +M 361
– image enhancement and conversion – CLBP

– GLCM

– Curvelet Trans-

form

One-class KPCA Ac = 92.28, ErR = 7.72

CCD + M : CCD digital camera attached to light microscope · WSI : Whole-Slide Imaging · Ac: Accuracy (%) · ErR: Error Rate (%) · ReR: Rejection Rate (%) · E f R:

Effectiveness Rate (%) · MCC: Matthews Correlation Coefficient · Se: Sensivity (%) · Sp: Specificity (%) · ?: Non-reported
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Table 3.1: (continued)

Authorship [ref](year) Dataset Biopsy Acquisition # Images Preprocessing Features Results

Bruno et al. [48](2016) public [103] ? CCD +M 58
– image conversion – Curvelet Trans-

form

– LBP

Polinomyal Ac = 100.00

Decision Tree Ac = 67.00

Random Forest Ac = 72.00

SVM Ac = 72.00

CCD + M : CCD digital camera attached to light microscope · WSI : Whole-Slide Imaging · Ac: Accuracy (%) · ErR: Error Rate (%) · ReR: Rejection Rate (%) · E f R:

Effectiveness Rate (%) · MCC: Matthews Correlation Coefficient · Se: Sensivity (%) · Sp: Specificity (%) · ?: Non-reported
Source: The author (2016).
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3.2.1.2 BreaKHis Dataset for Benchmarking

Since the publication of the BreaKHis dataset [256], a growing number of researchers

are using this public available dataset to evaluate their proposed methods for breast cancer

classification such as [5, 25, 55, 59, 60, 73, 79, 111, 112, 116, 145, 194–196, 241, 255, 257,

258, 282, 299]. Most of the BreaKHis related papers are generally based on automated feature

learning and deep learning techniques to improve the performance on this dataset [5, 25, 55, 60,

73, 116, 194–196, 255, 257, 258, 282, 299].

Initally, in the benchmark approach [256], Spanhol et al. presented an evaluation of

different combinations of six different visual feature descriptors along with different classifiers.

Computing the average over five trials, the authors report accuracies ranging from 80% to 85%,

which may vary depending on the image magnification factor. In the proposed experimental

protocol, the BreaKHis dataset has been randomly divided into a training set (70%) and a

testing set (30%). Patients used for building the training set were not used for the testing set.

Such protocol, including the 5 training-test splits and the respective results, is considered the

comparative baseline. Note that the distribution of the samples for each trial is publicly available

and allows a fair comparison of methods. However, several published works don’t strictly follow

this protocol making their results not directly comparable with the baseline.

The first deep learning approach using the BreaKHis was originally published by

Spanhol et al. [257]. In this work, the authors presented the results achieved using a CNN

trained directly from the original histopathology images. Given that CNNs generally require

large datasets, they make use of the patches trick, which consists of extracting sub-images at

both training and test phases. During training, the idea is to increase the training set by means of

extracting a large number of patches at randomly-defined positions. Then during test, patches are

extracted from a grid, and after classifying each patch, their classification results are combined.

The authors show that, with this approach, an increase of about 4–6 % can be observed in the

baseline accuracy [256].
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Bayramoglu et al. [25] proposed a method which uses CNNs to classify the same

BC histopathology images, but independent of the magnifications factors. In their work, two

different CNN architectures are used: a single task CNN is used to predict malignancy, and a

multi-task CNN is used to predict both malignancy and image magnification level simultaneously.

In general, their experimental results are similar to the previous baseline results obtained from

hand-crafted features [256]. However, the authors claim that the multi-task system does not

depends on specific magnification factors and could leverage the training by using data from

distinct imaging devices.

The use of DeCAF features on the BreaKHis dataset was investigated by Spanhol et al.

[258]. The experimental evaluation shown that these features can be a viable alternative to fast

development of high-accuracy BC recognition systems, generally achieving better results than

traditional hand-crafted textural descriptors [256] and, in some cases outperforming task-specific

CNNs [257].

A novel regularization technique for CNNs was presented by Akbar et al. [5]. The key

concept is the transitioning between convolutional layers and Fully Connected (FC) layers. The

modified transition model learns filters of varying sizes and then collapses them via average

pooling. According to the authors, this model achieved an overall test accuracy of 82.7% on the

BreaKHis dataset. However, the employed experimental protocol is not clear, especially how the

distinct magnification factors were considered. The authors themselves admit that the result is

not directly comparable.

Song et al. [255] report the results of their transfer learning-based method which uses a

VGG-VD model [254] pretrained on ImageNet in order to extract features. The extracted local

features are encoded by Fisher Vectors (FV) and the resulting descriptors are transformed by

applying an adaptation layer. The final image classification is performed using a linear-kernel

Support Vector Machine (SVM).

Another deep learning multi-classification model was proposed by Han et al. [116]. The

so called Class structure-based Deep Convolutional Neural Network (CSDCNN) is an end-to-end
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recognition method that adopts a hierarchical representation with feature space constraints which

maximize the Euclidean distance of inter-class labels. In order to evaluate the performance of the

method, the original BreaKHis dataset and the same database augmented on the training set for

oversampling imbalanced classes it were used. The achieved performance, for both image level

and patient level analysis is enhanced by using the BreaKHis dataset augmented. In the binary

classification task, the average accuracy was 96.07% and 96.25% for image level and patient level,

respectively. The authors claim that a great advantage of the CSDCNN is that it deals with WSI.

However, all the conducted experiments are carried out using just the published version of the

BreaKHis dataset, notably composed of images acquired by the conventional photomicroscopy

method which is widely available and relatively low cost.

Dimensionality reduction strategies for CNN-based features were investigated by

Cascianelli et al. [55]. The main purpose of that work was to establish the optimal trade-off

between accuracy and dimensionality.

A CNN-based solution is also presented by Das et al. [73]. They employ transfer

learning of a pre-trained CNN for specific breast histopathology features and majority voting

using random multi-views at multi-magnification. Again, the authors describe their method as

being a “histopathology whole slide classification approach”, but all the conducted experiments

are carried out using just the published version of the BreaKHis dataset, notably composed of

images acquired by the conventional photomicroscopy method.

Aiming to address the two-class BC classification considering class and the sub-class

labels as prior knowledge, Wei et al. [282] proposed a method based on CNN, named BiCNN.

Two datasets are used: the original and an augmented version. Both datasets were divided into

a training set, a validation and a test set, corresponding to 50%, 25%, and 25% of the images,

respectively. The reported average recognition rate for patient level and image level was 97%.

An ensemble model containing three custom Convolutional Neural Network (CNN)

classifiers using transfer learning was proposed by Zhy et al. [299]. The custom model is

inspired by VGGNet [254] architecture and the Max rule is used to ensemble the individual
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classifiers. Similarly to other published works, in this work the authors have used a patch-based

approach which randomly sample five sub-images of size 224 × 224 pixels. Moreover, a data

augmentation is also done performing zooming, horizontal and vertical flips. After ensembling

and cross-validation, the achieved percentage accuracies were 93.3 ± 2.3, 94.6 ± 2.2, 94.8 ± 3.2,

and 88.4 ± 4.1 for the magnifications 40×, 100×, 200×, and 400×, respectively.

Aiming to explore the usefulness of the local features and the frequency domain

information associated with the hierarchical property of the CNNs, Nahid and Yinan [196]

proposed a CNN-based model along with residual blocks. The model named CNN-CH, which

achieved the best results, utilizes features with Contourlet Transform (CT) coefficients, histogram

information and LBP. The experiments were performed on each magnification factor separately,

achieving accuracies of 94.40%, 95.93%, 97.19%, and 96.00%, for 40×, 100×, 200×, and 400×,

respectively.

More recently, Motlagh et al. [194] have examined different frameworks of Inceptions

models [266] and ResNet [119] architectures on cancer digital images, including BreaKHis.

Aiming to prepare the data for further feature extraction and classification, the authors have

applied color map selection and data augmentation as pre-processing steps. Then, fine-tuned

pre-trained deep CNNs were used to classify malignant and benign cases, as well as, perform the

sub-types detection. Approximately 85% of available images were randomly selected to create

the training set, and the remaining images were used for testing. This work achieved 94.8% and

96.4% classifying benign and malignant sub-types, respectively. Considering the classes benign

and malignant, the accuracy of the binary classification task was 98.7%.

Relying on a more traditional approach, Gupta and Bhavsar [112] compare their results

directly with [25], which also considers a magnification independent model, but using a deep

learning approach. They proposed an integrated multi-scale model which uses joint color-texture

features and a classifier ensemble to deal with the large variability appearance present in the

breast histopathology images. The final color-texture descriptor used is the concatenation of six

different representations: normalized color space representation, multilayer coordinate clusters

representation, Gabor features on Gaussian color model, Gabor chromatic features, complex
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wavelet features and chromatic features, and Opponent Color Local Binary Pattern (OCLBP). A

majority voting among a pool of heterogeneous classifiers combines the individual outputs to

classify the testing samples. In general, this method improves the recognition rate on patient-level

achieved by the previous deep learning method by 4% [25] and yields a lesser variance in

scores. In another published work, Gupta and Bhavsar [111] analyze performance of the same

proposed framework, also comparing with the CNN results achieved by Spanhol et al. [257]. A

Receiver Operating Characteristic (ROC) analysis and the related Area Under the ROC Curve

(AUC) computation on patient-level scores is presented, suggesting better results achieved by the

integrated model.

Chan and Tuszynski [59] presented an attempt to classify breast tumors based on

malignancy using fractal dimension as the descriptor and SVM as the classifier. The authors

have employed their own experimental protocol, making efforts to classify the tumor subtypes

present in the BreaKHis dataset, not achieving competitive results. Moreover, considering the

classification into benign and malignant slides at 40 ×, despite the F1 score of 97.9%, the reported

accuracy is only 55.6%.

Kahya et al. [145] proposed an adaptative sparse support vector aiming to perform the

selection of relevant features for describing histopathological images, removing noisy features

and improving the classification performance. Their method is based on the Sparse Support

Vector Machine (SSVM) with L1-norm with Wilcoxon rank sum test to weight each feature.

In their experimental setting using 10 folds cross validation, the proposed adaptative SSVM

achieved improved performance in all magnification factors, being the average classification

accuracy 94.97 (40×), 93.62 (100×), 94.54 (200×), and 94.42 (400×).

Finally, in a recent paper, Dimitropoulos et al. [79] used the encoding of histological

images as Vector of Locally Aggregated Descriptors (VLAD) representations on the Grassmann

manifold to perform automated grading of invasive BC. In that work, each histological image is

represented as a set of multidimensional spatially-evolving signals mapped and encoded on the

Grassmann manifold, a non-Euclidean space. This methodology tries to avoid the modeling of the

domain expert (pathologist) knowledge in order to detect histologic primitives, aiming to model
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directly from raw images without segmentation. The efficiency of the proposed method in the

grading of invasive BC is assessed using a dataset 6 created by the authors, which consists of 300

breast cancer annotated images of grades 1–3 collected from 21 patients of the General Hospital

of Thessaloniki, Greece. On the other hand, considering only the classification of benign and

malignant cases available in the BreaKHis dataset, the proposed method presents an improvement

of 6.53% in average when compared to the CNN-based deep learning approach [257].

Table 3.2: Comparison among classification methods using BreaKHis dataset.

Authorship (year) [ref] Protocol Approach Zoom Patient Accuracy (%)

Spanhol et al.(2016) [256] Yes Conventional

40× 83.9 ± 4.1

100× 82.1 ± 4.9

200× 85.1 ± 3.1

400× 82.3 ± 3.8

Spanhol et al.(2016) [257]* Yes Deep Learning

40× 90.0 ± 6.7

100× 88.4 ± 4.8

200× 84.6 ± 4.2

400× 86.1 ± 6.2

Bayramoglu et al.(2016) [25] Yes Deep Learning

40× 83.0 ± 3.0

100× 83.1 ± 3.5

200× 84.6 ± 2.7

400× 82.1 ± 2.4

Spanhol et al.(2017) [258] Yes Deep Learning

40× 84.0 ± 6.9

100× 83.9 ± 5.9

200× 86.3 ± 3.5

400× 82.1 ± 2.4

Akbar et al.(2017) [5] ? Deep Learning

40× 82.7 ± ?

100× ? ± ?

200× ? ± ?

400× ? ± ?

Song et al.(2017) [255] Yes Deep Learning

40× 90.0 ± 3.2

100× 88.9 ± 5.0

6Available on http://doi.org/10.5281/zenodo.834910

http://doi.org/10.5281/zenodo.834910
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Table 3.2: (continued)

Authorship (year) [ref] Protocol Approach Zoom Patient Accuracy (%)

200× 86.9 ± 5.2

400× 86.3 ± 7.0

Han et al.(2017) [116] No Deep Learning

40× 94.5 ± 2.1

100× 93.2 ± 1.4

200× 94.7 ± 3.6

400× 93.5 ± 2.7

Cascianelli et al.(2017) [55] No Deep Learning

40× 87.0 ± ?

100× 85.2 ± ?

200× 85.0 ± ?

400× 81.3 ± ?

Das et al.(2017) [73] ? Deep Learning

40× 94.8 ± ?

100× 94.4 ± ?

200× 94.6 ± ?

400× 93.5 ± ?

Wei et al.(2017) [282] No Deep Learning

40× 97.0 ± ?

100× 97.2 ± ?

200× 97.9 ± ?

400× 97.5 ± ?

Zhy et al.(2017) [299] No Deep Learning

40× 93.3 ± 2.3

100× 94.6 ± 2.2

200× 94.8 ± 3.2

400× 88.4 ± 4.1

Nahid and Yinan (2018) [196] No Deep Learning

40× 94.4 ± ?

100× 95.9 ± ?

200× 97.2 ± ?

400× 96.0 ± ?

Motlagh et al.(2018) [194] No Deep Learning

40× 98.7 ± ?

100× 98.7 ± ?

200× 98.7 ± ?

400× 98.7 ± ?
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Table 3.2: (continued)

Authorship (year) [ref] Protocol Approach Zoom Patient Accuracy (%)

Gupta and Bhavsar (2017) [112] No Conventional

40× 87.2 ± 3.7

100× 88.2 ± 3.3

200× 88.89 ± 2.5

400× 85.82 ± 3.8

Chan and Tuszynski(2016) [59] No Conventional

40× 55.6 ± ?

100× ? ± ?

200× ? ± ?

400× ? ± ?

Kahya et al.(2017) [145] No Conventional

40× 94.9 ± ?

100× 93.6 ± ?

200× 94.5 ± ?

400× 94.4 ± ?

Dimitropoulos et al.(2017) [79] Yes Conventional

40× 91.8 ± ?

100× 92.2 ± ?

200× 91.6 ± ?

400× 90.5 ± ?

Symbol * indicates the combination of multiple classifiers · Symbol ? indicates unpublished/unknown.

Source: The author (2018).

3.2.2 Images From Non-Invasive Sources

Currently mammography is the standard screening tool for BC, detecting anatomical

changes and structural distinction between normal and abnormal (eventually tumoral) breast

tissue. This procedure uses low energy x-ray to produce images on high contrast and high

resolution. Being the mammography a routinary procedure, the CAD/CADx systems present

in mammographs already incorporate many research results of the last decades. The list of

works related to machine learning and image processing in mammograms is pretty extensive.
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Recently published studies on this diagnostic image field present a wide range of techniques,

covering topics such as blood vessel segmentation [193], analysis of bilateral mammographic

asymmetry [57, 94, 232], automatic breast density estimation and classification [63, 99, 128,

173, 250, 275], segmentation of region of interest, detection and classification of mammographic

microcalcifications and masses [1, 3, 11, 19, 56, 64, 76, 109, 130, 133, 134, 159, 171, 172,

186, 197, 223, 242, 269, 292, 298], content-based image retrieval [143, 283], architectural

distortion recognition [32, 215], geometrical alignment of mammogram sequences (mammogram

registration) [88, 125, 179, 182, 234], image enhancement in post acquisition process [181, 216,

264], new coordinate system based on breast anatomy [39], and synthesis of 2D mammograms

from Digital Breast Tomosynthesis (DBT) [249].

Unlike the notorious lack of basic public data for research with histopathological images

of BC, there are some mammographic databases publicly available to the research community.

The two most easily accessed and therefore most commonly used are the Mammographic

Image Analysis Society (MIAS) database [261, 272] and the Digital Database for Screening

Mammography (DDSM) [74, 120, 235].

Thermogram is a relatively cheap, non-ionizing and free-contact procedure used as a

screening tool for BC detection. The approaches to improve this modality of early BC diagnosis

have gaining space among some researchers of image processing and machine learning [13, 91,

101, 153–157, 165, 166, 192, 245].

3.3 Research Using Previously Extracted Features

Relatively few works in literature have concentrated on BC classification through

previously extracted features using their own private databases. For instance, a study conducted

by Huang et al. [131], focused on a hybrid SVM-based strategy with feature selection, searched

for risk factors in BC. A total of 80 samples from breast tissue were collected in the Chung-Shan

Medical University Hospital. The classification between BC and fibroadenoma achieved 86% of
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averaged accuracy in a 5-fold cross validation. The obtained results also correlate the presence

of 5 DNA viruses — HSV-1, EBV, CMV, HPV, and HHV-8 — with breast tumors.

However, several papers, such as [2, 4, 16, 30, 62, 86, 87, 104, 146, 147, 212, 222,

225, 240, 252, 296], use WBCD variations to assess different classification methods to aid

BC diagnosis. Normally, high successful classification rates are reported. WBCD is a dataset

of feature descriptors extracted from digitized BC biopsy samples. It is publicly available on

the machine learning repository from the University of California at Irvine (UCI)[18]. The

samples were acquired from FNA biopsies of breast mass. Each one of the 569 instances from

the base has a descriptor formed by 30 real-valued numeric fields. These values describe the

properties of cell nuclei present in the image and tell if the instance is a malignant or a benign

case. Properties include attributes such as clump thickness, uniformity of cell size and shape,

marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli and

mitoses. Table 3.3 summarizes the methods of several works – using WBCD database – with

their respective performances.

Generally, in terms of applications involving medical diagnosis, it is expected that the

automated system achieves high predictive accuracy and it has be based on a set of significant

classification rules that can be validated by human experts. A BC diagnosis system, presented by

Peña-Reyes and Sipper [222], combined fuzzy systems with Genetic Algorithm (GA), achieving

a 97.36% accuracy. This system used simple rules to facilitate human interpretation about how

the result was obtained. The final diagnosis was associated to confidence measures.

Aiming to optimize the set of rules extracted from trained neural networks, Setiono

performed a preprocessing of neural network input data [252]. The preprocessing used by

the author in WBCD is twofold. The first step consists in just eliminating – before training –

samples with missing attribute values. Then, only the most relevant attributes are selected for

classification, thus reducing the computation time. The resulting rule set is more concise and

accurate than the previous methods reported in the literature, achieving a 98.10% accuracy rate.
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The selection of relevant features to optimize accuracy and minimize classification

time was explored in other works as well. Neural networks combined with Association Rule

(AR) was the approach presented by Karabatak and Ince in [147]. The purpose of using AR is

the dimensional reduction of feature space in order to make the diagnosis system faster. The

traditional neural network model was compared to the proposed model of the neural network

conjugated with AR. The correct classification rate of the new system was 95.6%.

A Least Square Support Vector Machine (LS-SVM) classifier was used by Polat and

Güneş [225], reaching a 98.53% accuracy in a 10-fold cross validation. Another SVM method

combined with feature selection was applied by Akay [4] over a training-test of distinct partitions

extracted from WBCD. Their results show the highest accuracy at 99.51% using five features

(80-20% training-test partition).

SVM technique was also used by Chen et al. in BC classification, but combined with

Rough Set (RS) [62]. The RS reduction algorithm is used as a tool to select features, removing

redundancies and further improving accuracy of SVM classifier, which achieved 99.41%.

A hybrid classifier method for BC, based on fuzzy-artificial immune system and

k-Nearest Neighbor (k-NN) algorithm, was proposed by Şahan et al. in [240]. Indeed, in

computer-aided diagnosis systems, short computing time and high accuracy are key-factors. The

time consumed by algorithms k-NN can make them impracticable. Thus, the first step of the

hybrid system introduced in [240] explores the large clustering capability of such systems to

significantly reduce the data inputted into k-NN algorithm. An accuracy of 99.14% via 10-fold

cross validation was reported.

Three classifier algorithms based on common architectures of neural networks, Multi-

Layer Perceptron (MLP), Radial Basis Function (RBF), and Probabilistic Neural Network (PNN),

were tested by Azar and El-Said for BC diagnosis [16]. Although MLP is one of the most

widely used neural network architectures for biomedical applications, the best performance was

achieved by a PNN classifier with 100 and 97.66% of accuracy rate in training and test phases,

respectively. And MLP, using Scaled Conjugate Gradient (SCG) learning algorithm was ranked
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second, reaching 97.80% and 96.34% classification accuracy for training and validation phases.

Finally, RBF using 23 hidden neurons occupied the last position for accuracy rate at 96.05%.

In the same problem, Padmavathi had already compared MLP and RBF architectures, besides

logistic regression [212]. This previous study shows better result for the RBF model (97.00%),

whereas MLP reached 93.64%, requiring a larger execution time when compared to RBF.

Elouedi et al. [87] tried to improve the classification of malignant instances by using

the k-Means algorithm for clustering and the decision tree for classification. Their results

demonstrate a gain in accuracy rate (from 94.56% to 95.14%) by splitting the original malignant

instances into two clusters for posterior classification using a C4.5 classifier.

Bhardwaj and Tiwari [30] used Genetically Optimized Neural Network (GONN) in the

WBCD database, introducing new crossover and mutation operators. Their approach showed

results outperforming previous works in the literature, reaching a classification accuracy of

98.24%, 99.63% and 100% for 50-50, 60-40, 70-30 training-testing partition respectively and

100% for 10-fold cross validation.
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Table 3.3: Accuracy rates achieved by different classifiers of the literature – WBCD Dataset.

Authorship (year) [ref] Method Accuracy (%)

Peña-Reyes and Sipper (1999) [222] ⊕
Fuzzy 97.36GA

Setiono (2000) [252] Feed Forward Neural Network 98.10
Abonyi and Szeifert (2003) [2] Supervised Fuzzy Clustering 95.57
Polat and Güneş (2007) [225] LS-SVM 98.53

Şahan et al. (2007) [240] ⊕
Fuzzy-Artificial Immune System 99.14
k-NN

Karabatak and Ince (2009) [147] ⊕
Neural Networks 95.60Association Rules

Akay (2009) [4] SVM with Feature Selection 99.51

Padmavathi (2011) [212] ⊗

RBF 97.00
MLP 91.30
Logistic Regression 73.70

Chen et al. (2011) [62] ⊕
SVM 99.41Rough Set

Azar and El-Said (2012) [16] ⊗

PNN 97.66
MLP 96.34
RBF 96.05

Eleyan (2012) [86] ⊗

Naive Bayes 95.60
Neural Networks 96.09
k-NN 96.36
SVM 96.56

Zhang et al. (2014) [296] One-class KPCA 97.28

Elouedi et al. (2014) [87] ⊕
Decision Trees 95.14
k-Means

Bhardwaj and Tiwari (2015) [30] GONN 100.00

Karabatak (2015) [146] ⊗
Naive Bayes 96.17
Weighted-Naive Bayes 98.54
Symbol ⊗ indicates comparison between methods and
⊕ stands for combination of methods.

Source: The author (2015).
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Chapter 4

Methodology

This chapter presents the proposed alternative model and the methodological approach

used to carry out the experiments in this research. In order to assess the validation of the proposed

hybrid model, the following tasks will be performed:

� To build a histopathological image database composed of microscopic breast tumor images

labeled by pathologists;

� To extract different hand-crafted texture descriptors from each image present in the database;

� To build a baseline supervised classification system based on traditional classifier algorithms

and extracted texture descriptors;

� To evaluate the baseline supervised classification system, by computing the accuracy as a

metric to verify how the model performs on testing unseen data;

� To investigate different Convolutional Neural Network (CNN) architectures and propose a

suitable one to deal with histopathological image;

� To investigate the performance of state-of-the-art Multiple Instance Learning (MIL)

methods for classifing histopathological breast cancer images.
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The remainder of this chapter is organized as follows: Firstly, a general view of

the proposed hybrid approach is given. Then, in Section 4.2, BreaKHis, a histopathological

image database of breast tumors which was used in the experiments, is introduced. After that,

the methodological strategies used to carry out the experiments, considering the traditional

representation, the automatic representation using CNN, and the MIL approach, are detailed in

sections 4.3, 4.4 and 4.5, respectively. Section 4.6 presents the evaluation criteria, highlighting

the selected performance metrics. Finally, in Section 4.7 we present the software tools used

for building the baseline system, as well perform the experiments based on the deep learning

approach with CNN, and under the MIL paradigm.

4.1 The Proposed Alternative Approach

The main goal of this work is to build a classification system of breast cancer (BC)

histopathological images which uses an alternative holistic approach, i.e., avoiding the explicit

segmentation of the images. However, histopathological images are naturally challenging for

the classification systems. This can be explained due to the inherent heterogeneity of these

images because the tissue is composed of complex, non-homogeneous and very dense biological

structures. Regarding to BC detection, some tissue patterns can occur in the normal tissue,

benign lesions and malignant lesions. Besides, the appearance of the stained slides varies among

different laboratories or even in the same lab, mainly in terms of section thickness and coloring.

Figure 4.1 shows an example of color variation in histopathological images acquired using the

same imaging condition, but from two different slides, both prepared in the same laboratory. As

pointed by Li and Plataniotis [170], the problem of color variation in histopathological images

is caused by inconsistent staining procedures (timing, concentrations, different manufacturers,

reagents, etc.) and nonstandard imaging condition. Thus, these properties of the histopathological

images might make the classification a hard task for pathologists or automatic systems. But robust

histopathology image analysis systems must mitigate this variability in image appearance [277].
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Figure 4.1: Example of color variation in histopathological images (HE staining).
Source: The author (2015).

We propose to investigate different representation approaches, considering both the

Single Instance Learning (SIL) and MIL paradigms, to deal with these challenges. Under the SIL

paradigm traditional supervised learning, using hand-crafted or even automatic representation,

requires a training dataset that consists of various inputs with corresponding class labels. In many

applications, however, it is hard or even impossible to accurately and consistently assign labels

to the inputs of the training dataset, thus resulting in partial or ambiguously labeled data. MIL

arises as a feasible alternative to deal with this issue by grouping instances into bags, without the

need to label all the instances. In our case, MIL allows for the modeling of real situations such as

digital histopathology images, when there are several images for one patient. Figure 4.2 presents

a simplified block diagram representing the proposed model and its main aspects.

Firstly, we have created a large dataset of breast cancer histopathology images named

BreaKHis, which is available to the scientific community [256]. All the experiments were

performed using the BreaKHis dataset, aiming to make this real-life, challenging dataset a useful

benchmark for research in breast cancer computer-aided diagnosis. We also have built a baseline

system exploring the use of classic textural representation. This system, based on hand-crafted

features, is covered in the Section 4.3.

Then, considering the limitations of the hand-crafted features, we propose the usage of

an automatic learning representation to extract discriminant features from the histopathological
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Figure 4.2: Simplified block diagram representing the proposed alternative approach.
Source: The author (2016).

images. In our approach, the automatic representation relies on supervised deep learning

techniques, specially CNN and transfer learning. Such automatic representation is detailed in

Section 4.4.

Additionally, we should cope with certain intrinsic aspects of the BreaKHis dataset,

presented in the Section 4.2. To do so, we are employing a patch-discard strategy (Section 4.4.1.4)

and finally a MIL formulation, detailed in Section 4.5.

4.2 The Histopathological Image Database BreaKHis

As discussed in Section 3.2.1, there is an evident scarcity of public annotated histopatho-

logical image database. At same time, the algorithms present in the histopathology image analysis

systems need to be trained on selected image fields with well documented histopathological

characterization. In a recent review, Veta et al. [277] point out that the lack of large publicly

available annotated datasets would be the main obstacle in the development of new histopathology

image analysis methods.
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Contributing to mitigate this gap, we introduced in [256] a database called BreaKHis

composed of 7,909 breast histopathological images acquired from 82 patients. The samples

were generated from breast tissue biopsy slides, stained with Hematoxylin-Eosin (HE). Tumoral

areas were identified and labelled by means of visual analysis of tissue sections under a

microscope, performed by anatomo-pathologists of the P&D Lab. Final diagnosis of each case

was produced by experienced pathologists and confirmed by complementary exams, such as the

Immunohistochemistry (IHC) analysis.

These microscopic images of breast tumor tissues are divided into benign and malignant

tumors. Both breast tumors, benign and malignant, can be sorted into different types based on

the way the tumoral cells look under the microscope. At this time, there are four histological

distinct types of breast benign tumors: adenosis (A), fibroadenoma (F), phyllodes tumor (PT),

and tubular adenona (TA); and four malignant tumors (BC): carcinoma (DC), lobular carcinoma

(LC), mucinous carcinoma (MC) and papillary carcinoma (PC) in dataset. Table 4.1 summarizes

the image distribution.

Table 4.1: Images distribution by magnification factor and main class.

Magnification Benign Malignant Total

40× 625 1,370 1,995
100× 644 1,437 2,081
200× 623 1,390 2,013
400× 588 1,232 1,820

Total 2,480 5,429 7,909

# Patients 24 58 82
Source: The author (2015).

A more complete description of the BreakHis dataset is shown in Appendix B, detailing

the distinct biopsy methods used for collecting the samples, the acquisition process and the types

of tumors present in this database.
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4.2.1 A Priori Information

In this section, we point out some relevant a priori information about the BreaKHis

dataset.

Patient-level Annotation: As previously mentioned, BreaKHis dataset is composed of

7,909 breast histopathological images acquired from 82 patients, one slide per patient, being 58

cases malignant and 24 benign. A patient (slide) was labeled by the pathologists as malignant

because one or few areas within the slide presented cancerous patterns, i.e., it matched the criteria

of malignancy. If the complete area of the lesion does not match any criteria of malignancy it

is considered a benign tumor. Each labeled patient can be regarded as a collection of several

images captured using four magnification factors: 40×, 100×, 200×, and 400×. Despite the fact

that the collection (patient) has a label, the annotation is not provided to individual instances

(images), but each instance inherits the label of the collection where it lies.

Imbalanced Classes: Currently, the two classes of BreaKHis dataset are not equality

represented, i.e., the amount of examples ofmalignant and benign cases is substantially unbalanced.

Considering the image distribution by class in the BreaKHis, there are 2480 benign images and

5429 malignant images. In order to get some intuition about the class distribution, we have

performed a visual inspection on the BreaKHis images. Considering the high dimensional data,

for visualization purpose, we employed the popular t-Distributed Stochastic Neighbor Embedding

(t-SNE) technique, developed by Maaten and Hinton [180]. This nonlinear dimensionality

reduction is well suited for visualization of high-dimensional datasets and has been successfully

applied on large real-world datasets. The resulting t-SNE projection applied in each magnification

factor is shown in Figure 4.3. In this scatter plot of BreaKHis dataset, the blue color represents

benign instances and the malignant instances are presented in magenta.

Small Regions of Interest: Normally, in the clinical routine, only some small regions

within the histopathological images are effectively used by pathologists to characterize the lesion

into cancer (malignant) or non-cancer (benign). Regarding the BreaKHis images, such regions

are not segmented or labeled, i.e., the exact location is unknown.
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Figure 4.3: Visualization of the BreaKHis dataset in 2D space by t-SNE. Each point represents an
image. The benign instances are shown in blue and the malignant in magenta. Perplexity = 40.
Source: The author (2016).

Irrelevant Images: Some BreaKHis images do not contain enough visual information

to classify such image as a malignant or benign tumor. Figure 4.4 depicts two examples of

irrelevant images: (a) an image acquired from a malignant ductal carcinoma, at 40×magnification

factor, and (b) an image from a benign adenosis at 100×. Both isolated images cannot be classified

with confidence, since they present only common tissue or even almost all background.

4.3 Baseline System Using Hand-crafted Features

Aiming to evaluate the discrimination power of traditional representations, we built

a conventional classification system using supervised learning and some of the well known

classic texture descriptors found in the surveyed literature. Such a global approach to extract

features tries to avoid the explicit segmentation of the histopathological images, a non-trivial and

error-prone task. The representations used as textural descriptors were summarized in Chapter 2,

Section 2.2.
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(a) Irrelevant image, at 40×, extracted from a malignant
slide.

(b) Irrelevant image, at 100×, extracted from a benign
slide.

Figure 4.4: Examples of images irrelevant to classification.
Source: The author (2017).

We also intend to investigate the possible complementarity among the four magnification

factors of the images available on the dataset, by emulating the analysis made by the pathologist,

who starts the observation using smaller zoom levels and gradually goes to larger zooms,

seeking details on tissue components. An intuitive approach suggests the use of diverse distinct

representations for each magnification factor. Also, it is necessary to establish a strategy to

combine such representations into a single descriptor capable of improving the recognition rate.

Usually, this feature combination problem is treated by using two basic methods:

combining the features before the classification (early fusion or feature level fusion) or combining

the output of the classifiers built upon different descriptors (late fusion or decision-level fusion).

Considering the first method, a popular technique is concatenating all the features to construct a

combined bigger feature vector [287]. Then, this new and normally high dimensional feature

space is fed to a classifier. However, such practice can not guarantee the optimal performance [72],

since it suffers from imbalanced input features and produces high dimensional descriptors [287].

Regarding the decision-level fusion method, the individual decisions of the classifiers may be

combined by voting and averaging or used as input to a final classifier. This fusion method, with

respect to our model, will be explored in Section 4.4.1.6.
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4.3.1 Traditional Representation

Considering the traditional representation, six different operators were used to extract

texture descriptors and they were presented briefly in Chapter 2. These include the most

commonly textural descriptors found in the literature, such as Local Binary Patterns (LBP) [207,

208], Completed LBP (CLBP) [110], Local Phase Quantization (LPQ) [209], Grey-Level Co-

occurrence Matrix (GLCM) [117], Threshold Adjacency Statistics [69, 115], and one keypoint

descriptor, named Oriented FAST and Rotated BRIEF (ORB) [239]. Keypoint descriptors are

most often used for object recognition. However, the literature shows that this kind of descriptor

can produce interesting results for texture classification on microscopic images [185].

The operators that will be employed to extract texture descriptors are shown in Table 4.2.

We will use such representations to train the classifiers presented in Chapter 2, Section 2.3.

Table 4.2: Summary of operators.

Acronym Operator [reference] Number of
Features

CLBP_S/M/C Completed LBP: combination of operators CLBP_S (Sign),
CLBP_M (Magnitude) and CLBP_C (Center) [110]

1,352

GLCM Gray-Level Co-ocurrence Matrix [117] 13
LBP Local Binary Pattern [207, 208] 10
LPQ Local Phase Quantization [209] 256
ORB Oriented FAST and Rotated BRIEF [239] 32
PFT AS Parameter Free-TAS [69, 115] 162

Source: The author (2015).

4.3.2 Oracle

To verify the level of complementarity among the classifiers used in this study, we will

compute the accuracy of the oracle, which is the upper limit in terms of performance of the pool

of classifiers. The oracle is an abstract model defined in [162], which always selects the classifier

that predicted the correct label, for a given query sample, if such a classifier exists. In other

words, it represents the ideal classifier selection scheme. The motivation of reporting the oracle

is to show the difference between the performance of a real-life classification system and the



71

abstract model of the oracle. Better results in oracle can indicate that room for improvement

exists with a high potential to increase the accuracy. Considering this scenario, the classification

system performance may be improved, for example, by using improved descriptors or designing

a strategy to combine appropriate classifiers.

4.4 Automatic Representation Using Deep Learning

As stated in the introduction, the visual classification of histopathological images poses

as a challenging task. This type of image presents high variability (inter- and intra-class) as

well as complex geometrical structures, due to high morphological diversity and quite complex

textures. Thus, the traditional approach to extract features suitable to classify histopathological

images requires considerable modeling efforts guided by knowledge domain experts. Generally,

the final representation is pretty customized, specific for each problem and hardly applicable in

other contexts [278].

To overcome this limitation we will explore the automatic representation based on deep

learning techniques, which are expected to extract the features directly from the input images,

thus avoiding hand-crafted features [28]. Since the key-concept of deep learning is to discover

multiple representation levels in order to extract more abstract semantics directly from the input

data [167], we believe that the automatic representation would be a fruitful diversity source to

train the classifiers.

In this sense, we selected CNNs, which have achieved success in image classification

problems. Two main strategies will be considered:

1. Classifying our histopathological images using classical architectures, such as LeNet [169]

and AlexNet [158], trained from scratch;

2. Using networks trained on different datasets to act as feature extractors in our dataset and

potentially reuse the representation learned (transfer learning) [291].
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Considering the first alternative, the aforementioned architectures demand many thou-

sands of instances to properly train the network. Unfortunately, there is a lack of enough training

images in the BreaKHis dataset for such purpose, a common fact on similar medical applications.

To address this limitation we will use data augumentation methods aiming to artificially produce

additional training instances by applying transformations to the original image [61, 158]. In

summary, our data augmentation technique is based on downsampling the original image and

extract several patches of this resized image. Then these patches will be used to train the CNNs.

In order to maintain a compromise between satisfactory results and a feasible computational

time, we propose to evaluate different approaches to extract the patches. Initially, methods such

as random extraction and sliding window will be considered. A possible drawback in patch

extraction approach is how to select the representative patches. Since the histopathological

images are highly heterogeneous, some patches can present little textural information as we can

see in the Figure 4.5. To overcome this problem we should define a metric based on measures of

variability in order to evaluate each patch, by selecting it to compose the training set or discarding

it as non-meaningful. In the classification phase, the test image will also be resized and the

patches extracted. A similar deep learning method, but applied on texture classification of forest

species, was presented by Hafemann et al. [114]. In this study, the CNN outperformed most of

the earlier published results on a macroscopic image dataset [219] and another one composed of

microscopic images [184].

The second alternative also deals with the limited amount of training examples, but

transferring the representations learned from one large-scale dataset to other related domains.

Training CNNs entirely from scratch would be unfeasible in some contexts, due to the nature

of this type of network demanding large amounts of training examples and the contrasting lack

of training data of some image datasets. Currently, a common tactic adopted by researchers is

to use networks pre-trained on large datasets in order to produce representations which can be

applied to classification tasks on small datasets. CNNs pre-trained on large-scale datasets can

act as general-purpose feature extractors [251] and the representations learned are potentially

transferable to several other related domains (transfer learning) [210]. To deal with the problem of

scarcity of large medical image databases, Bar et al. [20] proposed using a deep learning approach
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Figure 4.5: Examples of patches extracted from BreaKHis images. In the two upper rows there
are patches from benign images. Malignant examples are in the two bottom rows.
Source: The author (2015).

based on non-medical learning and, for this purpose, they have trained a CNN with a well-known

large scale non-medical image database. In a recent publication, Xie et al. [288] presented a

transfer learning approach to extract large-scale socioeconomic indicators from high-resolution

satellite imagery, using nighttime light intensities as a data-rich proxy for economic activity.

Therefore, the features extracted by a CNN in a particular problem domain, known as deep

features, can be transferred to different but related domains. If there is sufficient similarity

between the domains, the representation learned by the CNN on a given problem can be effective

in others as well. Moreover, the results of a recent approach by Simonyan and Zisserman [254]

demonstrate that very deep models generalize well to different datasets and the extracted deep

features achieve excellent performance even when used as input of other classifiers. Thus,

focusing on transfer learning techniques, we expect to evaluate some CNNs pre-trained for image

classification challenges like ImageNet Large Scale Visual Recognition Challenge (ILSVRC)1.

1http://image-net.org/challenges/LSVRC/

http://image-net.org/challenges/LSVRC/
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Specifically, we will start with CNNs models such as GoogLeNet [265], AlexNet [158], and

VGG [61, 254].

4.4.1 CNN Approach

A traditional approach to extract appropriate features for classification tasks in patho-

logical images requires considerable efforts and effective expert domain knowledge, frequently

leading to highly customized solutions, specific for each problem and hardly applicable in other

contexts [278]. On the other hand, as a particular deep learning technique, CNNs have achieved

success in image classification problems, exploring the possibility of learning features directly

from input data, thus avoiding hand-crafted features [28]. In summary, a CNN consists of multiple

trainable stages stacked on top of each other, followed by a supervised classifier. Learning a

CNN that is convenient for classification tasks critically depends on the expertise of parameters.

In the remaining of this section the method that will be used to classify the images from the

BreaKHis dataset using a proper CNN is described.

4.4.1.1 CNN Architecture

In order to classify images from BreaKHis dataset, we will evaluate some previously

existing deep neural network architectures. We will start with LeNet [169], a CNN known to

work well on digit classification tasks. Then, we will choose a more complex model, specially

designed to classify color images. Particularly, we expect to achieve competitive results using a

variant based on the AlexNet [158]. The original AlexNet was proposed by Alex Krizhevsky

to accurately classify images from the CIFAR-10 2 dataset. This architecture is composed of

multiple layers of convolution, pooling, Rectified Linear Unit (ReLU) nonlinearities, and local

contrast normalization with a linear classifier on top of it all, as shown in Figure 4.6.

2The CIFAR-10 (Canadian Institute for Advanced Research) dataset consists of 60000 32 × 32 color images
(50,000 for training, 10,000 for testing) in 10 mutually exclusive classes (’truck’, ’automobile’, ’plane, ’ship’, ’cat’,
’dog, ’bird’, etc.), with 6,000 images per class. Source: http://www.cs.toronto.edu/∼kriz/cifar.html
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Figure 4.6: AlexNet CNN architecture.
Source: Extracted from [158].

Table 4.3 summarizes the parameters of the CNN layers, where CONV+POOLmax

stands for Convolutional Layer followed by Max-pooling layer, CONV+POOLavg, Convolutional

Layer followed by Average-pooling layer, and FC by fully-connected layer. In the end, the CNN

architecture that provided the best results in our experiments contains the following layers and

parameters:

� input/data layer: this layer loads input and produces output used to feed convolutional layers.

Some transformations such as mean-subtraction (described below) and feature-scaling

can be applied. In our case, inputs are images and the parameters are defining the image

dimension (32 × 32 pixels) and number of channels – 3 for Red-Green-Blue (RGB). As a

convenience for classification models, the input layer can also receive the label associated

with the image;

� convolutional layers: a convolutional layer convolves the input image with a set of learnable

filters, each producing one feature map in the output image. There are three convolutional

layers in this model. The receptive fields (kernels) are of size 5 × 5, the zero-padding is set

to 2 and the stride is set to 1. Each of the first two convolutional layers learns 32 filters

and they are initialized from a Gaussian distribution with a standard deviation of 0.0001

and 0.01, respectively. The last layer learns 64 filters and it is initialized from a Gaussian

distribution with a standard deviation of 0.0001.

� pooling layers: these layers are responsible for downsampling the spatial dimension of the

input. There is one pooling-layer after each convolutional layer. All of them are set to use a



76

3 × 3 receptive field (spatial extent) with a stride of 2. The first pooling layer uses the most

common max operation over the receptive field and the other two perform average pooling;

� ReLU layers: despite the ReLU activation function actually being a non-linear element-wise

operator, we will treat it, for convenience, explicitly as a layer. There are three ReLU

layers in this model. Given an input value x, the ReLU layer computes the neuron’s output

f (x) as x if x > 0 and (α ∗ x) if x <= 0. The parameter α specifies whether to leak the

negative part by multiplying it with the slope value (0.01 or so) rather than setting it to

0. The default value of α is 0. So, when this parameter is not set, it is equivalent to the

standard ReLU function f (x) = max(0, x) [158], in other words, the activation is simply

thresholded at zero;

� inner-product layers or fully connected layers: these type of layers treat the input as

a simple vector and produce an output in the form of a single vector. There are two

inner-product layers in this model. The second one, a fully-connected output layer with

softmax activation, depends on the number of classes in the classification problem, i.e., 2

output filters for our binary classification problem.

Table 4.3: Summary of CNN layers.

Layers

1 2 3 4 5

Type CONV + POOLmax CONV + POOLavg CONV + POOLavg FC FC
Channels 32 32 64 64 2
Filter Size 5×5 5×5 5×5 – –
Convolution Stride 1×1 1×1 1×1 – –
Pooling Size 3×3 3×3 3×3 – –
Pooling Stride 2×2 2×2 2×2 – –
Padding Size 2×2 2×2 2×2 – –

� CONV + POOLmax : Convolutional Layer followed by Max-pooling layer
� CONV + POOLavg: Convolutional Layer followed by Average-pooling
layer � FC: Fully-connected layer

Source: The author (2015).
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4.4.1.2 Training Strategies Using Small Patches

The proposed method aims at dealing with the high-resolution of the images generally

used for histopathological BC classification. As pointed out in [114], adapting the existing deep

neural network models for larger images can result in more complex architectures, with larger

sets of parameters (more and larger layers), which can substantially increase the complexity of

the model. As a consequence, the time that is necessary to fine-tune and train the parameters of

the architecture can become very long. In order to deal with this problem, the proposed method

is based on the extraction of random patches for training, and the combination of these patches

for recognition.

In order to learn the parameters of the CNN described in Section 4.4.1.1, only small

patches of the images are used for training. The main idea is to extract patches with sizes that are

close to those of the CIFAR dataset from the high resolution images . Since we are dealing with

textures, the main premise is that these patches can contain enough information for training a

model, provided an appropriate set of patches is extracted from each image.

Based on the results reported by Hafemann et al. in [114], where the best results were

achieved by reducing the dimensionality of the images, in this work the original 700× 460 images

will be reduced to 350 × 230. Afterwards, we will extract patches using two different strategies.

In the first one, we will use a sliding window with a 50% overlap, while in the second case the

patches will be extracted randomly with no overlap control between patches. Also, based on the

results reported in [114], we will assess two different image patch sizes (32 × 32 and 64 × 64).

Figure 4.7 shows a resized image, as well as the respective 32 × 32 image patches.

In practice, this method brings translation-invariance to the model and acts as regu-

larization, preventing the model from overfitting the training set. The sliding window strategy,

allowing 50% of overlap between patches of 32× 32 and 64× 64, results in 260 and 54 patches by

image, respectively. On the other hand, considering the random extraction strategy, for both patch

sizes, we have fixed an arbitrary number of 1000 patches to be extracted from each input image.

Table 4.4 summarizes the patch images strategies which we are going to evaluate in our work.
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(a) Example of a BreaKHis image, breast ma-
lignant tumor stained with HE staining and
acquired at 40× magnification, resized (50% of
the original).

(b) Patches of dimension 32 × 32 extracted from resized image

Figure 4.7: Patches extracted from the original image after dimension reduction.
Source: The author (2015).

Table 4.4: Summary of patch image generation strategies

# Patch Strategy Number of
Size Patches

1 32×32 Sliding Window 260
2 64×64 Sliding Window 54
3 32×32 Random 1000
4 64×64 Random 1000

The training protocol adopted here is the purely supervised type, frequent in practical

systems for speech and image recognition. As usual in the supervised mode, the Stochastic

Gradient Descent (SGD) method [34], with backpropagation to compute gradients and a mini-

batch size of 1, will be used to update the network’s parameters, starting with a learning rate of

10−6, in conjunction with a momentum term of 0.9 and a weight decay of 4−5. The CNN will be

trained for 80,000 iterations on a NVIDIA® Tesla® K40m GPU [205] using the Caffe framework

[141].

4.4.1.3 Limitation of the Patch-based Strategy

Avoiding the necessity of performing an explicit segmentation of the images, the CNN

method is based on the extraction of several small random patches (sub-images) for training,
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and the combination of these patches for recognition. Considering this automatic representation

approach, some promising results were achieved as presented in Chapter 5.

However, it was noted that the patterns of some patches are quite similar, independently

if the patch comes from a malignant or a benign image. Examples of these patterns can be seen

in Figure 4.8. This intersection can be partially explained by the natural presence of certain types

of tissue (such as adipose tissue, collagen-rich stroma, connective tissue etc.) in most of the

breast histopathological samples.

(a) Patches from background areas. (b) Patches from adipose tissue.

Figure 4.8: Examples of recurrent patterns.
Source: The author (2017).

Moreover, a significant number of extracted patches present almost plain texture, which

normally corresponds to tissue spaces representing areas where liquid is formed, the central

cavity of a tubular or other hollow structure or even areas without tissue (background). An

example of such type of patch presenting homogeneous texture can be seen in Figure 4.9.

Definitely, selected patches containing only such common tissue pattern aren’t adequate

to distinguish between benign and malignant tumors. In this vein, we also assess an alternative

strategy named patch filtering, which tries to discard irrelevant patches and provide only

representative examples to train the CNN.
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Figure 4.9: Example of selected patch inside a flat texture area of the image.
Source: The author (2017).

4.4.1.4 Patch Filtering

As previously discussed, in order to cope with non-discriminant patches — irrelevant

to the classification, we propose to discard those patches presenting common patterns to both

classes (see Figure 4.10). A possible approach is to use a clustering technique in the patches,

aiming to separate them into three groups: pure malignant, pure benign and “mixed”. Thus, only

the “pure” groups will be considered as CNN’s input for training. It is expected that using more

discriminative sub-images improves the recognition rate.

M B
M ∩ B

The main idea
relies on trying

to discard
these patches.

Figure 4.10: Malignant and benign class overlapping.
Source: The author (2017).
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This method aims to evaluate each cluster, discarding those containing mixed patterns,

and the general definition is as follows.

By using the previously extracted patches, we apply a pre-trained CNN to extract Deep

Convolutional Activation Feature (DeCAF) features [17, 66, 81, 233] from the ip1 layer of the

selected network. This layer is an InnerProduct layer (usually referred to as the fully connected

layer) that treats the input as a simple vector and produces an output in the form of a single vector.

Considering this model, we have a 64-dimensional feature vector vi per patch, saved inV .

Once the representation from the ip1 layer is extracted, we use a simple k-means

clustering algorithm to create k clusters on the input dataset. A partitional clustering is performed,

i.e., a division of the set of data instances (feature vector) into non-overlapping subsets (clusters).

We expect to divide the patches into distinct groups, based on properties of coherence and

similarity automatically learned by the CNN.

Thus, using the feature vectors inV , we create the clusters C and evaluate the “purity”

rate pC for each cluster, discarding the clusters presenting purity less than a fixed threshold.

To do so, let’s consider k the total number of clusters, C = {C1, . . . ,Ck } the set of

clusters, L = {L1, . . . , Lm} the set of m distinct classes and Lb = {P1b, . . . , PNb
} the set of labeled

extracted patches, where NP =
∑m

j=1
���L j

��� =
∑m

b=1 Nb.

By using these assumptions, we compute the “purity” rate pCq as:

pCq = max
(
|L1 |

NP
, . . . ,

|Lm |

NP

)
such that, ∀b, Lb ∈ Cq

(4.1)

where 1 ≤ q ≤ k, and Lb ∈ Cq represents the patches from Lb in the cluster Cq. Given

a threshold λ, we discard the cluster Cq if pCq < λ.
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Finally, for each remaining cluster, we assign the cluster’s label to the patches in this

respective cluster. These patches, expected to present more discriminative patterns, will be used

as input to train the CNN.

4.4.1.5 Classification

For the recognition, patch results are combined for the whole image. Since the models

are trained on the patches of the images, we require a strategy to divide the original test images

into patches, run them through the model and then combine the results. The optimal result

could be achieved by extracting all possible patches from the images, but this is too intensive

computationally. Instead, we chose to extract the grid patches of the images, that is, the set

of all non-overlapping patches, which in practice demonstrated reasonable balance between

classification performance and computational cost.

Running the model, each patch outputs the probability of each possible class, given the

patch image. In order to combine the results of all the patches of a given test image, we are also

going to test different fusion rules, such as the well-known Sum, Product and Max rules [149].

4.4.1.6 Fusion

Initially, we expect to explore the limits of each representation approach as an individual

model of classification. However, a single-classifier model might not be sufficient to achieve

the required accuracy. The combination of multiple classifiers can provide advantages over the

traditional monolithic approach to classifier design. Thus, we propose to build a pool of classifiers,

using the different representations, and also design a strategy to combine such classifiers. It

is expected that this will take advantage of the potential diversity arising from classifiers that

use different representation approaches, hand-crafted and automatic. Besides focusing on the

fusion of classifiers using the classical techniques proposed in [149], we expect to evaluate the

dynamic selection of the classifiers approach [47]. The final goal is to build a hybrid model

which explores the potentialities of the different representations.
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Considering the automatic representation with CNNs, after classifying each patch

individually, an appropriate fusion rule should be used to make the final decision about the

original image. Initially, in order to combine the results of the patches extracted from the input

image, we will apply fusion rules similar to the ones proposed in [149]. This is possible because

the output produced by the CNN is interpreted as the probability of the patch belonging to each of

the considered classes. However, other rules should be evaluated to propose the most appropriate.

Besides, the fusion of the features extracted using CNNs trained from scratch on the dataset with

deep features, extracted using CNNs trained on large-scale datasets, could be effective to improve

the recognition rate.

4.5 MIL Paradigm

A relatively new learning paradigm called MIL allows for the training of a classifier

from partially or ambiguously labeled data. It is the case of the BreaKHis dataset. In fact, the

relevance of MIL for this type of application and dataset is naturally described in two different

ways:

� Each image is considered as a bag while its patches (or subimages) are the instances.

In the field of natural scene images, this first approach is related to region-based image

categorization, where each instance encodes color, textural or spatial features related to

that specific region [122]. In our binary setting, the image would be labeled “positive”

(pathological) if it has at least one malignant patch; conversely, an image would be labeled

benign if it does not have any portion labeled malignant. This multiple instance formalism

is natural, since only a subset of the patches is labeled by the experts, making it possible

that entire images might be healthy where the patient is diagnosed with a tumor. This is

not the case in the strategy used so far, i.e., a single instance classification setting with

instances inheriting the label of their image. Note that the underlying assumption is that

image or bag label stems from the patient diagnostic. However, this might not be the case,

since entire images might be healthy where the patient is diagnosed with a tumor.
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� Each patient is a bag, with the instances being its associated images or patches. This

makes full sense as the diagnosis (i.e., the label) is established only at the patient level.

Furthermore, a patient diagnosed with a malignant tumor can still have some of his images

described as tumor-free, i.e., healthy, as just said; and a healthy patient has inevitably all of

his images healthy. These facts match the MIL assumption.

We consider the state-of-the-art of MIL methods. In particular we’ve investigated the

seminal Axis-Parallel Hyper Rectangle (APR) [78], and the algorithms based on Diverse Density

(DD) [183, 294], k-NN (Citation-kNN) [280] and Support Vector Machine (SVM) [12], as well

as a recently-proposed non-parametric algorithm [276], and a deep learning approach revisiting

CNN for MIL (MILCNN) [263]. As a second contribution, we’ve studied how MIL results

compare to our single instance classification results. Of course in this case we suppose that

instances inherit labels from the bags. We have examined whether it is preferable to cast this

problem into a single instance one, or if MIL does indeed bring an added value, both at the image

and the patient levels [6].

4.6 Evaluation Metrics

In binary classification problems two possible classes (positive and negative) are

considered in the prediction. Thus, there are four possible results for the classification of a test

instance, as shown in Table 4.5, grouped in correct predictions: True Positive (TP) or True

Negative (TN), and incorrect predictions: False Positive (FP), or False Negative (FN).

Since we are dealing with a binary classification problem (benign vs malignant), as

evaluation metrics, we have reported recognition rates and confusion matrices [92]. In this

context, let B be a test set with NB breast tumor images. If the classification system rejects Nre j ,

classifies correctly Nrec, and misclassifies the remaining Nerr , then the rejection rate Re jRateimg,
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Table 4.5: Four possible results from two-classes prediction.

True Class

Positive Negative

Pr
ed
ic
te
d Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Source: The author (2015).

the recognition rate RecRateimg, and the error rate Err Rateimg for images correctly classified

are stated in Equations 4.2, 4.3, and 4.4, respectively.

Re jRateimg =
Nre j

NB
× 100 (4.2)

RecRateimg =
Nrec

NB
× 100 (4.3)

Err Rateimg =
Nerr

NB
× 100 (4.4)

Using these definitions we also compute the reliability rate RelRateimg, as defined in

equation 4.5.

RelRateimg =
RecRateimg

RecRateimg + Err Rateimg
× 100 (4.5)

Besides, the errors committed by the system can be analyzed in terms of False Positive

Rate (FPR) and False Negative Rate (FNR). The FPR is the ratio (percentage) of negative
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instances predicted as positive. The FNR measures the likelihood that a positive instance is

incorrectly classified as negative.

FPR =
FP

FP + T N
(4.6)

FN R =
FN

FN + T P
(4.7)

However, considering that the final interest is to classify patients rather than images, we

have also reported the recognition rate for patients correctly classified. Let IP,M be a test set of

NP breast tumor images of patient P for magnification M . If the classification system classifies

correctly Nrec, then

PatientScore =
Nrec

NP
(4.8)

RecRatepat =

∑
PatientScore

TotalPatients
(4.9)

Finally, a common assumption in the use of recognition rate as an evaluation metric is

that the class distribution among examples is constant and relatively balanced. This is not the

case in this work. To better analyze the results for unbalanced problems, we have also drawn

Receiver Operating Characteristic (ROC) curves, which are attractive because they are insensitive

to changes in the class distribution. If the proportion of positive to negative instances changes

in a test set, the ROC curves will not change [92]. So, along with the recognition rates, we

present the confusion matrices and ROC curves with Area Under the ROC Curve (AUC). Using

normalized units, AUC is the probability that a classifier will rank a randomly chosen positive

instance higher than a randomly chosen negative example [92]. This metric ranges between 0

and 1, and it is useful when comparing the global behavior of different classifiers.
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4.7 Software Libraries

In order to extract the texture descriptors, build the baseline classification system and

perform the respective experiments, our implementation uses the python language associated

with specific libraries for image processing and machine learning. Thus, the following software

tools were used:

� Mahotas [68], a computer vision and image processing library for python programming

language;

� Milk, a machine learning toolkit for python, created by Luis Pedro Coelho, Mahotas’s

author;

� Scikit-learning [220], an open source machine learning library for python;

� Scikit-image [279], an open and free image processing library for python;

� OpenCV (Open Source Computer Vision) [38], an open source multi-platform computer

vision library originally developed by Intel Corporation.

Considering the deep learning approach, we’ve also used Caffe [141], a deep learning

framework BSD-licensed C++ library with python/numpy bindings for training and deploying

general-purpose CNNs and other deep models. Caffe is developed and maintained by the Berkeley

Vision and Learning Center (BlVC). This framework uses Nvidia CUDA for GPU computation,

but the same models can be run in CPU or GPU mode.

Finally, for all MIL methods except the non-parametric and the MILCNN, we have used

the implementation of the Jun Yang’s MIL Library3 with MATLAB 2017a. The non-parametric

MIL algorithm was obtained from the author’s website4. For the implementation of MILCNN in

Python, Keras and Theano were used [65].

3CMU MIL toolbox: http://www.cs.cmu.edu/~juny/MILL/
4 https://github.com/ragavvenkatesan/np-mil

http://www.cs.cmu.edu/~juny/MILL/
https://github.com/ragavvenkatesan/np-mil
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Chapter 5

Experiments

This chapter focuses on a series of experiments performed using BreaKHis dataset [256].

Initially, the adopted experimental protocol is defined. After that, the results obtained by a

conventional supervised classification system using hand-crafted features are presented and

discussed. This conventional baseline system constitutes the basis for comparison with other

approaches. Next, a summary of the results achieved by applying the automatic representation

approach is presented, as well as a comparison with the best conventional system results.

Additionally, some fusion strategies of the classifiers are presented in order to assess possible

complementarity among the representations aiming to improve the performance. Finally, we

investigate the Multiple Instance Learning (MIL) framework applied on the BreaKHis dataset,

providing an extensive comparative analysis of the results achieved by MIL methods.

5.1 Experimental Protocol

We have adopted the experimental protocol published in [256]. Experiments conducted

in this work are based on a subgroup of images randomly selected from the original image dataset

described in Section 4.2.
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The BreaKHis dataset has been randomly divided into a training (70%) and a testing

(30%) set. To make sure the classifier generalizes to unseen patients, the system ensures that

patients used to build the training set are not used for the testing set. Aiming to avoid the bias of

using just “easier” instances (or more “difficult” ones) in each set of training and test, the images

were distributed into five distinct trials (#1 − #5). Following the standard labeling convention

used in medical studies, the label positive (resp. negative) refers to malignant (resp. benign)

images. All trials include positive samples (malignant tumors) and negative samples (benign

tumors). The positive group includes ductal carcinoma (most frequent), lobular carcinoma,

mucinous carcinoma and papillary carcinoma. The negative group includes, in an undistinguished

way, benign tumors like fibroadenoma, adenosis, tubular adenoma, and phyllodes tumor. This

image distribution across the five trials is presented in Table 5.1. The results presented in this

Chapter are the average of five trials. This protocol was applied independently to each of the four

available magnifications.

Considering the Convolutional Neural Network (CNN) approach, aiming to handle

the image high resolution (752×582) and augment data for training, the images were divided

into small patches. Different sizes of patches were assessed and the size of 64×64 pixels has

been shown to be particularly relevant for CNN-based classification. For training, 1000 patches

have been randomly extracted from each input image. For test, we have chosen to extract the

grid patches of the images, that is, the set of all non-overlapping patches, which in practice

demonstrated reasonable balance between classification performance and computational cost.

Regarding the clustering analysis, a starting point to discard irrelevant patches, for

each cluster, the most prevalent class of its elements is defined and the purity rate of the cluster

regarding this class is computed. The strategy consists of eliminating those clusters containing a

mixture of patches from distinct classes given a purity rate, i.e., only clusters presenting a purity

rate greater than a threshold λ are kept. The formal notation was stated in Equation 4.1. Then,

those remaining patches are used to create a new dataset D′, split into training D′T and testing

D′V sets. The set D′T was used to train a CNN built to classify input patches into two classes:

benign, and malignant. We have assessed the number of clusters k such that k ∈ {10, 20, 50}.
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Analyzing the distribution of the patches into clusters, k = 50 it was chosen to keep low dense

clusters. Also, different values of purity rate setting the threshold λ has been evaluated. It was

noticed that assuming high purity rates, i. e. λ ≥ 0.99, caused the total elimination of patches in

certain folds. Thus, a λ = 0.9 was chosen.

Finally, for MIL experiments, the aforementioned patches form the instances, whereas

bags will be considered at two levels: at the patient level, patches will be collected independently

from all the patient’s images; at the image level, patches will be originating from the image of

interest. For this purpose, each patch is described with a 162-long feature vector of Parameter-

Free TAS (PFTAS) features [69, 115]. These features have shown to be particularly relevant

for the BreaKHis dataset, when assessed against many others such as Local Binary Pattern

(LBP), Completed Local Binary Pattern (CLBP), Local Phase Quantization (LPQ), Gray-Level

Co-occurrence Matrix (GLCM), as well as computer vision features, such as Oriented FAST and

Rotated BRIEF (ORB) [256]. The hyper-parameters for each MIL method were optimized using

grid search as follows.

For Axis-Parallel Hyper Rectangle (APR) [78]:

� Kernel Width: 0.999;

� Outside Probability: 0.023;

� GridNum: 25000.

For Diverse Density (DD) [183] and Expectation Maximization-Diverse Density (EM-

DD) method [294]:

� Scaling: 1;

� Aggregate: average;

� Threshold: 0.5;

� No. of runs: 100 (DD), 500 (EM-DD);

� Iteration Tolerance (for EM-DD): 0.08.



91

For Citation-kNN [280]:

� Bag Distance Type: minimum;

� Instance Distance Type: Euclidean;

� Reference nodes considered: 5;

� CiterRank: 11.

For mi-SVM and MI-SVM [12]:

� Kernel: Linear, poly, RBF;

� KernelParam - NA/degree/gamma: (NA), 4, 0.32 (mi-SVM), (NA), 5, 0.17 (MI-SVM);

� CostFactor: 1/0.96/1 (mi-SVM), 1/1/1 (MI-SVM);

� NegativeWeight: 1/1/1;

� Threshold: 0.5/0.5/0.5.

For non-parametric MIL [276]:

� Averaged accuracy over 100 runs;

� Range of k for grid search: 50 (1–50) using elbow method;

� No. of Tsteps: 3000;

� Distance Method: Euclidean.

For MILCNN [263]:

� the structure is the same as the Multiple Instance Learning Convolutional Neural Network

(MILCNN) for CIFAR10/100.
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Table 5.1: Summary of images in datasets.

Images in datasets – grouped by magnification and trial

Magnification

40× 100×

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5

Benign

Training dataset 343 387 355 351 348 360 398 357 356 368
Testing dataset 236 192 224 228 231 240 202 243 244 232

200× 400×

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5
Training dataset 341 390 339 347 349 313 375 319 317 324
Testing dataset 234 185 236 228 226 226 164 220 222 215

40× 100×

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5

Malignant

Training dataset 808 899 926 901 855 858 969 999 982 898
Testing dataset 514 423 396 421 467 534 423 393 410 494

200× 400×

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5
Training dataset 833 938 919 926 876 758 814 840 827 760
Testing dataset 511 406 425 418 468 432 376 350 363 430

40× 100×

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5

Total

Training dataset 1,151 1,286 1,281 1,252 1,203 1,218 1,367 1,356 1,338 1,266
Testing dataset 750 615 620 649 698 774 625 636 654 726

200× 400×

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5
Training dataset 1,174 1,328 1,258 1,273 1,225 1,071 1,189 1,159 1,144 1,084
Testing dataset 745 591 661 646 694 658 540 570 585 645

Source: The author (2015).

5.2 Baseline: Results of the Conventional Approach

Considering the conventional system, Table 5.2 reports the performance of all classifiers

and descriptors we have assessed, at image level and patient level respectively. Since the medical

decision is patientwise, we focus on the discussion at the patient level, and not at the image level.

We propose a two-level analysis of Table 5.2. Let us first focus on the influence of the

magnification factors, by comparing columns (bold results). Interestingly, the magnification

factors do not seem to have the same level of information. In particular, the first level (40×)

exhibits the best results over CLBP, LBP and ORB. This slight tendency that 40× may be the

most informative magnification factor is in accordance with the pathologist behavior, which

starts by examining at factor 40 and switches to the next level, until he established his diagnosis.

Note however that the 200× magnification factor also shows high potential, with the best results
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over GLCM and PFTAS, higher than those obtained with the 40× level. The complementarity

of the magnification factors may fruitfully be investigated in the future, for example, through a

coarse-to-fine analysis.

The other level of analysis concerns the feature vector comparison (best results are

underlined in Table 5.2). All feature vectors exhibit stable and close results. These results are

little influenced by the classifiers: for each magnification factor and for each feature vector, the

recognition rates of the four classifiers are in a range of less than 4%. However, considering the

CLBP descriptor, the results fall out of this interval, e.g., recognition rates range from 41.5%

to 75.6% for factor 40×. In particular, note that the results obtained by CLBP with Quadratic

Discriminant Analysis (QDA) are far below the other mean recognition rates. Indeed, QDA is

based on the estimation of covariance matrices: in order to make a proper estimation of these

matrices, a large amount of samples is required, which should be all the greater given that CLBP

is high dimensional (1,352).

As previously reported in Table 5.2, over all the feature vectors, the PFTAS performs best.

Since the best overall performance (recognition rate of 85.1% for factor 200×) is achieved by the

Support Vector Machine (SVM) trained with PFTAS descriptors, we focus on the SVM/PFTAS

association and further analyze their performance, by drawing the associated ROC curve (Figure

5.1) and reporting the confusion matrices in Table 5.3, which confirms that 200 seems to be the

most discriminant magnification factor. As we can see, most of the confusion occurs when a

benign tumor is classified as malignant (high false positive rate). This may be partially explained,

as pointed out by Kowal et al. [151], by the fact that one of the benign tumor present in the

dataset (fibroadenoma) shares similar properties with a malignant tumor. In order to verify

this hypothesis, we have performed an error analysis on the SVM/PFTAS results, which is

summarized in Table 5.4. This analysis shows that independently of the magnification factor,

about 30% of the errors committed by the classifier are due to benign tumors fibroadenoma

classified as malignant class. One example of this misclassification is presented in Figure 5.2,

where (a) shows a benign tumor classified as a malignant tumor and (b) presents a real malignant

tumor. From these images we can see how complex the classification problem is.
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Table 5.2: Mean recognition rates and standard deviations (at image level and patient level) of
the classifiers trained with different descriptors. In bold the best results over the magnification
factors are highlighted. For each magnification factor, underlined, with a gray background, the 5
best results are shown over the feature vectors and classifiers.

Accuracy at Descriptor Classifier
Magnification Factors

40× 100× 200× 400×

Patient Level

CLBP

1-NN 73.6 ± 2.5 71.0 ± 2.8 69.4 ± 1.5 70.1 ± 1.3
QDA 39.4 ± 13.5 51.7 ± 17.3 50.3 ± 16.0 49.4 ± 15.5
RF 74.5 ± 0.7 72.5 ± 3.8 70.0 ± 2.4 72.3 ± 2.1
SVM 77.4 ± 3.8 76.4 ± 4.5 70.2 ± 3.6 72.8 ± 4.9

GLCM

1-NN 74.7 ± 1.0 76.8 ± 2.1 83.4 ± 3.3 81.7 ± 3.3
QDA 67.0 ± 6.0 74.2 ± 3.5 78.6 ± 1.7 77.0 ± 2.3
RF 73.6 ± 1.5 76.0 ± 1.9 82.4 ± 2.3 79.8 ± 2.5
SVM 74.0 ± 1.3 78.6 ± 2.6 81.9 ± 4.9 81.1 ± 3.2

LBP

1-NN 75.6 ± 2.4 73.0 ± 2.4 72.9 ± 2.3 71.2 ± 3.6
QDA 69.7 ± 3.8 69.7 ± 4.2 68.8 ± 4.7 72.3 ± 4.6
RF 74.0 ± 2.9 73.1 ± 1.9 70.1 ± 2.5 70.7 ± 4.3
SVM 74.2 ± 5.0 73.2 ± 3.5 71.3 ± 4.0 73.1 ± 5.7

LPQ

1-NN 72.8 ± 4.9 71.1 ± 6.4 74.3 ± 6.3 71.4 ± 5.2
QDA 70.4 ± 1.1 69.3 ± 4.2 67.2 ± 1.9 68.3 ± 1.8
RF 73.8 ± 5.0 72.3 ± 5.5 73.4 ± 5.9 71.1 ± 3.8
SVM 73.7 ± 5.5 72.8 ± 5.0 73.0 ± 6.6 73.7 ± 5.7

ORB

1-NN 71.6 ± 2.0 69.3 ± 2.0 69.6 ± 3.0 66.1 ± 3.5
QDA 74.4 ± 1.7 66.5 ± 3.2 63.5 ± 2.7 63.5 ± 2.2
RF 72.3 ± 1.8 69.3 ± 1.0 68.6 ± 1.7 67.6 ± 1.2
SVM 71.9 ± 2.3 69.4 ± 0.4 68.7 ± 0.8 67.3 ± 3.1

PFTAS

1-NN 80.9 ± 2.0 80.7 ± 2.4 81.5 ± 2.7 79.4 ± 3.9
QDA 83.8 ± 4.1 82.1 ± 4.9 84.2 ± 4.1 82.0 ± 5.9
RF 81.8 ± 2.0 81.3 ± 2.8 83.5 ± 2.3 81.0 ± 3.8
SVM 81.6 ± 3.0 79.9 ± 5.4 85.1 ± 3.1 82.3 ± 3.8

Image Level

CLBP

1-NN 69.7 ± 3.1 66.5 ± 2.7 66.8 ± 2.5 66.7 ± 3.3
QDA 41.5 ± 11.8 51.6 ± 14.0 50.6 ± 14.2 49.1 ± 12.6
RF 69.8 ± 2.1 69.8 ± 4.6 67.1 ± 2.9 68.1 ± 3.2
SVM 75.6 ± 4.9 74.0 ± 5.9 68.1 ± 4.3 69.3 ± 5.7

GLCM

1-NN 74.5 ± 1.8 74.8 ± 3.5 82.0 ± 2.2 78.6 ± 3.4
QDA 66.9 ± 5.2 72.2 ± 2.0 77.7 ± 2.4 75.2 ± 2.0
RF 72.0 ± 3.1 73.7 ± 2.1 81.5 ± 1.7 77.2 ± 2.8
SVM 74.6 ± 2.1 76.5 ± 3.3 80.9 ± 3.4 78.2 ± 3.2

LBP

1-NN 70.3 ± 3.2 68.2 ± 2.8 67.9 ± 2.6 66.9 ± 5.2
QDA 66.4 ± 4.2 65.6 ± 4.7 65.3 ± 4.4 67.9 ± 5.2
RF 68.3 ± 3.2 67.9 ± 3.7 67.0 ± 2.8 65.5 ± 4.6
SVM 68.9 ± 4.4 68.3 ± 4.6 67.5 ± 4.0 67.0 ± 6.2

LPQ

1-NN 69.8 ± 5.1 66.8 ± 6.1 70.3 ± 5.8 66.9 ± 5.2
QDA 67.3 ± 2.3 66.3 ± 5.1 65.4 ± 3.2 64.4 ± 3.8
RF 69.0 ± 5.3 67.6 ± 5.7 69.0 ± 5.1 67.8 ± 5.4
SVM 70.6 ± 6.7 68.9 ± 5.9 69.5 ± 6.3 69.1 ± 7.3

ORB

1-NN 69.7 ± 2.1 65.5 ± 3.5 67.0 ± 2.8 62.9 ± 2.1
QDA 72.8 ± 1.8 63.0 ± 3.3 61.8 ± 2.4 61.8 ± 2.1
RF 70.1 ± 2.3 65.4 ± 2.8 66.2 ± 2.1 63.8 ± 1.0
SVM 69.9 ± 2.3 65.7 ± 2.4 66.0 ± 1.7 62.9 ± 2.0

PFTAS

1-NN 79.1 ± 2.1 77.8 ± 3.0 79.6 ± 1.9 77.6 ± 4.0
QDA 82.8 ± 3.6 80.7 ± 4.9 83.3 ± 3.0 80.5 ± 5.6
RF 80.2 ± 1.9 80.4 ± 3.8 82.4 ± 2.3 80.0 ± 4.5
SVM 79.9 ± 3.7 77.1 ± 5.5 84.2 ± 1.6 81.2 ± 3.6

Source: The author (2015).
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Table 5.3: Confusion matrices produced by the SVM classifier trained with the PFTAS descriptor.
B: benign, M: malignant.

40× 100× 200× 400×

B M B M B M B M

B 0.51 0.49 0.38 0.62 0.69 0.31 0.62 0.38
M 0.06 0.94 0.03 0.97 0.08 0.92 0.08 0.92

Source: The author (2015).

Figure 5.1: ROC curves for the confusion matrices presented in Table 5.3.
Source: The author (2015).

5.3 Results of the Automatic Representation Approach

As expected, on the histopathological images assessed, LeNet classification performance

were considerably inferior to our previous results reported in [256], achieving about 72% of

accuracy. So we focus on the other architecture. Among a few tested, the model which presented

the best performance was a variant based on the AlexNet [158]. The training of these CNN

models, described in 4.4.1, took about 40 minutes for the sliding window strategy and 3 hours

for the random patch strategy, which contains a much bigger training set. Table 5.5 reports

the accuracy of the CNNs at both patient and image levels, as defined in Equations 4.9 and
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Table 5.4: Error distribution (%) of the SVM trained with PFTAS over subclasses. A large
amount of false positive comes from fibroadenoma (benign) mistaken for malignant tumor.

Class Subclass
Magnification Factors

40× 100× 200× 400×

Benign

Adenosis 15.7 21.7 9.7 10.3
Fibroadenoma 28.5 31.8 29.5 30.2
Phyllodes tumor 13.6 18.6 10.1 14.4
Tubular Adenoma 23.1 19.5 15.6 16.5

Malignant

Ductal 11.6 2.8 13.9 8.7
Lobular 0.0 0.0 0.2 3.2
Mucinous 2.8 5.1 13.9 10.1
Papillary 4.7 0.5 7.1 6.6

Source: The author (2015).

(a) Original image of benign tumor (HE stained) classi-
fied as a malignant tumor.

(b) Image of a real malignant tumor (HE stained).

Figure 5.2: Example of misclassification between benign and malignant breast tumors.
Source: The author (2015).

4.3. From these experimental results, we can see that the CNN outperforms almost all of the

classifiers/descriptors used in the conventional system (Figure 5.3).

From Table 5.5 we may notice that training the CNN with a large number of 64 × 64

image patches extracted randomly from the image (strategy #4) seems to be a suitable strategy

for low magnification factors such as 40× and 100×. In the case of the 40× magnification factor,

the CNN was able to achieve an accuracy of about 5% better than the best result reported in

Table 5.2. For higher magnification factors, though, training the CNN with a large number of

image patches brings no benefit. In those cases, all strategies achieve similar results, which are

also comparable to the ones reported in Table 5.2.
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Table 5.5: Mean recognition rates and standard deviations (patient and image levels) of the CNN
trained with the strategies presented in Table 4.4. The best results are in bold, and on a gray
background.

Accuracy at Strategy
Magnification Factors

40× 100× 200× 400×

Patient Level

1 80.5 ± 1.6 81.0 ± 3.0 85.3 ± 3.8 81.0 ± 1.5
2 81.0 ± 1.9 82.8 ± 2.8 83.7 ± 2.8 81.1 ± 3.2
3 81.7 ± 2.9 83.5 ± 5.0 82.9 ± 3.6 81.4 ± 5.1
4 88.6 ± 5.6 84.5 ± 2.4 83.3 ± 3.4 81.7 ± 4.9

Image Level

1 79.9 ± 2.6 80.8 ± 3.7 84.0 ± 3.2 80.7 ± 1.8
2 80.6 ± 2.1 81.0 ± 3.0 82.7 ± 1.9 80.8 ± 3.1
3 81.8 ± 3.3 82.3 ± 4.9 82.4 ± 2.8 80.3 ± 4.0
4 89.6 ± 6.5 85.0 ± 4.8 82.8 ± 2.1 80.2 ± 3.4

Source: The author (2015).

Figure 5.3: Recognition rates achieved by top-1 classifiers trained using conventional feature
extraction compared to the CNN approach.
Source: The author (2015).

Considering the misclassifications, a similar behavior to that noticed in the conventional

approach, has been observed in the automatic representation approach as well. Table 5.6 presents

the confusion matrices produced by the network, and again there is a high proportion of benign

tumors erroneously classified as a malignant type (high false positive rate).
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Table 5.6: Confusion matrices produced by the CNN. B: benign, M: malignant.

40× 100× 200× 400×

B M B M B M B M

B 0.63 0.37 0.54 0.46 0.61 0.39 0.53 0.47
M 0.08 0.92 0.08 0.92 0.06 0.94 0.05 0.95

Source: The author (2015).

5.4 Combination

Initially, in order to verify the level of complementarity among the classifiers used in

conventional system, we have computed the accuracy of the oracle, which is the upper limit in

terms of performance of the pool of classifiers. Using this abstract fusion model, Table 5.7 shows

the upper limit of the classifiers and the representations adopted in this work.

As we can see, despite the intrinsic complexity of the problem, the performance of

the oracle is very high. Considering a single architecture of classifier trained with six different

representations, the upper limit of the system achieves an average of 93%, except for the QDA

classifier that reached 99.5% for the subset of 40× magnification images. When combining all

the architectures and representations (24 experts) the upper limit increases to an average up to

99%. Note that for the 40× magnification, all test images could be correctly classified by at least

one of the classifiers in the pool. However, getting a high oracle result does not imply anything

about how feasible it is to get those results by combining the classifiers, but how feasible it is to

get those results by dynamically selecting the classifier. Dynamic selection of the classifier is

an alternative to the traditional combination of classifiers that has been successfully applied to

complex pattern recognition problems [47].

Table 5.8 presents the hypothetical confusion matrices for the oracle. As we can see,

the proposed pool of classifiers is able to solve most of the confusion. The challenge now lies in

defining a winner strategy to combine or select the classifiers, given an input image.

Considering the automatic representation approach, since each network was trained with

different inputs (i.e., size and number of patches), each classifier builds its own representation,
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Table 5.7: Summary of accuracy of the oracle (%). The first 4 lines show the oracle for each
classifier using six different representations. The last line reports the oracle considering all the
24 classifiers reported in Table 5.2.

Classifier
Magnification factor

40× 100× 200× 400×

1-NN 93.6 91.8 91.0 90.8
QDA 99.5 96.3 97.2 96.3
RF 92.3 89.5 90.6 90.3
SVM 93.1 90.8 93.2 92.6

All classifiers 100 98.7 98.8 98.8

Source: The author (2015).

Table 5.8: Hypothetical confusion matrices for the oracle. B: benign, M: malignant.

40× 100× 200× 400×

B M B M B M B M

B 1.00 0.00 0.96 0.04 0.96 0.04 0.97 0.03
M 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

Source: The author (2015).

which gives us the perspective of improving such results through the combination of classifiers.

As stated before, the CNNs have a final fully-connected layer with softmax activation that

allows us to interpret the outputs of the networks as an estimation of the posterior probabilities.

Therefore, different combination rules may be applied. In this work, we report the results obtained

when combining the four patch image generation strategies, using the well-known Sum, Product

and Max rules (see [149] for details).

Regarding the performance at image level, Table 5.9 shows that all combination rules

produce very similar results and that none of them surpass the individual results reported in Table

5.5. On the other hand, the combination brings interesting improvements for all magnification

factors (except the 200×) at patient level. The most noticeable result is for the 100×magnification

factor, where the improvement is of about 4% and 6% when compared to the best CNN, and the

best result presented in Table 5.2, respectively. In these cases, the Max rule outperforms the Sum

and Product rules.
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Table 5.9: Combination of CNNs using different fusion rules (at Patient and Image Levels). The
best results are in bold, and on a gray background.

Accuracy at Fusion Rule
Magnification Factors

40× 100× 200× 400×

Patient Level
Sum 88.4 ± 7.6 88.4 ± 4.8 83.8 ± 2.8 85.3 ±5.6
Product 89.2 ± 7.4 88.4 ± 4.8 83.8 ± 2.8 85.3 ±5.6
Max 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.1 ±6.2

Image Level
Sum 85.4 ± 5.2 83.3 ± 4.3 83.1 ± 1.9 80.8 ± 3.0
Product 85.5 ± 5.3 83.4 ± 4.3 83.0 ± 1.8 80.8 ± 3.0
Max 85.6 ± 4.8 83.5 ± 3.9 82.7 ± 1.7 80.7 ± 2.9

Source: The author (2017).

5.5 Patch-Filtering

In Table 5.10, since the results achieved by the approach based on hand-crafted

descriptors [256] are a baseline, we compare our pre-training CNN patch filter method with

the task-specific CNN method [257] and a method based on the Deep Convolutional Activation

Feature (DeCAF) features [258]. We can observe that, despite some punctual gains, using the

filtering-patches strategy did not bring general significant improvements in the CNN-based

performance.

5.6 Results of the MIL Approach

We provide results for two different settings, as aforementioned. In the first setting,

each patient is considered as a bag, which is labeled with its diagnosis, and the instances are

the patches extracted from the images. As can be seen in Table 4.1, in average 25 images are

available for each patient, at each magnification factor. Since around 100 patches are extracted

per image in the testing, each bag (or patient) contains around 2500 instances. In the second

setting, we consider each image as a bag; in this case, the instances are the patches, and a bag

contains approximately 100 instances.
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Table 5.10: Patch-filtering results. The best results are in bold, and on a gray background are the
cases at which higher results are achieved using the patch-filtering method, compared to those
presented in [256]. Results from the combination of multiple classifiers are marked with *.

% Approach
Magnification factor

40× 100× 200× 400×

Pa
tie
nt

Hand-crafted visual descriptors[256] 83.8 ± 4.1 82.1 ± 4.9 85.1 ± 3.1 82.3 ± 3.8
CNN trained from scratch[257] 88.6 ± 5.6 84.5 ± 2.4 85.3 ± 3.8 81.7 ± 4.9
Combination of CNNs trained from scratch[257]* 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.1 ± 6.2
DeCAF features[258] 84.0 ± 6.9 83.9 ± 5.9 86.3 ± 3.5 82.1 ± 2.4
Patch-Filtering Method 86.4 ± 5.7 83.6 ± 5.8 92.1 ± 7.3 85.0 ± 4.7

Im
ag
e

Hand-crafted visual descriptors[256] 82.8 ± 3.6 80.7 ± 4.9 84.2 ± 1.6 81.2 ± 3.6
CNN trained from scratch[257] 89.6 ± 6.5 85.0 ± 4.8 84.0 ± 3.2 80.8 ± 3.1
Combination of CNNs trained from scratch[257]* 85.6 ± 4.8 83.5 ± 3.9 83.1 ± 1.9 80.8 ± 3.0
[258] 84.6 ± 2.9 84.8 ± 4.2 84.2 ± 1.7 81.6 ± 3.7
Patch-Filtering Method 85.3 ± 3.3 82.5 ± 3.0 87.8 ± 4.9 82.1 ± 3.4

Source: The author (2017).

The results are presented in Table 5.11 and Figures 5.4 and 5.5. Despite the large

standard deviation values, we can attempt to observe some trends. As expected, DD-based

approaches and APR yielded the poorest results which led us to think that positive instances are

not clustered in a single area of the feature space. For SVM-based approaches, MI-SVM leads

to enhanced results, which shows that a bag level paradigm is better suited to the data. At last,

best classification rates are reported with the non-parametric MIL approach, especially for low

magnification factors, and at the patient level.
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Table 5.11: Summary of accuracy of MIL approach (%) at respective levels. Best results
columnwise are in bold, and on a gray background.

Patient as bag Image as bag

40× 100× 200× 400× 40× 100× 200× 400×

Iterated-discrim APR [78] 73.8 ± 3.8 66.5 ± 4.1 84.2 ± 4.9 68.0 ± 5.6 70.4 ± 2.4 65.1 ± 5.0 81.3 ± 5.5 67.3 ± 4.9

DD [183] 70.5 ± 6.1 64.5 ± 4.3 68.3 ± 3.6 71.2 ± 3.3 71.2 ± 5.9 66.1 ± 5.4 66.7 ± 2.9 70.8 ± 3.8
EM-DD [294] 78.3 ± 5.6 80.6 ± 5.2 77.1 ± 6.3 78.7 ± 5.7 73.1 ± 5.4 76.4 ± 4.8 78.2 ± 5.2 76.2 ± 5.6

Citation-kNN [280] 73.7 ± 4.6 72.8 ± 5.4 75.7 ± 3.1 77.2 ± 3.6 73.1 ± 4.3 73.0 ± 5.7 71.3 ± 3.5 78.7 ± 3.1

mi-SVM Linear [12] 79.5 ± 4.3 83.4 ± 4.6 83.6 ± 4.7 81.0 ± 5.2 72.6 ± 4.4 80.6 ± 3.7 80.1 ± 4.9 78.2 ± 5.3
mi-SVM poly [12] 75.2 ± 6.1 79.8 ± 4.8 76.5 ± 3.9 68.5 ± 5.1 75.6 ± 5.7 78.7 ± 4.0 75.2 ± 5.6 69.2 ± 4.8
mi-SVM RBF [12] 77.8 ± 1.6 75.4 ± 1.5 73.8 ± 2.3 72.9 ± 3.4 77.9 ± 2.2 77.3 ± 2.1 74.6 ± 2.9 71.4 ± 3.9
MI-SVM Linear [12] 85.6 ± 5.6 82.1 ± 5.9 84.6 ± 4.8 80.9 ± 4.9 79.5 ± 4.1 78.2 ± 4.4 80.8 ± 4.7 78.9 ± 5.1
MI-SVM poly [12] 84.8 ± 2.7 82.5 ± 4.6 83.9 ± 4.2 81.3 ± 4.2 86.2 ± 2.8 82.8 ± 4.8 81.7 ± 4.4 82.7 ± 3.8
MI-SVM RBF [12] 79.0 ± 2.1 71.9 ± 2.9 76.2 ± 1.9 73.0 ± 3.5 78.3 ± 3.2 72.2 ± 3.0 76.8 ± 1.6 71.9 ± 2.4

Non-parametric [276] 92.1 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 82.7 ± 3.0 87.8 ± 5.6 85.6 ± 4.3 80.8 ± 2.8 82.9 ± 4.1

MILCNN [263] 86.9 ± 5.4 85.7 ± 4.8 85.9 ± 3.9 83.4 ± 5.3 86.1 ± 4.2 83.8 ± 3.1 80.2 ± 2.6 80.6 ± 4.6

Source: The author (2018).



103Figure 5.4: Accuracy results of MIL benchmark with patient as bag, corresponding to the left side of Table 5.11. Best viewed in color.
Source: The author (2018).



104Figure 5.5: Accuracy results of MIL benchmark with image as bag corresponding to the right side of Table 5.11. Best viewed in color.
Source: The author (2018).
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5.6.1 MIL vs SIL

In this section, we compare the best MIL result (non-parametric MIL) with a Single

Instance Learning (SIL) setting using the same protocol (same trials, same training and test

set distribution). In Table 5.12, we report results, using state-of-the-art classifiers, namely

1-Nearest Neighbor (1-NN),QDA, Random Forest (RF), and SVM, partly obtained from previous

experiments [256]. Hyperparameters of these classifiers were tuned using grid search and only

the best results were retained. These classifiers take as input the PFTAS feature vector describing

each image. For the CNN approach, we used AlexNet [158, 257]. Decisions are taken on each

patch and are fused together using the Max Fusion Rule.

Unsurprisingly, the CNN performs better than other machine learning models trained

with hand-crafted textual descriptors (in accordance with [116]; however, their results are not

comparable since they do not use the same folds), see Figure 5.6 and Figure 5.7. We observe that

the non-parametric MIL brings interesting improvements for all magnification factors (except

the 400×) at patient level, while remaining comparable to the CNN results. This suggests that

instances, namely patches, may provide only partial, complementary information for the image or

the patient level [6], and that a bag-based analysis is valuable for the analysis of histopathology

images.

Table 5.12: Comparison of MIL (non-parametric) vs single instance (SIL) classification at
respective levels. Best results columnwise are in bold, and on a gray background.

Patient as bag (MIL) or level (SIL) Image as bag (MIL) or level (SIL)

40× 100× 200× 400× 40× 100× 200× 400×

MIL Non-parametric 92.1 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 82.7 ± 3.0 87.8 ± 5.6 85.6 ± 4.3 80.8 ± 2.8 82.9 ± 4.1

SIL

CNN 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.1 ± 6.2 85.6 ± 4.8 83.5 ± 3.9 83.1 ± 1.9 80.8 ± 3.0
1-NN 80.9 ± 2.0 80.7 ± 2.4 81.5 ± 2.7 79.4 ± 3.9 79.1 ± 2.1 77.8 ± 3.0 79.6 ± 1.9 77.6 ± 4.0
QDA 83.8 ± 4.1 82.1 ± 4.9 84.2 ± 4.1 82.0 ± 5.9 82.8 ± 3.6 80.7 ± 4.9 83.3 ± 3.0 80.5 ± 5.6
RF 81.8 ± 2.0 81.3 ± 2.8 83.5 ± 2.3 81.0 ± 3.8 80.2 ± 1.9 80.4 ± 3.8 82.4 ± 2.3 80.0 ± 4.5
SVM 81.6 ± 3.0 79.9 ± 5.4 85.1 ± 3.1 82.3 ± 3.8 79.9 ± 3.7 77.1 ± 5.5 84.2 ± 1.6 81.2 ± 3.6

Source: The author (2018).
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Figure 5.6: Accuracy results of MIL compared to SIL at patient level, corresponding to the left
side of Table 5.12. Best viewed in color.
Source: The author (2018).
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Figure 5.7: Accuracy results of MIL compared to SIL at image level corresponding to the right
side of Table 5.12. Best viewed in color.
Source: The author (2018).
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Chapter 6

Final Considerations

By building a baseline classification system for histopathological images, we have

performed extensive experiments with the BreakHis dataset. This system uses six hand-crafted

texture descriptors and four classic classifiers. By adopting an appropriate experimental protocol

and pipeline processing for two-class classification of benign vs. malignant images, we have

obtained promising results. However, there is room for improvement and additional challenges

remain.

Furthermore, a deep learning approach was used to classify BreakHis images following

the same experimental protocol. We have shown that we could use an existing Convolutional

Neural Network (CNN) architecture and adapt it to the classification of breast cancer (BC)

histopathological images. We have also proposed several strategies for training the CNN

architecture, based on the extraction of patches obtained randomly or by a sliding window

mechanism, that allows to deal with the high-resolution of these textured images without changing

the CNN architecture designed for low-resolution images. Our experimental results, obtained on

the BreaKHis dataset, showed improved accuracy achieved by CNN when compared to traditional

machine learning models trained on the same dataset but with state-of-the-art texture descriptors.

Future work can explore different CNN architectures and the optimization of the hyperparameters.

Also, strategies to select representative patches in order to improve the accuracy can be explored.
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Multiple Instance Learning (MIL) has been proved successful empirically for learning

problems with label ambiguity where existing supervised or semi-supervised learning approaches

are insufficient. In fact, MIL provides a classification framework that is particularly adapted

to computer-aided diagnosis based on histopathological image analysis. In the case of the

BreaKHis dataset, several hundreds images are available per patient. The patient can thus be

considered as a bag, which is labeled with its diagnosis. Our MIL benchmark shows that the

recently proposed non-parametric MIL is particularly efficient for the tasks of patient and image

classification. Patient classification rates can reach up to 92.1% for the 40× magnification factor,

a level never reached by conventional classification frameworks, which enhances the fact that

instances are complementary and can be fruitfully considered in a MIL framework. In summary,

non-parametric not only makes intuitive sense, but can also be a powerful tool for most general

cases and magnification factors with histopathological images. MIL can thus leverage digital

histopathological image classification and analysis to improve computer-aided diagnosis.

6.1 Future Work

This section presents some potentially promising directions for future works.

Creating a strategy for multiclass classification. A much more challenging goal

would be to create a strategy for multiclass classification. We have performed experiments

considering binary classification of instances, i.e., classify instances (images individually or

group of images belonging to a patient) into benign or malignant class. However, as stated in

Chapter 2 Section 2.1, the histopathology classifies breast tumors into distinct types, which

determines their suitable clinical treatment. Thus, a valid contribution would be to concentrate

research efforts in order to propose an automatic method to classify, correctly and with confidence,

a given test instance into one of the four malignant types or the four benign types.

Determining the tumor grading. Currently, pathologists determine the tumor grading

by assessing the spatial organization of the tissue (e.g., distribution of cancer cells, nuclei

morphological properties, interaction with the stroma, etc.). These parameters are evaluated in
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small sample regions of the microscopic slide given a score considering some “scoring system”

such as Nottingham Histologic Score System1. Aiming to complement the final decision, which

determines the prognosis and the proper clinical intervention, respective hormone receptor status

by Immunohistochemistry (IHC) is also analyzed in IHC-stained sections. Moreover, for binary

classification of breast tumor (benign vs malignant) only the epithelial regions of the tissue are

relevant, whereas for tumor grading and quantification of IHC, just tumoral tissue should be

analyzed [277]. So, automatic BC diagnosis systems based on histopathological images should

perform the detection and segmentation of tissue and its components.

Exploring different CNN architectures. We are currently engaged in experimenting

other deep learning frameworks. With the acceleration of proposals in this area, no doubt that

some more efficient networks will be proposed in the near future. Moreover, the oracle results

also show that a single-classifier might not be enough, and that designing a strategy to combine

or select the classifiers given an input image should help increase the accuracy.

Investigating MIL for histopathological image segmentation. We also want to

investigate MIL for histopathological image segmentation. MIL can indeed be an adequate

framework to find the location of the malignant region position in histopathological images [142,

152, 218, 290]. In digital histopathology, it is mostly applied when we have labels for an image

(bag of pixels) and not the pixels themselves, where we are interested in learning a model that

can classify the pixels. For instance, if the input is a dataset of images taken from a tumor or

from benign specimens, but the desired output is the segmentation of the cancerous regions of an

image, one can use MIL. Since manual labeling is too long, MIL can help in pixel labeling and

clustering, and can serve as a feedback to the pathologist. In this case, the image is considered as

a bag and the pixels as instances.

1Nottingham (or Elston-Ellis) modification of the Scarff-Bloom-Richardson grading system.
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Appendix A

Fundamentals of Breast Cancer

This text reviews three great subjects: cancer, pathology, and breast cancer, which is
more detailed than the other two previous topics.

A.1 Cancer

The cellular growing in living organisms can occur through ordered processes (hyper-
plasia, dysplasia and metaplasia) or disordered processes (neoplasia). Cancer 1 is a common
designation for more than one hundred diseases which share the characteristic of accelerated and
disordered cellular replication. As an abnormal cellular division process, the neoplasia [190]
produces an accumulation of abnormal cells, a tissue mass ordinarily called tumor (or neoplasm).
Oncology is the medical specialty focused on the study of tumors [160]. Figure A.1(a) shows
a simplified cellular structural organization in normal and cancerous cells. Normal cells are
characterized by large cytoplasm, single nucleus, single nucleolus and fine chromatin. Cancer
cells, in turn, show the opposite: large size of the nucleus compared to the total cell size, small
cytoplasm, multiple nuclei, multiple and large nucleoli, and coarse chromatin. In Figure A.1(b)
cancer cells are illustrated undergoing cell division, showing abnormal mitosis.

Considering their biological behavior, tumors can be classified as benign or malignant.
When the neoplasm presents a relatively slow and localized growth, in general, it does not
represent a risk to the patient’s life, and it is named benign tumor [238]. But, in spite of this
denomination, eventually benign tumors may cause severe diseases [160], even the patient’s
death [238]. Other types of neoplasm are characterized by aggressive behavior, showing very
fast growth, invading adjacent tissues and organs (local destructive capacity) and, eventually,

1The word cancer is the Latin translation of the Greek word karkinos which means grab. This designation was
originally used because cancers are often very irregularly shaped, and, like a crab, they “grab on and don’t let go.”



112

(a) Structure of normal and cancer cells. (b) Illustration of normal and cancer cells side-by-side. Cell
division process on cancerous cells are leading to nuclear abnor-
malities.

Figure A.1: Major cellular characteristic structures in normal and cancer cells.
Source: Creator Pat Kenny (Illustrator) [203]. Modified by the author (2014).

even migrating to non-contiguous and distant sites (metastasis2)[161]. This aggressive type of
tumor is named malignant and cancer is a synonym.

There are distinct cancer types, using their own denominations which correspond to different
types of body cells. Whether cancer begins in epithelial tissues, such as skin or mucosae, it is
named carcinoma, and, if the epithelium origin is the secretory glandular type, such as found in
the lung, stomach, liver, pancreas, etc., the tumor is called adenocarcinoma [190]. Sarcoma is
the denomination for cancer originated from connective or other nonepithelial tissues such as
bones, muscles or cartilages. Breast cancer is named carcinoma (with various subtypes) [126]
and is detailed in Section A.3.

In order to feed the accelerated growth of its cancerous cells, the tumor itself releases
substances to keep blood vessels opened and it also induces the formation (angiogenesis-inducing
molecules) of brand new vessels, in a process known as neoangiogenesis or tumoral angiogenesis.
Acquisition of capacity of angiogenesis by cancer cells is considered the most critical step
in tumor growth and metastasis [231]. Figure A.2 shows a simplified schematic view of a
tumor-associated angiogenesis.

2Metastasis is tumoral growing in non-contiguous (distant) site and independent of the original tumor.
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Figure A.2: Schematic presentation of tumor-induced angiogenesis.
Source: Based on [231]. Modified by the author (2014).

A.2 Pathology

Congregating basic science and clinical practice, pathology is focused on the study
of structural and functional changes in cells, tissues and organs caused by diseases, being a
rational systematization to support the diagnosis, prognosis and treatment of such illnesses [161].
Considering sample types, pathology can be divided into two main branches: (a) histopathology
and (b) cytopathology. In Brazil, any cancer treatment will only initiate after malignancy
confirmation given by a cyto- or histopathologic report [190].

A.2.1 Histopathology

Histopathology is the study of illness indicatives using by microscopic inspection of
tissue samples prepared and fixated onto glass slides. These samples came from puncture
biopsies3 or surgical excisions.

In almost all multicellular animals (humans included), tissues are groups of specialized
cells which perform the same function, associating themselves in different proportions to
constitute organs and systems of these animal bodies [188]. Also, integrating tissues – providing
structural and biochemical support to the surrounding cells – there are intercellular substances
called extracellular matrix (interstitial matrix and basement membrane).

3Biopsies are cell or tissue samples removed during surgery or routine medical procedures.
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A standard procedure in histopathology is the visual analysis of tissue sections under the
light microscope. However, tissues are normally too thick for light to pass through them and they
must be sliced to obtain appropriate thin translucent sections for the microscopic examination.
Thus the sample tissue must be prepared for the histological study. The whole procedure, from
fixation to observing a tissue in a light microscope, may take from half to two-and-half days [188].
The main goal is to preserve the original tissue structure and the molecular composition. The
preparation includes the following steps: (a) fixation, (b) dehydration, (c) clearing, (d) infiltration,
(e) embedding and (f) trimming. Figure A.3 shows the basic steps used in tissue preparation
for light microscopy. First (a), solutions of chemicals conserve the proteins and inhibit the
action of degradative enzymes. Then, all the tissue water is removed by the use of increasingly
concentrated alcohol (70% – 100% ethanol) solutions (b), the alcohol is removed (c), the tissue
is immersed in melted paraffin (d) and placed in a small mold in order to harden (e). Finally, the
resulting paraffin block is trimmed to expose the tissue (f) and a microtome is used for sectioning
the block. At the microtomy process, the block is sliced by the steel blade into extremely thin
sections (generally at 1 − 10µm4 thickness). The paraffin slices are placed on the glass slides and
allowed to adhere, deparaffinized, and stained for the light microscope study.

Figure A.3: Schematic presentation of sectioning fixed and paraffin-embedded tissue.
Source: Based on [188]. Modified by the author (2014).

Histological sections became transparent after the microtomy, that is, they present cellular
structures that are not clearly differentiated and appear colorless when viewed under a microscope
(Figure A.4(c)). Thus, to allow the visualization of cellular structures and other tissue components
under the light microscope dyes are applied, as can be seen in Figure A.5(a). Various types of dyes
are available to stain the tissue samples. The histopathologists get the benefits of a wide range of
colored dyes in order to obtain useful information about the lesions and the tissue compositions.
Despite its advantages, the staining process comes up with quite complex variations in staining
concentrations and correlations, tissue fixation types, and fixation time periods.

The dyes stain cell structures including the cytoplasm, nucleus, organelles, and extra-
cellular components. This detailed view of the tissue allows the pathologists to make disease
diagnosis based on the organization (or disorganization) of the cells and also shows any abnor-
malities or particular indicators in the actual cells (such as nuclear changes typically seen in
cancer) [96]. In histology, the action of most dyes is based on the interaction between its acid or
basic elements with positive or negative charged substances of tissue.

Due to its low cost and efficiency, the Hematoxylin-Eosin (HE) staining is used
“routinely” with all tissue specimens to reveal the underlying tissue structures and conditions [96].

4One micrometer (1µm) is equivalent to 1/1000 of a millimeter (mm) or 10−6 meters.
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(a) Hardened block containing tissue and
paraffin.

(b) Microtome with trimmed tissue speci-
men mounted in the paraffin block holder.
The block is sliced by the steel blade
into extremely thin sections (generally at
1 − 10µm thickness).

(c) After microtomy, the tissue section is placed on the glass
slide and deparaffinized. Note that the section is completely
colorless and in order to be studied microscopically, it must
be stained.

Figure A.4: Preparation of tissue samples.
Source: Courtesy of the P&D Lab. Modified by the author (2014).

Hematoxylin is a compound extracted from the logwood tree and reacts like a basic dye with a
purplish blue color. It stains acidic — or basophilic — structure, including the cell nucleous
(which contains DNA and nucleoprotein), and organelles that contain RNA, such as ribosomes
and the rough endoplasmic reticulum. On the other hand, eosin is an acidic dye that is typically
dark red or pink. It stains basic — or acidophilic — structures, which include the cytoplasm, cell
walls, and extracellular fibres. Tissues stained with HE present cytoplasm stained pink-orange
and nuclei stained darkly, either blue or purple. Figure A.6 shows an example of breast tumor
(carcinoma) with cellular structures highlighted by HE.

Although HE staining method is capable of evidentiate tissue structural features, it can’t
reveal all of the cellular components. Eventually, other staining techniques, such as different
dyes (toluidine blue, orange gelb, methylene blue, methylene green, aniline blue WS) or the
association of dyes, are used to highlight distinct cellular materials and in specific pathologic
studies.
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(a) Slides being immersed in staining solutions. (b) Tissue sections properly stained with HE.

(c) Different slides ready for the pathologist visual inspection.

Figure A.5: HE staining process.
Source: Courtesy of the P&D Lab. Modified by the author (2014).

A.2.2 Cytopatholy

Cytopathology is focused on study and diagnosis of diseases at the cellular level,
analysing the structure, the functionality and the chemistry of cells. Cytologic exams are
extremely useful in malignant neoplasia diagnosis and their precursor lesions, as well as detecting
the presence of infectious and parasitic agents [40].

Normally, specimen to cytology tests are collected from patients using minimally-
invasive biopsy methods, such as smears, scrapes, puncture, centrifugation of liquids and others.
A well known example is the screening test for detecting cancer of the neck of the womb (cervix)
named oncotic colpocytology or popularly Papanicolaou Cytology (PAP). In this procedure, a
health professional takes a sample of cells from the patient’s cervix with a small soft brush. When
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Figure A.6: Detail of HE section of a ductal carcinoma (at 100× magnification). It is possible
see a pinkish red color identifying the cytoplasm and the nuclei highlighted in a darker tone of
blue.
Source: The author (2014).

applying the Conventional Cytology (CC) method, the cells collected from the outer layer of the
cervix are put directly in slide glass (Figure A.7(a)). Differently, in the Liquid-Based Cytology
(LBC) technique, cells are put into an appropriate pot with preservative liquid (Figure A.7(b)).
In many countries CC was replaced by LBC. However, in Brazil due to a decision of the Sistema
Único de Saúde (SUS) aiming to reduce costs, CC is still widely used.

In CC, slides are delivered almost ready to pathological laboratory which only performs
the fixation and staining process. Cells are heterogeneous and presents a malformed distribution
on the slide (Figure A.9, highlight B) and this frequent condition of the sample is responsible for
the occurrence of high false-negative rates, inconclusive results and, consequently, requisition of
new samples.

Developed in the mid 1990s, LBC began as a collection technique for the cervix
cytopathologic test [7]. The initial motivation was to offer a technique feasible for the automatic
processing of collected material, in order to produce uniform, thin-layered slides (Figure A.9,
highlight A), and minimize the presence of obscuring artifacts, such as overlapping cells. Thus,
the shift from CC to LBC has occurred due to improvements in sample quality, reproducibility,
sensitivity, and specificity [106], as well as the ability to perform automatic analysis by a
computer-based imager [136]. In the first step of the LBC method, collected cells are immersed
in preservative fluid stored on a proper bottle, shown in Figure A.8(a). Thereafter, the bottle is
processed in a equipment, as shown in Figure A.8(b). This automatic process separates the cells
from the liquid, removing the remnant blood, mucus and other impurities [106]. At the end, a
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(a) Sample collection by conventional cy-
tology. Only a small portion of the sam-
ple taken from the patient is transferred
to the slide, and this method of material
deposition onto a glass slide generates
superimposed cells in irregular layers.

(b) Collection of sample using the LBC
method for a cervix cancer screening test.
The material is stored in Thinprep® bottle
(sold by North American company Cytyc)
which contains a preservative liquid. Af-
terwards, the cells immersed in liquid are
processed using an automatic equipment.

Figure A.7: Cytology specimen collection.
Source: Courtesy of the P&D Lab. Modified by the author (2014).

thin cell layer is deposited directly onto the slide, forming a perfect circular area (Figure A.9,
highlight A). Similar to CC, the slide is fixed and stained.

Figure A.9 shows the distinct appearance of microscope slides prepared by the conventional
method (highlight A) and LBC (highlight B).
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(a) Cytyc LBC Thinprep ® test package. Con-
tains: collection bottle, filter, cervical brush,
spatula, and proper microscope slide.

(b) Microscope slide being placed for pro-
cessing in a Thinprep® 2000 processor.
The procedure uses a liquid-based filtra-
tion process for slide preparation, whereby
the sample is dispersed, randomized, fil-
tered, and a representative sample is trans-
ferred to the slide. The automatic process
guarantees the thin and uniform distribu-
tion of cells.

Figure A.8: LBC process.
Source: Courtesy of the P&D Lab. Modified by the author (2014).

A

B

Figure A.9: Microscope slide preparation using LBC method compared to the conventional
method. In (A) the microscope slide is prepared using LBC and in (B) using the CC method. In
CC, the cell distribution is irregular due to the friction of the spatula/brush against microscope
slide surface. On the other hand, the LBC presents a better cellular distribution (specimen
collected at the centre circular area), thus facilitating diagnosis.
Source: Courtesy of the P&D Lab. Modified by the author (2014).
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A.3 Breast Cancer

Like other types of cancer, breast cancer is the abnormal, fast and unordered proliferation
of cells, in this case, from mammary tissue [247]. Individual genetic mutations — caused
by several factors — are responsible for this disease that can begin in different breast regions.
Thus, the female breast anatomy is briefly presented in Section A.3.1. Section A.3.2 is a brief
discussion about diagnosis of breast cancer. Section A.3.3 brings a basic knowledge about breast
cancer characterization, including types and stages. Finally, Section A.3.4 is focused on breast
cancer in the male population.

A.3.1 Female Breast

The female mammary gland is an organ that has a dynamic behavior: demonstrates
morphologic alteration throughout the reproductive life cycle (menstruation, pregnancy, lactation,
menopause, etc.) and the age of women [84, 236]. Contrasting to other glands, the breast is
functional during the lactation period [123].

In general, in mammal animals, including the human species, the mammary gland is
constituted by lobes, lobules, milk ducts, connective tissue, fat, blood vessels and lymphatic
vessels. Figure A.10 presents the main anatomical structures of the female breast (in cross
section).

Figure A.10: Normal anatomy of a female mammary gland, in a cross section scheme. (1) Chest
wall. (2) Pectoralis muscles. (3) Lobules. (4) Nipple. (5) Areola. (6) Milk duct. (7) Fatty tissue.
(8) Skin.
Source: Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist (2007) [178].



121

Forming the normal female breast there are between 15 to 20 independent lobes or
segments, separated by fibrous tissue, radially distributed from the nipple. The lobe is a
well-defined part of an organ (the brain, the breast, the kidney, the liver, the lung, etc.), delimited
by sulci, fissures, connective tissues or other anatomic structures. A lobe is visible without a
microscope. Each breast lobe is composed of many tiny lobules (Figure A.10-3), at the end of
which there are sacs (alveoli) where milk is produced in response to hormonal signals. Lobules
are connected to the nipple (Figure A.10-4) through thin tubes (diameter of 1 − 2mm) which are
the milk ducts (Figure A.10-6). Ducts carry milk from the alveoli toward the dark area of the
skin in the center of the breast (areola). From the areola (Figure A.10-5), the ducts join together
into larger ducts (up to 4mm) ending at the nipple.

The fibrofatty tissue, fibrous connective and adipose tissue (Figure A.10-7), forming the
major components of the breast tissue, filling spaces between lobules and ducts [84]. The generic
name stroma is given to this tissue type. Connective tissues and ligaments provide support to the
breast and give it its shape and volume. Younger women might have denser and less fatty breast
tissue, different from older women. The breast itself has no muscle tissue. However, muscles
(Figure A.10-2) lie underneath the breasts, separating them from the chest wall (Figure A.10-1).

The basic micro-anatomic structure unit of mammary gland is called Terminal Ductal
Lobular Unit (TDLU). The TDLU consists of the Extralobular Terminal Duct (ETD), the
Intralobular Terminal Duct (ITD) and the lobule, the functional unit of the breast. In each lobule
there is a cluster of round saccules called ductules, which differentiate in the secretory units
or acini 5 during lactation. It is in TDLU region, where most benign and malignant tumors
originate [84]. Figure A.11 presents a diagrammatic representation of TDLU.

Figure A.11: Diagram of the non-lactating breast showing the arrangement of the ducts and
lobules. The TDLU and its main components are highlighted.
Source: Based on [84, 124]. Modified by the author (2014).

5Acinus is a denomination for any cluster of cells that resemble a many-lobed “berry”, such as raspberry. Acinus
is Latin for berry.
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1

(a) Main breast components: the subcutaneous adipose tissue and the functional glandular tissue that comprises both
parenchyma and stroma.

1 2

2

(b) Lobule detail 1 from the Figure above. In magnification 2, cells compounding the glandular tissue.

Figure A.12: Microscopic view of a normal breast. Histologic section HE stained.
Source: Based on [271]. Modified by the author (2014).

In the breast lymphatic vessels are still observed (Figure A.13), which transport a
colorless fluid, rich in defense cells, named lymph. Distributed thru the lymphatic system there
are small structures called lymph nodes or lymphatic nodes. These bean shaped structures store
lymphocytes [161]. There are between five and six hundred lymph nodes in the human body,
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many of which are grouped in clusters in different regions. A great part of the breast lymphatic
vessels conduct towards the lymph nodes located in the axilla (axillary lymph nodes), highlighted
in Figure A.13(a). If cancer cells reach these lymph nodes (Figure A.13(b)), the probability that
the disease has spread to other organs rises considerably.

(a) Lymphatic vessels of female breast and axillary lymph
nodes. There are about 30–50 lymph nodes in the axilla.

(b) Breast cancer invading lymph nodes.

Figure A.13: Lymphatic vessels of a female breast and axillary lymph nodes.
Source: Based on [50, 201]. Modified by the author(2014).

A.3.2 Breast Cancer Diagnosis

The main exams for the initial diagnosis of the breast cancer are imaging tests (see Sec-
tion A.3.2.1). However, the final diagnosis, including malignancy, grading and tumor staging,
can only be estabilished through the biopsy (see Section A.3.2.3) of the suspected area, which is
analyzed by pathologists using anatomopathological exams (Section A.3.2.2).

A.3.2.1 Imaging Exams

The main imaging exams applied in breast cancer detection involve technologies such
as diagnostic mammograms (x-ray), Magnetic Resonance Imaging (MRI), breast ultrasound
(sonography), and thermography [144]. In Table A.1, the Food and Drug Administration (FDA)6
approved technologies for breast cancer detection are listed. The main methods will be briefly
presented in the following paragraphs.

Mammography is the current standard test for breast cancer screening7, as well as for
diagnostic investigation of findings at the physical (manual) examination [124, 268]. In fact,

6USFDA is a federal agency of the United States Department of Health and Human Services. This agency is
responsible for protecting the public health by assuring the safety, efficacy and security of human and veterinary
drugs, biological products, medical devices, the nation’s food supply, cosmetics, and products that emit radiation.

7Screening refers to tests and exams used to find a disease like cancer in people asymptomatic and apparently
healthy, in an attempt to achieve an earlier diagnosis.
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Table A.1: Approved FDA imaging technologies for breast cancer diagnosis.

Technology

Conventional Mammography (film recorded)
Full-Field Digital Mammogram (FFDM)
Sonography (ultrasound)
MRI
Thermography (thermal imaging)
Positron Emission Mammography (PEM)
Electrical impedance imaging (EIT)

Source: Based on [77].

mammographic screening has moved the spectrum of breast pathology away from mostly large
tumors, easily visualized and easily palpable, toward ever smaller and frequently noninvasive
tumors [267].

Mammography is performed by an equipment which uses low-energy X-rays to produce
high-resolution radiological images of the breast internal structure [246]. The mammographic
images are a reflection of the breast anatomy and its occasional alteration by the pathological
processes. Such images are evaluated by radiologists8 who search for pathologic findings, e.g.,
lumps, microcalcifications, density variation in mammary tissue, asymmetry between left and
right breasts, nipple deformities and other disease indications. Mammography has become widely
and routinely used in breast cancer screening. The screening procedure is recommended every
year for asymptomatic women above age 40 or younger when in the high risk category (previous
biopsy showing cancer or high-risk lesions, strong positive family history, previous exposure to
high doses of chest radiation, underlying genetic abnormalities, etc.).

The mammography image must present a high-contrast resolution, low noise and
follow strict protocols, allowing for proper differentiation between normal tissue and potential
abnormalities. In Figure A.14 a mammogram highlighting a non-palpable tumor is shown. For
a long time the conventional mammography was an analogical using screen-film record, but it
has been replaced by the digital detectors, called digital mammography [21] or FFDM. Overall,
the digital mammography has significant benefits over conventional mammography, including
decoupling of image acquisition and storage [58]. The appearance of the processed film in the
analog technique is directly related to and dependent on the exposure and the processing values
used. However, the digital image can be adjusted after exposure so as to optimize viewing [268].

Working as support tools for the human expert, Computer-Aided Detection (CAD)
systems are designed to automatically highlight suspicious areas in the image and to produce
preliminary interpretations that help the radiologist in the final diagnosis [124]. In the early
1990s, the digital mammography became widely used to automatically detect breast lesion areas
which were indicative of cancer. Therefore, asymmetry tests between the left and right breasts,
and executed pattern recognition algorithms are performed to evaluate breast tissue texture
(microcalcifications, dense structures, lesions) [187]. The CAD system of digital mammography

8Radiologists are graduated medical professionals who specialize in diagnosing and treating diseases and injuries
using medical imaging techniques, such as x-rays, computed tomography (CT), magnetic resonance imaging (MRI),
nuclear medicine, positron emission tomography (PET) and ultrasound [285].
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operates as a second reading of the mammogram and can automatically identify possible tumoral
areas requiring special attention from the radiologist [124].

Figure A.14: Mammogram showing non-palpable tumor (arrow) near right border of mammary
parenchyma.
Source: Based on [126]. Modified by the author (2014).

In order to standardize and unify the mammography report in the early 1990s, several
US medical committees, headed by the American College of Radiology (ACR) established a
classification system named Breast Imaging-Reporting Data System (BI-RADS)® [230]. This
system, besides standardizing the report, it standardize the terminology and establishes categories,
and it also suggests treatment conducts [200]. A summary of the BI-RADS® system is presented
in Table A.2. In 2003, a new BI-RADS® edition also included breast ultrasound and breast MRI.

Table A.2: Classification BI-RADS®.

Category Evaluation Recommendation

0 Inconclusive Additional imaging evaluation and/or comparison
to prior mammograms is needed.

1 Normal findings (negative) Back to screening (usual interval for age and risk).
2 Benign finding Back to screening (usual interval for age and risk).

3 Probably benign finding
Short-term follow-up (usually at 6 months). Ad-
ditional views and ultrasound examination are re-
quired to confirm this recommendation.

4
4A – Low suspicion

Histopathologic assesment4B – Intermediate suspicion
4C – High suspicion

5 Highly suggestive of malignancy Histopathologic assessment and probably appropri-
ate treatment for malignancy required

6 Known biopsy-proven malignancy
Appropriate action has to be taken. Mammograms
can be used to verify how the cancer is responding
to treatment.

Source: Based on [124, 200].
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After mammography, sonography stands out as the secondmost important breast imaging
exam 9. Sonography — or Ultrasonography — uses emission of high-frequency sound waves
(often in the range 103 to 106 Hz) in direct contact with the breast skin, where gel is applied
in order to facilitate the propagation of the ultrasonic beams. Due to the acoustic impedance
property, materials of different densities reflect sound waves in a distinct way, allowing that such
reflection (echo) be measured for the diagnostic image formation. It is indicated for lesions
that cannot be seen on mammography, especially when the breast is very dense [21] or to
determine the presence of liquid inside in the nodules, i.e., distinguish between cystic and solid
lesion. Moreover, since it produces real-time images, ultrasound is useful to guide the exact
position to accomplish puncture, collect material for biopsies or establish pre-operative surgical
markings [124], correctly including lesions unnoticeable to the touch. Figure A.15 presents
examples of sonographic findings and the corresponding interpretation.

(a) Simple cyst can be definitively diagnosed sonograph-
ically: oval shape, thin wall, absence of internal echoes,
and far wall enhancement of the soundbeam.

(b) This ultrasound image requires further assessment:
well-circumscribed round hypoechoic lesion.

(c) Mammography correlating
sonographic finding in A.15(b):
demonstrates that the lesion
corresponds to a partly calcified
cyst with thickened contents.

Figure A.15: Clinically suspicious sonographic findings.
Source: Based on [124]. Modified by the author (2014).

9While mammography cannot match ultrasound in terms of early diagnostic precision, it is still an indispensable
tool because microcalcifications are visible only on mammograms [124].
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MRI is an imaging test, complementary to mammography and sonography, which
apply electromagnetic waves and radio-frequency pulses (instead X-rays) to produce the images.
Routinely for cancer detection and presurgical evaluation, this test is done after an intravenous
application in the patient of a gadolinium-based contrast agent [102, 124]. The contrast agent
allows the enhancement of the visualization of certain structures, and highlights neovascularization
in the case of mammary tumors, as can be seen in Figure A.16. MRI test also allows detailed
evaluation of nodes, because it reaches deeper regions of the breast tissue. It is extensively used
to monitor the integrity of breast implants and recommended for screening in high-risk patients,
such as those with a confirmed or suspected family history, with known genetic predisposition to
breast cancer or who have already been affected by the disease.

A B C

Figure A.16: Sequence of breast MRI images. In (A) breast image pre-contrast application. In
(B, C) breast image post applied contrast. Note in (B) the highlighting of the tumor and in (C)
the breast tissue neovascularization inducted by the tumor is also highlighted.
Source: Based on [102]. Modified by the author (2014).

The medical thermography, in particular Infrared Thermograph (IRT), is a rapid,
passive and non-invasive method which has been successfully used to diagnose disorders
such as breast cancer, diabetes, neuropathy and peripheral vascular issues [163]. Since 1982
thermography is approved by the FDA as a complementary exam to mammography for breast
cancer diagnosis [77]. However, the FDA itself emphatically alerts that thermography is not
a substitute for mammography and should not be used by itself for breast cancer screening or
diagnosis10. Inflamed tissues, precancerous or surrounding a tumor, show higher vascular and
chemical activity when compared to normal tissue [54]. This extra activity generates a greater
emission of infrared radiation that can be detected [14]. Breast thermography or Digital Infrared
Imaging (DII) is a procedure to map the thermal emission of the skin over the area of the breasts,
in order to show thermal asymmetries that are indicative of the presence of cysts, infections,
breast cancer or other diseases [245]. While other tests such as mammography and ultrasound
detect anatomical changes already established in breast, thermography has the advantage of
being a functional examination, which studies metabolic and vascular abnormalities of the breast
(Figure A.17).

10http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm257259.htm
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(a) Left breast presenting thermal pattern com-
patible with normal vascularization.

(b) Right breast showing apparent temperature
rise and vascularization (angiogenesis). The
lump in the upper outer quadrant of the breast
is highlighted. The patient’s mamography was
negative. Biopsy after DII confirmed the ma-
lignancy of the lesion.

Figure A.17: Typical breast thermography image.
Source: Based on [8]. Modified by the author (2014).

A.3.2.2 Anatomopathological Exams

Regarding breast cancer, if the physical examination (touch) detects palpable lumps or
imaging exams find suspicious tissue areas, anatomopathological exams are required. Pathological
exam analyses cellular and tissue microscopic alterations present in samples collected from
biopsies or surgeries. The pathologist responsible for pathological examination can make the
correlation with clinical and imaging tests. Generally the pathological diagnosis is considered
definitive, but it may be inconclusive, due to limiting factors such as insufficient material collected
or even if the collected sample is unrepresentative of the suspicious lesion. Section A.3.2.3
presents the main biopsy methods for breast cancer investigation.

A.3.2.3 Breast Biopsies

Once screening tests, such as mammography or breast ultrasound, have found suspicious
changes, it is recommended to biopsy the region. Breast biopsy is the removal of a small amount
of breast tissue for pathologic evaluation to determine whether it is cancerous or non-cancerous
(benign). Particularly in breast lesion investigations, the main biopsy techniques can be grouped
into needle (or percutaneous puncture) techniques and surgical techniques (Table A.3). In needle
biopsy group there are techniques such as Fine Needle Aspiration (FNA), Core Needle Biopsy
(CNB) and mammotomy. Surgical biopsy techniques can be done by incision or excision. The
more appropriate biopsy method depends on several factors, such as, how suspicious the lesion
is; the size, shape, and location of the lesion; the number of abnormalities present; the patient’s
medical history, etc. Most often, a needle biopsy is done first and then, if needed, a surgical
biopsy is done. Figure A.18 shows a schematic representation of the four main breast biopsy
techniques. FNA, CNB, and VABB are percutaneous methods, i.e., a needle is inserted through
the skin. Surgical biopsy yields the largest breast tissue sample of all the breast biopsy methods,
and the accuracy of a diagnosis is better, making it the “gold standard” of breast biopsy methods.
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However, the surgical biopsy method is much more invasive than percutaneous methods, it
requires stitches and can leave a scar.

Figure A.18: Schematic representation of different breast biopsy types.
Source: The author (2014).

Table A.3: Types of breast biopsies.

Intervention Procedure

Percutaneous Puncture (Needle)
FNA
CNB
VABB, Mammotome Biopsy (Mammotomy)

Surgical Incisional
Excisional

Source: Based on [42].

FNA was introduced in 1930 and became popular in the 70s [274]. In this technique
a very thin needle (20 − 21G 11) is used. In general, the needle used during FNA is smaller
than a needle that is normally used to collect blood samples. A 10 or 20ml syringe attached
to the needle allows to aspirate fluids and clusters of cells from the puncture site [80, 206]. It
is a fast and low cost procedure usually requiring no anesthesia. Several needle insertions are
usually needed to guarantee that an adequate tissue sample is taken. The collected material is
deposited on slides (samples are smeared on a microscope slide) for a cytological study. But,
effectiveness of FNA is totally operator-dependent and the use of this procedure has gradually
decreased because of the controversial rates of specimen inadequacy and suboptimal accuracy of
diagnoses in inexperienced hands [80].

The CNB, on the other hand, uses a hollow core needle (16−, 14−, or 11−gauge needle),
coupled to a special pistol, to take larger tissue cylinder samples of a breast mass, as well as nearby
healthy breast tissue [206]. This CNB needle also has a special cutting edge. The procedure

11Considering needles, the measurement gauge (G) refers to the caliber, determining their diameter. The lower
the G value, greater the diameter. Thus, 20G and 21G are equivalent to the external diameter of 0.9081mm and
0.8192mm, respectively.
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requires local anesthetic (lidocaine), because to facilitate the insertion of the needle a small
incision in the skin is made with a bistoury. Are removed several fragments of a few millimeters
which are packaged in bottles containing formaldehyde. If the lump is non-palpable (cannot be
felt), CNB is performed under image-guidance using either Stereotactic Breast Biopsy (SBB)12
or ultrasound. In this procedure, a device using radiographies obtained in different angles, guides
the needle, positioning it in the correct area of concern.

Mammotomy, also called VacuumAssisted Breast Biopsy (VABB) orMinimally Invasive
Breast Biopsy (MIBB), is a minimally invasive image-guided technique established in 1995 and
mainly used to assess non-palpable breast lesions detected on mammography [129, 204]. It uses
a probe (8 − 11G) with a rotary cutting head and a cannula connected to a vacuum system to
aspirate the removed breast tissue [206]. Unlike other puncture techniques, during the VABB
procedure the biopsy probe is inserted only once into the breast through a small skin nick, and
allows to extract larger fragments of lesioned breast areas [42, 177]. Although mammotomy is
intended for diagnosis, in benign cases, such as fibroadenomas, the procedure can completely
remove the tumor [204]. However, if malignancy of the lesion is confirmed, surgical procedures
will be needed in order to remove larger amounts of breast tissue [177].

Figure A.19 presents a visual comparison between different needle sizes used in
procedures VABB, CBN and FNA, respectively.

A

B

C

Figure A.19: Visual comparison of needles: (A) VABB equipment of 7G size, (B) CNB of 14G,
and (C) FNA of 21G.
Source: Based on [206]. Modified by the author (2014).

Surgery biopsy is a procedure performed in the operating room by a surgeon who totally
removes the lesion (including margins containing healthy tissue) or a representative part of it. The
patient receives local anesthetic or a combination of intravenous sedation with local anesthetic.
During an excisional surgical biopsy, the surgeon will attempt to completely remove the lesioned
area, often along with a surrounding margin of normal breast tissue. This removal of the breast
tumor (“lump”), and some of the normal tissue that surrounds it, is also called lumpectomy.
Incisional breast biopsy is usually recommended for large lesions and the surgeon removes only
part of the breast lesion. Thus, in suspicious nodules the incision is made directly over the nodule,
avoiding excessive handling so as not to increase dissemination risk. Currently, considering all

12Stereotaxy is a surgical method for locating points within the patients body using an external, three-dimensional
frame of reference usually based on the Cartesian coordinate system.
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the breast biopsy methods, open surgical method presents the most reliable diagnosis with higher
accuracy rates. However, compared to the percutaneous biopsy procedures, surgical biopsy
requires a longer period of recovery, can leave significant scars and eventually changes the size
and shape of the breast.

Additionally, the biopsy sample is tested for the presence of Estrogen Receptor (ER) and
Progesterone Receptor (PgR) using a method called IHC. Female breast cancers containing these
receptors are more likely to respond positively to hormonal therapy. In women, estrogen and
estrogen hormones can stimulate the growth of some breast cancer cells. Thus, hormone therapy
for breast cancer tries to lower the levels of estrogen and progesterone in the body and block
their effects. When breast cancer cells have ER, the cancer is called ER-positive (ER+) breast
cancer and PgR-positive (PgR+) when it has PgR. Tumor cells may contain none, one, or both of
these hormone receptors [9]. About 75 − 80% of breast cancers are ER- and/or PgR-positive and
low-grade cancers are even more likely to be ER- and/or PgR-positive.

In some cases, no abnormalities were found in the breast, but the existence of increased
lymph nodes were found in the armpit region. Likewise, biopsies can be made, such as FNA and
CNB, or even surgical excision of the node. The material is sent for pathological evaluation.

A.3.3 Characterization of Breast Cancer

As seen in Section A.1, not all tumors are cancerous. Non cancerous tumors are called
benign. Despite the fact that benign tumors can cause serious health problems, they cannot invade
surrounding tissues and spread to other parts of the body (metastasize). For example, fibrocystic
change is a benign lesion (non-cancerous condition) extremely common in which women develop
cysts (accumulated packets of fluid), fibrosis (scarring of connective tissue), lumpiness, areas of
thickening, tenderness, or breast pain [160]. Thus, these tumors are seldom life threatening.

On the other hand, cancer is a synonym for malignant tumors that penetrate and destroy
healthy body tissues. Cells from a malignant tumor may also spread beyond the original site
to other parts of the body (metastases). Therefore, untreated cancers can cause severe illnesses
and death. A malignant tumor that has developed from cells in the breast is referred to as breast
cancer.

Breast cancer is not a single disease, but is rather composed of several distinct subtypes
associated with different origins, evolution and possible therapeutic interventions [226]. By
using histopathological analysis, breast cancer can be classified into different tumor types and
characterized in their specificities. Such classification is essential because it determines different
prognoses, surgery planning and distinct therapies for each type.

As seen in Section A.3.2.1, image screening procedures are indicated for the detection
of breast cancer at early stages, even with no apparent symptoms. Among these tests, the
most important is the mammogram, being associated in some cases with breast ultrasound
or breast MRI. If a breast abnormality is detected with the physical exam, mammography
or other additional breast imaging tests, the patient must be referred for a breast biopsy (see
Section A.3.2.3). While physical breast exam, mammography and other breast imaging methods
can help detect a breast abnormality, biopsy followed by pathological (microscopic) analysis is the
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only reliable way to determine whether a lesion is benign or malignant (cancer), its type, grading
and progression [113]. Further subclassification is based on morphology, immunohistochemistry
and molecular profiling [238].

A.3.3.1 Breast Cancer In Situ, Invasive and Metastatic

Whenever the tumor is confined to a certain structure it is called in situ, and typically
does not have the property of developing metastasis [161]. When breast cancer spreads from
its origin to another part of the body, the new tumor is formed by the same kind of abnormal
cells from the original tumor, and the new tumor continues to receive the name of the original
tumor [198]. If breast cancer becomes metastatic and spreads to the lung, for example, cancer
cells in the lung are actually breast cancer cells. Thus, it is still breast cancer and not lung
cancer. They would be treated the same way, too. Figure A.20(b) shows a duct containing breast
carcinoma in situ, i.e., cancerous cells are restricted to the duct walls. Ductal Carcinoma In Situ
(DCIS) is the most common form of non-invasive breast cancer. About 1 in 5 new breast cancer
cases are DCIS [9]. Another form, Lobular Carcinoma In Situ (LCIS) or lobular neoplasia, is
considered a non-cancerous condition, caused by abnormal cells inside lobules. It is often present
in both breasts and the cells are all contained within the inner lining of the breast lobules. It tends
to be diagnosed as a result of a biopsy performed on the breast for some other reason, because
LCIS does not cause symptoms and usually does not show up on a mammogram. However, LCIS
increases the risk of getting invasive breast cancer in either breast in the future. When cancer
starts to reach neighboring regions it is called invasive or infiltrating [238]. Even small invasive
carcinomas can potentially generate metastasis [161], but a cancer can be invasive without being
metastatic. In Figure A.20(c) a carcinoma extrapolating the mammary duct to invading adjacent
tissues is shown.



133

(a) Diagram showing Ductal Carcinoma In Situ
(DCIS) and Invasive Ductal Carcinoma (IDS).

(b) A breast duct presenting DCIS. Abnormal cells
have not spread outside of duct, thus other mammary
tissues were not compromised.

(c) A breast duct presenting IDC.

Figure A.20: Ductal carcinoma in situ vs infiltrating ductal carcinoma.
Source: Based on [33, 51]. Modified by the author (2014).

A.3.3.2 Breast Cancer Types

Medical experts group breast cancers into two broad categories: (1) No Special
Type (NST) and (2) Special Type. The distinction between the two categories follows the
characterization of the cells making up the tumor. In NST— or Not Otherwise Specified (NOS) –
tumor cells are undifferentiated under microscope. When tumor cells have features that classifies
them as a particular type of cancer, it is classified as special type. Ductal carcinoma, the most
frequent cancer which starts in the lining cells of ducts, is a NST tumor [274]. Figure A.21
shows the abnormal cells in duct. On the other hand, malignant tumors that are classed as special
type include lobular carcinoma and some rare types of breast cancer (medullary, mucinous,
papillary and others). Rare types of breast cancer represent less than 2% of all breast cancer
cases. As additional complexity factor in classifying tumor types, a single breast tumor can be a
combination of various breast cancer types or even a mixture of invasive and in situ cancer [9].
Besides, in some more rare types of breast cancer, the cancer cells may not form a defined
tumor [9].
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Figure A.21: Female breast highlighting a lobule and a duct. Section of duct presents two
possibilities: (A) normal appearance and (B) abnormal cells growing inside a duct (DCIS).
Source: Based on [9]. Modified by the author (2014).

Table A.4 presents a summary of the usual denominations of the breast cancer types and their
synonyms. The most common breast cancers are briefly presented in the following paragraphs.

Table A.4: Breast cancer types. The type often determines how the cancer behaves and what
treatments are the most effective.

Denomination Synonymy

Adenoid Cystic Carcinoma Cylindroma, Adenocystic Carcinoma
Apocrine Tumor –
Cribriform Carcinoma –
Ductal Carcinoma In Situ (DCIS) Intraductal Carcinomal
Inflammatory Breast Cancer –
Invasive Ductal Carcinoma (IDC) Infiltrating Ductal Carcinoma, Ductal Adenocarcinoma
Invasive Lobular Carcinoma (ILC) –
Lobular Carcinoma In Situ (LCIS) –
Medullary Carcinoma –
Metaplastic Carcinoma –
Mucinous Carcinoma Colloid Carcinoma
Paget’s Disease of the Nipple –
Papillary Carcinoma –
Squamous Cells Carcinoma –
Tubular Carcinoma –

Source: Based on [9, 52, 135, 161].
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Depending on the morphology and the presumed site of origin, the vast majority of
breast cancer occurrences in women is broadly classified as Invasive Ductal Carcinoma (IDC)
and Invasive Lobular Carcinoma (ILC). Although it can affect women at any age, breast cancer is
rare before the age of 25, except for family cases, and 77 % of the cases occur in women over
50 [161]. Thus, the IDC and ILC are more common in older women [43, 52], although the ILC
can be found in more advanced ages. The ILC does not always form a well-defined node but a
thickening of the breast tissue, it can not easily be detected on mammograms and, therefore, it is
typically larger than other types when it is diagnosed [52].

IDC is the most common invasive breast cancer, representing more than 80 percent
of all cases [43]. In a macroscopic view, IDC is characterized by a hard lump with irregular
borders. On a mammogram, IDC usually looks like a mass with spikes radiating from the edges;
sometimes it appears as a smooth-edged lump or as calcifications in the tumoral area.

Lobular Carcinoma is considered the second most commonly diagnosed form of breast
cancer (about 10–15%) [43]. This type of cancer is more difficult to detect on imaging procedures,
due to the way it grows with spreading branches. Also, ILC can show the formation of numerous
small hard nodules mimicking sclerosing adenosis [191].

Tubular Carcinoma is a very-well differentiated infiltrating carcinoma with an excellent
prognosis and its name comes from the tubular-angulated appearance of the cells [191]. This
type of tumor is usually small and low graded. Normally, tubular carcinoma is accompanied by
areas of DCIS.

Papillary breast cancer is usually a small tumor and it is a very rare type of invasive
ductal breast cancer that accounts for less than 1% of all breast cancers. The name papillary
comes from finger-like projections, or papules, found in lesion. In this carcinoma, cancerous
cells are disposed in a pattern remembering bracken’s shape [214].

Mucinous (also named Colloid) Carcinoma is one of the three subtypes of mucin-
producing carcinomas of the breast [191]. A unusually large amount of mucous (mucin) is
observed in cells that are part of this type of tumor, giving its name. It is a well-circumscribed
tumor characterized by a low proliferative rate [244].

A.3.3.3 Breast Cancer Grading and Staging

Currently, pathologists determine the tumor grading by assessing the spatial organization
of the tissue (e.g., distribution of cancer cells, nuclei morphological properties, interaction with
the stroma, etc.). These parameters are evaluated in small sample regions of the microscopic slide
in order to give a score considering some “scoring system” such as Nottingham Histologic Score
System13. Complementing the final decision, for prognosis and clinical intervention, respective
hormone receptor status by IHC is also analyzed in the IHC-stained sections.

Breast cancer survival is strongly influenced by tumor stage. Staging is the process of
finding out how widespread cancer is when it is diagnosed, i.e., the presence of local and/or
distant spread. Localized, the disease (Stage I) comprises approximately 60% of the cases, while

13Nottingham (or Elston-Ellis) modification of the Scarff-Bloom-Richardson grading system.
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in about 5% cancer has spread to distant organs such as liver and bones (Stage IV). Approximately
35% are Stage II or III, indicating tumor spread to regional lymph nodes.

A.3.4 Male Breast Cancer

In general, testosterone hormone causes involution of male mammary gland. A normal
male breast is primarily composed of ductal structures within collagenized stroma, with no or
rare lobular elements compared to the female breast [40, 161]. Although rare, men can also be
affected with breast cancer, accounting for less than 1% of all cases of the disease [44, 199, 244].
Risk factors, pathology, and prognosis of male breast cancer treatments are quite similar to those
observed in the female population [244], however breast cancer in men is often diagnosed at later
stages [199, 244]. All histological subtypes (see Section A.3.3.2) may occur, but the invasive
papillary carcinoma constitutes the most frequent rare-type encountered in males and ILC is very
unusual [161, 199, 214].

The treatments for breast cancer in men are similar to those in women [238], with the
exception of surgical options. Given the breast volume and tumor location, the standard procedure
for men is to have a mastectomy surgery, rather than a lumpectomy. Male breast cancers are
usually hormone receptor positive tumors and hormonal therapy is also a common part of the
systemic treatment. Genetic testing should be considered for men who develop breast cancer.
The survival rates and prognoses for men are not as good as for women. Men have a 25 percent
higher mortality rate than women. As mentioned previously, this is believed to be due in part to
men getting diagnosed at a later stage of the disease.



137

Appendix B

BreaKHis — Dataset Description

This text is an expanded version of the BreaKHis description presented in [256]. The
BreaKHis dataset contains digitized microscopic images of biopsies from benign and malignant
breast tumors. Images were collected through a clinical study from January 2014 to December
2014. All patients referred to the P&D Laboratory, Brazil, during this period of time, with
a clinical indication of BC were invited to participate in the study. The institutional review
board approved the study and all patients gave written informed consents. All the data were
anonymized.

Samples were generated from breast tissue biopsy slides, stained with HE (Figure B.1(b)).
Most of the samples were collected by Surgical (open) Biopsy (SOB) and few slides were collected
using CNB method. Tumoral areas were identified and labelled by anatomopathologists of the
P&D Lab. The preparation procedure used in this work is the standard paraffin process, which is
widely used in clinical routine. The main goal is to preserve the original tissue structure and
molecular composition, allowing to observe it in a light microscope. The complete preparation
procedure includes steps such as fixation, dehydration, clearing, infiltration, embedding, and
trimming [188]. In order be mounted on slides, sections of 3 µm (1 µm = 1 × 10−6m) were cut
using a microtome. After staining, the sections were covered with a glass coverslip. Then the
anatomopathologists identify the tumoral areas in each slide, by visual analysis of tissue sections
under a microscope. Final diagnosis of each case was produced by experienced pathologists and
confirmed by complementary exams such as the IHC analysis.

To date, the database is composed of 9,353 microscopic images of breast tumor tissues
divided into benign and malignant tumors. Both breast tumors, benign and malignant, can
be sorted into different types based on the way the tumoral cells look under the microscope.
At this time, there are four histological distinct types of breast benign tumors: adenosis (A),
fibroadenoma (F), phyllodes tumor (PT), and tubular adenona (TA); and four malignant tumors
(breast cancer): carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma (MC) and
papillary carcinoma (PC) in the dataset. Table B.1 shows these types with respective acronyms.
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Table B.1: Types of breast tumors present in the BreaKHis database.

Benign Malignant

Acronym Denomination Acronym Denomination

A Adenosis DC Ductal Carcinoma
F Fibroadenoma LC Lobular Carcinoma
PT Phyllodes Tumor MC Mucinous Carcinoma
TA Tubular Adenoma PC Papillary Carcinoma

Source: The author (2014).

B.1 Image Acquisition

An Olympus BX-50 system microscope with a relay lens with magnification of 3.3×
coupled to a Samsung digital color camera SCC-131AN, both shown in Figure B.1(a), was
used to obtain digitized images from the breast tissue slides. This camera uses a 1/3" Sony
Super-HAD™(Hole-Accumulation Diode) IT (Interline Transfer) CCD (Charge-Coupled Device)
with pixel size 6.5µm ×6.25 µm and total pixel number 752×582. Images were acquired in a
3-channel RGB (Red-Green-Blue) TrueColor (24-bit color depth, 8 bits per color channel) color
space using magnifying factors of 40×, 100×, 200× and 400×, corresponding to objective lens
4×, 10×, 20×, and 40× with ocular len 10×. The magnification power of the microscope is the
product of the magnifications of all the lenses in the system [26], e.g., 10× ocular lens and 40×
objective lens gives microscope magnification 10 ∗ 40 = 400×. Increasing the magnification
factor reduces the field of view and reveals more details. Field of view is the diameter of the
circle of view seen when looking through the microscope. In Figure B.2 four digitized images
can be seen — with the four magnification factors (a) 40×, (b) 100×, (c) 200×, and (d) 400×
— acquired from a single slide of breast tissue containing a malignant tumor. The highlighted
rectangle (manually added for illustrative purposes only) is the area of interest selected by the
pathologist to be detailed in the next higher magnification factor. Pathologists usually use distinct
magnifications in order to get an overview of the slide (scanning lens, e. g., objective 4×), view
the whole or large portions of specimen (low power lens, e.g., 10× and 20× objective lens), and
see the small, detailed parts of specimen (high power lens, e.g., 40×).

The camera is set for automatic exposure and focusing is done manually on the
microscope looking at the digital image on the computer screen. Table B.2 shows the effective
pixel size in microns for each magnifying factor and the objective lens we have used. The pixel
size is the physical pixel size of the camera (6.5µm), divided by the relay lens magnification (3.3)
and the objective lens.

The original image contains black borders on both the left and right sides, and text
annotations in the upper left corner. In order to remove these undesired areas, the resulting
images were cropped and saved in 3-channel Red-Green-Blue (RGB), with an 8-bit depth in
each channel, using Portable Network Graphics (PNG) format with no compression, with a
dimension of 700 × 460 pixels. Resulting images are raw images without normalization or color
standardization.

Regarding the selection of image fields, the pathologists tried to maximize the number
of images containing a single type of tumor. This means that most of the images contain a single
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Table B.2: Magnification and digital resolution of the system.

Visual Objective NA Effective
Magnification Lens (Numerical Aperture) Pixel Size (µm)

40× 4× 0.10 0.49
100× 10× 0.25 0.20
200× 20× 0.40 0.10
400× 40× 0.65 0.05

Source: The author (2015).

type of tumor, but some of them also include transitional tissue (normal-pathologic). The process
of acquiring images of different magnifications works as follows: First the pathologist identifies
the tumor and sets a Region of Interest (ROI). To cover the whole ROI, several images are
captured using the lowest magnification, i.e., 40×. The pathologist preferably selects images with
a single type of tumor (majority of the cases), but some of the images also include transitional
tissue, e.g., normal-pathological. In average, a total of 24 images per patient is captured from
each slide using the lowest magnification. Then, the magnification is manually increased to 100×
and a similar number of images is captured inside the initial ROI. This process is repeated for
200× and 400× magnifications, respectively. Resulting images were examined by a pathologist
to guarantee that they were adequate for visual inspection and diagnosis. A final visual (i.e.,
manual) inspection discards out-of-focus images. Focusing is done manually on the microscope
looking at the digital image on the computer screen.

B.2 Dataset Structure

The dataset BreaKHis is divided into two main groups: benign tumors and malignant
tumors. Histologically benign is a term referring to a lesion that does not match any criteria
of malignancy – e.g., marked cellular atypia, mitosis, disruption of basement membranes,
metastasize, etc. Normally, benign tumors are relatively “innocent”, present slow growing and
remain localized. Malignant tumor is a synonym for cancer: the lesion can invade and destroy
adjacent structures (locally invasive) and spread to distant sites (metastasize), causing death.
Carcinoma is a denomination for those types of cancer originated from epithelial cells, i.e., that
start in cells which make up the tissues lining the inner or outer surfaces of the body, such as skin
or the tissue lining organs like the liver or kidneys. Breast cancer is a type of carcinoma — more
precisely, adenocarcinoma — which begins in glandular tissue. The distribution of benign and
malignant main groups is shown in Table B.3.

Both benign and malignant breast tumors can be sorted into different types based on
the way the tumoral cells look under the microscope. Various types/subtypes of breast tumors
can have different prognoses and treatment implications. At this time, there are four types of
histological distinct types of benign breast tumors and four types of malignant breast tumors
(breast cancer) in the BreaKHis dataset. Table B.4 shows these types with the respective acronyms.
Figures B.3 and B.4 show typical patterns of the four benign tumors and the four malignant
tumors, respectively.
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(a) Olympus BX-50 microscope and Samsung digital
camera SCC-131A, equipment used to acquire the
images from the microscope slides.

(b) Microscope slides (HE stain). The three above are
samples collected using CNB procedure and the three
below were collected by SOB method.

Figure B.1: Microscope, CCD Digital Camera and Microscope Slides (HE stain).
Source: Courtesy of the P&D Lab. Modified by the author (2014).

Currently, most samples present in dataset were collected by the SOB method. Thus,
numbers relative to benign samples, collected by the SOB method are shown in Table B.5 and
the SOB malignant samples in Table B.6. SOB is also called partial mastectomy or excisional
biopsy. This type of procedure, compared to any methods of needle biopsy, removes a larger size
of tissue sample and is done in a hospital with general anesthetic.

Also, in the dataset there are some samples collected by CNB. In this procedure, a core
needle, or hollow core needle, can be used to get small tissue samples from a breast lump, as
well as nearby healthy breast tissue. CNB is more accurate than fine needle aspiration and less
invasive compared to the SOB method. On the other hand, there is always the possibility that
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a b

c d

Figure B.2: A slide of malignant breast tumor (stained with HE) seen in different magnification
factors: (a) 40×, (b) 100×, (c) 200×, and (d) 400×. Highlighted rectangle (manually added for
illustrative purposes only) is the area of interest selected by the pathologist to be detailed in the
next higher magnification factor.
Source: The author (2014).

Table B.3: Images distribution by magnification factor and main group.

Magnification Benign Malignant Total

40× 652 1,649 2,376
100× 674 1,749 2,485
200× 652 1,648 2,355
400× 614 1,471 2,137

Total 2,592 6,517 9,109

# slides 26 71 97
Source: The author (2015).

the needle may miss a malignant area. Tables B.7 and B.8 present the distribution of CNB for
benign and malignant groups, respectively.
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Table B.4: Types of breast tumors present in database.

Benign Malignant

Acronym Denomination Acronym Denomination

A Adenosis DC Ductal Carcinoma
F Fibroadenoma LC Lobular Carcinoma
PT Phyllodes Tumor MC Mucinous Carcinoma
TA Tubular Adenoma PC Papillary Carcinoma

Source: The author (2015).

a b

c d

Figure B.3: Images from the dataset showing typical patterns of four benign breast tumors
(stained with HE) as viewed under a microscope at a 100× magnification factor: (a) adenosis, (b)
fibroadenoma, (c) phyllodes tumor, and (d) tubular adenoma.
Source: The author (2014).

In the BreaKHis dataset, each image filename stores information about the image itself:
method of biopsy procedure, tumor class, tumor type, slide identification, and magnification
factor. For example, SOB B TA-14-16184-100-001.png is the image 001, at magnification
factor 100×, of a benign tumor of the tubular adenoma type, original from the slide 14-16184,
which was collected by the SOB procedure. More formally, the format of image file name is
given in Listing B.1, following a variant of the BNF (Backus-Naur Form) notation. Besides, the
images are organized in folders and Figure B.5 shows a hierarchical view of the dataset.
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a b

c d

Figure B.4: Images from the dataset showing typical patterns of four malignant breast tumors
(stained with HE) as viewed under a microscope at a 100× magnification factor: (a) ductal
carcinoma, (b) lobular carcinoma, (c) mucinous carcinoma, and (d) papillary carcinoma.
Source: The author (2014).

Table B.5: Images distribution by magnification factor and benign subtypes – SOB procedure.

Magnification Adenosis Fibroadenoma Tubular
Adenoma

Phyllodes
Tumor

Total

40× 114 253 122 109 598
100× 113 260 120 121 614
200× 111 264 111 108 594
400× 106 237 104 115 562

Total 444 1014 457 453 2,368

# slides 4 10 7 3 24

Source: The author (2015).
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Table B.6: Images distribution by magnification factor and malignant subtypes – SOB procedure.

Magnification Ductal Lobular Mucinous Papillary Total

40× 864 156 205 145 1,370
100× 903 170 222 142 1,437
200× 896 163 196 135 1,390
400× 788 137 169 138 1,232

Total 3,451 626 792 560 5,429

# slides 38 5 9 6 58

Source: The author (2015).

Table B.7: Images distribution by magnification factor and benign subtypes – CNB procedure.

Magnification Tubular
Adenoma

Total

40× 54 54
100× 60 60
200× 58 58
400× 52 52

Total 224 224

# slides 2 2

Source: The author (2015).

Table B.8: Images distribution by magnification factor and malignant subtypes – CNB Procedure.

Magnification Ductal Lobular Mucinous Total

40× 240 23 16 279
100× 269 29 14 312
200× 218 22 18 258
400× 199 25 15 239

Total 926 99 63 1088

# slides 11 1 1 13

Source: The author (2015).
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Figure B.5: Distribution of the images in the dataset.
Source: The author (2014).

<BIOPSY_PROCEDURE > "_" <TUMOR_CLASS > "_"
<TUMOR_TYPE > "-" <YEAR> "-" <SLIDE_ID > "-"
<MAG> "-" <SEQ>

<BIOPSY_PROCEDURE > ::= "CNB" | "SOB"
<TUMOR_CLASS > ::= "M" | "B"
<TUMOR_TYPE > ::= <BENIGN_TYPE > | <MALIGNANT_TYPE >
<BENIGN_TYPE > ::= "A" | "F" | "PT" | "TA"
<MALIGNANT_TYPE > ::= "DC" | "LC"| "MC"| "PC"
<YEAR> ::= <DIGIT><DIGIT>
<SLIDE_ID > ::= <INTEGER><SECTION>
<SEQ> ::= <INTEGER>
<MAG> ::= "40" | "100" | "200" | "400"
<INTEGER> ::= <INTEGER><DIGIT> | <DIGIT>
<SECTION> ::= <SECTION><LETTER> | <LETTER> | ""
<DIGIT> ::= "0" | ... | "9"
<LETTER> ::= "A" | ... | "Z"

Listing B.1: Format of image file name represented with a variant of BNF (Backus-Naur Form)
notation. Terminal symbols are surrounded by quotes. An ellipsis symbol indicates a range of
terminal values. An empty production (ε) is represented by "".
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