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A B S T R A C T   

Over the last decades, most approaches proposed for handwritten digit string recognition (HDSR) have resorted 
to digit segmentation, which is dominated by heuristics, thereby imposing substantial constraints on the final 
performance. Few of them have been based on segmentation-free strategies where each pixel column has a 
potential cut location. Recently, segmentation-free strategies has added another perspective to the problem, 
leading to promising results. However, these strategies still show some limitations when dealing with a large 
number of touching digits. To bridge the resulting gap, in this paper, we hypothesize that a string of digits can be 
approached as a sequence of objects. We thus evaluate different end-to-end approaches to solve the HDSR 
problem, particularly in two verticals: those based on object-detection (e.g., Yolo and RetinaNet) and those based 
on sequence-to-sequence representation (CRNN). 

The main contribution of this work lies in its provision of a comprehensive comparison with a critical analysis 
of the above mentioned strategies on five benchmarks commonly used to assess HDSR, including the challenging 
Touching Pair dataset, NIST SD19, and two real-world datasets (CAR and CVL) proposed for the ICFHR 2014 
competition on HDSR. Our results show that the Yolo model compares favorably against segmentation-free 
models with the advantage of having a shorter pipeline that minimizes the presence of heuristics-based 
models. It achieved a 97%, 96%, and 84% recognition rate on the NIST-SD19, CAR, and CVL datasets, 
respectively.   

1. Introduction 

Research in handwritten digit string recognition (HDSR) has picked 
up over the past few decades. Most works covering the subject share a 
common strategy, which involves segmenting a string into isolated 
digits and then applying a classifier capable of recognizing 10 classes 
(0…9). However, a straightforward solution becomes unfeasible in the 
presence of noise, broken digits, and in the worst case, touching digits. 
The impacts of the first two cases are reduced when some heuristic- 
based pre-processing modules are applied. The challenge, however re-
mains over touching digits. 

To handle the presence of touching digits, algorithms based on 
contour and profile information over segment the numerical string, 

generating components that may represent a digit or part of it. After 
each resulting component is classified, a fusion method determines the 
best combination among many hypotheses. The rationale behind over- 
segmentation is to maximize the chances of producing the correct seg-
mentation, even at a high post-processing computational cost. This 
strategy is illustrated in Fig. 1. Readers interested in different global and 
local approaches may refer to Casey and Lecolinet (1996) and Ribas, 
Oliveira, Britto, and Sabourin (2013). These two works survey the state- 
of-the-art up to 2012, while the approaches proposed by Gattal and 
Chibani (2015) and Gattal, Chibani, and Hadjadji (2017) were the last 
attempts using the segmentation-based approach. 

The alternative approaches resort to segmentation-free based 
methods (Choi & Oh, 1999; Procter, Illingworth, & Elms, 1998; Britto- 
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Jr, Sabourin, Bortolozzi, & Suen, 2003; Ciresan, Meier, & Schmidhuber, 
2012; Hochuli, Oliveira, Souza Britto, & Sabourin, 2018) in which the 
string is recognized without the need for its a priori segmentation into 
isolated digits. This approach only recently started gaining attention 
among the research community, prodded by advances in machine 
learning thanks to deep learning techniques. While over-segmentation 
based methods demand certain specific strategies to generate segmen-
tation cuts, a robust isolated digit recognizer, as well as a strategy for 
searching the best path among the generated segmentation hypothesis, 
the segmentation-free demands a significant amount of training data. 
Both strategies are caracterized by common complexes pipelines sur-
rounded by handcrafted features, heuristic modules, and fusion rules to 
assembly task-specific classifiers. The need for an end-to-end approach is 
therefore evident. 

Contrary to the handwritten digit string recognition, the object 
recognition field is evolving very rapidly. Each year, new algorithms 

surface and outperform the previous ones. Consequently, there presently 
are a plethora of ready-to-use pre-trained deep learning end-to-end 
models available (Redmon, Divvala, Girshick, & Farhadi, 2016; Red-
mon & Farhadi, 2017; Girshick, Donahue, Darrell, & Malik, 2014; Gir-
shick, 2015; Ren, He, Girshick, & Sun, 2015; Lin, Goyal, Girshick, He, & 
Dollár, 2017). In the same vein, sequence-to-sequence based models 
(Voigtlaender, Doetsch, & Ney, 2016; Shi, Bai, & Yao, 2017; Dutta, 
Krishnan, Mathew, & Jawahar, 2018) have produced end-to-end solu-
tions for temporal series, handwritten text, and text scene recognition. 
Besides high performance, these approaches contribute significantly by 
providing a reduced number of handcrafted features and heuristics 
methods, producing a straightforward pipeline as compared to related 
state-of-the-art works. 

In discussing end-to-end approaches, one aspect that is very often 
highlighted in the literature is the importance of context. Several recent 
computer vision approaches have demonstrated that the use of context 

Fig. 1. (a) Segmentation paths for the string “56” and (b) Images that can be easily confused with digits “0” and “1” (extracted from Vellasques et al., 2008).  

Fig. 2. Dynamic Selection approaches proposed by (a) Hochuli et al. (2018) and (b) Aly and Mohamed (2019).  
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improves recognition performance (Divvala, Hoiem, Hays, Efros, & 
Hebert, 2009). In the case of digit string recognition, contextual infor-
mation is more limited, but it nonetheless plays a vital role, as demon-
strated in Oliveira, Sabourin, Bortolozzi, and Suen (2002). 

In this paper, we argue that a string of digits is a sequence of objects. 
Therefore, we restricted our scope to the following neural network- 
based approaches: (a) Yolo (Redmon et al., 2016; Redmon & Farhadi, 
2017), (b) RetinaNet (Lin et al., 2017) which is a state-of-the-art ar-
chitectures for object detection/recognition, and (c) CRNN (Shi et al., 
2017), a sequence-to-sequence model composed of a convolutional 
network combined with a long-short term memory (LSTM) (Schuster & 
Paliwal, 1997). To complete our analysis, we also consider two ap-
proaches based on dynamic selection (Hochuli, Oliveira, Britto, & Sab-
ourin, 2018 and Aly & Mohamed, 2019). To deploy end-to-end 
approaches for this problem, we generate a large dataset of strings 
mimicking real datasets, which provides contextual information for 
training. Even though Zhan, Wang, and Lu, 2017 applied CRNN for 
courtesy amount recognition on bank checks, we provide an in-depth 
analysis of this model based on different challenging benchmarks, and 
compare it with other end-to-end approaches, such as those that are 
object detection-based. 

The main contributions of this work lies in its provision of a 
comprehensive comparison, along with a critical analysis of the end-to- 
end object recognition strategies, sequence-to-sequence approaches 
used for handwritten words, and the recently published specific 
segmentation-free HDSR methods. Our extensive experimental protocol 
include experiments on the following benchmarks: (i) Touching Pair 
(TP) dataset (Ribas et al., 2013), which contains 79,464 touching digits 
and has been used a benchmark for both heuristic-based and 
segmentation-free algorithms; (ii) 570,000 images of strings composed 
of 2-, 3-, and 4-touching digits; (iii) NIST SD19, which is composed of 
11,585 real-world numerical strings, ranging from 2 to 6 digits, and (iv) 

ICFHR 2014 competition (Diem et al., 2014), which contains real 
courtesy amount of bank checks and a significant variability of hand-
written styles. 

Our experimental analysis shows the limits of the proposed strategies 
for the HDSR. End-to-end approaches, especially in the Yolo model, 
compare favorably against the segmentation-free methods in Hochuli 
et al. (2018) and Hochuli et al. (2018) with the clear advantage of 
having a shorter pipeline that minimizes the presence of heuristic-based 
modules, such as those pre-processing. On the other hand, bottlenecks 
associated with the laborious task of annotation of ground-truths when 
synthetic data are not applicable and the lack of lexicon for digit strings 
is a matter of discussion. 

This paper is organized as follows: Section 2 examines related works. 
The problem statement is presented in Section 3. A detailed review of 
architectures is given in Section 4. In Section 5, we tackle the approaches 
using the aforementioned datasets. Finally, Section 6 concludes this 
work. 

2. Related works 

To avoid the burden of over-segmentation, some authors have 
devoted efforts towards segmentation-free approaches. To the best of 
our knowledge, the first attempt in this direction was in the Space 
Displacement Neural Network (SDNN) introduced by Matan, Burges, 
LeCun, and Denker (1992). This strategy produces a series of output 
vectors used by a post-processor to extract the best possible label 
sequence from the vector sequence. As stated by LeCun, Bottou, Bengio, 
and Haffner (1998), SDNN is an attractive technique but has not 
managed to yield better results than heuristic over-segmentation 
methods. 

The Hidden Markov Model (HMM), initially developed in the field of 
speech recognition, has been used to build segmentation-free methods 

Fig. 3. The Yolo framework divides the image into a grid and for each cell predicts bounding boxes and classes.  

Fig. 4. RetinaNet Framework: A Feature Pyramid Network (FPN) on top of convolutional layers produces rich and multi-scale features from one single input. 
Moreover, the proposed loss function (focal) improved the class imbalance issue among background and foreground samples. 
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for handwriting recognition. Elms, Procter, and Illingworth (1998) first 
applied HMM to word recognition and then adapted their work to 
classify handwritten digit strings of unknown length (Procter et al., 
1998). Britto-Jr et al. (2003) revisited these two studies and proposed a 
two-stage segmentation-free method using features extracted from lines 
and columns that are processed by a set of HMMs. This framework 
achieved an average recognition rate of 91.0% in NIST-SD19. 

Choi and Oh (1999) designed a framework based on 100 neural 
networks to avoid the segmentation of touching pairs. Their approach 
achieves 95.3% of the recognition rate of touching pairs extracted from 
NIST-SD19 (Grother, 2016). A decade later, Ciresan (2008) took 
advantage of Convolutional Neural Networks by training two CNNs, one 
for isolated digits and one for touching pairs. The authors combined 
these two networks to recognize 3-digit strings of the NIST database 
achieving a 93.4% recognition rate. At that time, strings with three 
digits connected were not considered. 

Another decade later, advances in the field of machine learning, 
especially with the popularization and better understanding of deep 
learning techniques (Bengio, Courville, & Vincent, 2013; Gu et al., 
2017), lead to advances in different areas of handwriting recognition, 
such as digit recognition (Das, Saha, & Nasipuri, 2016; Sabour, Frosst, & 

Hinton, 2017), character recognition (Xiao et al., 2017; Laroca et al., 
2018; Laroca et al., 2019), word recognition (Roy, Bhunia, Das, Dey, & 
Pal, 2016; Tamen, Drias, & Boughaci, 2017; Wua, Yin, & Liu, 2017), 
script identification (Ziyong, Zhaoyang, Shuanping, & Jun, 2017), and 
signature verification (Hafemann, Sabourin, & Oliveira, 2017). 
Leveraging this evolution, Hochuli et al. (2018) introduced a 
segmentation-free approach capable of recognizing digit strings of any 
size. In their work, the authors combined four CNNs into a Dynamic 
Selection (DS) scheme (Britto, Sabourin, & Oliveira, 2014; Cruz, Sabo-
urin, & Cavalcanti, 2018). The first CNN works as a high-level classifier 
that determines the size of components, while the other three operate at 
a low-level by classifying 1-digit, 2-digit, and 3-digit components, 
respectively. This approach achieved the state-of-the-art for NIST-SD19 
and Touching Pairs (Ribas et al., 2013) datasets, surpassing 
segmentation-based and segmentation-free methods. 

Despite this good performance, this approach has certain limitations. 
First, it is based on a hierarchical framework composed of heuristic- 
based pre-processing and four classifiers, which leads to various error 
sources. Second, the strategy recognizes strings of any size but limited to 
3-digit touching. To mitigate some of these problems, Hochuli et al. 
(2018) reduced the number of classifiers by introducing a single clas-
sifier (C 1110) capable of classifying 1110 classes (0…9, 00…99,
and 000…999). Although these approaches achieve high recognition 

rates, they are still carried by complex pipelines, and are surrounded by 
heuristic processes, pre-processing modules, and fusion strategies. 

Recently, sequence-to-sequence architectures have been successfully 
applied to the tasks of handwritten text recognition and scene text 
recognition (Voigtlaender et al., 2016; Shi et al., 2017; Dutta et al., 
2018). Those solutions combine a Convolutional Neural Network (CNN) 
and a Recurrent Neural Network (RNN) to produce a sequence of 
probabilities interpreted by a transcription layer. This pipeline produces 
an end-to-end trainable model which achieves state-of-art performance 
of handwritten text recognition. However, it relies on a specific lexicon 
to mitigate confusions. 

In object recognition, the main goal is to detect and recognize a set of 
predefined classes of objects in a given input image. Until the last 
decade, a classical approach used to be based on a sliding window and its 
variants (Lampert, Blaschko, & Hofmann, 2008; Felzenszwalb, McAl-
lester, & Ramanan, 2008; Felzenszwalb, Girshick, McAllester, & Ram-
anan, 2010). This approach uses a classifier trained with handcrafted 
features at several spatial locations of the image. A limitation is the high 
number of windows needed to search over multiple scales and aspect 
ratios. Moreover, in this exhaustive search strategy, the computational 
cost increases very rapidity. 

A breakthrough occurred due to the arising of large-scale datasets 
(Russakovsky et al., 2015; Lin et al., 2014), the popularization of GPUs 
and the popularization of deep networks in the ILSVRC 2012 (Russa-
kovsky et al., 2015). At that time, this field had recovered the attention 
of the research community, and several deep learning-based methods 
were proposed to improve the state-of-art (Han, Zhang, Cheng, Liu, & 
Xu, 2018). 

One of the first successful approaches in this regard consisted of the 
Region-based Convolutional Network (R-CNN) proposed by Girshick 
et al. (2014). This architecture begins by extracting region proposals 
from the image space using the selective search algorithm (Uijlings, van 
de Sande, Gevers, & Smeulders, 2013). Then, each region is warped to a 
fixed size, and a CNN extracts features. Finally, an SVM classifier de-
termines a class, and a bounding-box regressor refines the locations. The 
main drawback of this strategy is that it requires the extraction of fea-
tures of each warped region proposal, which is computationally 
expensive. 

To overcome this obstacle, SPPnet (He, Zhang, Ren, & Sun, 2015) 
and Fast-RCNN (Girshick, 2015) have been proposed. These models 
predict region proposals direct over feature maps. A spatial pooling layer 
is introduced to produce fixed-length representations (wrapping at 
feature level). Although these strategies speed up the entire process, 

Table 1 
Architectures of Darknet (left) and ResNet-50 (right). In the ResNet-50, a 
downsampling with a stride of 2 is performed after each convolutional block.  

Darknet (Yolo) 

Layer Type Filters Size/Stride 
#1 Conv. 32 3 × 3/ 1 
#2 Maxpool  2 × 2/ 2 
#3 Conv. 64 3 × 3/ 1 
#4 Maxpool  2 × 2/ 2 
#5 Conv. 128 3 × 3/ 1 
#6 Conv. 64 1 × 1/ 1 
#7 Conv. 128 3 × 3/1 
#8 Maxpool  2 × 2/ 2 
#9 Conv. 256 3 × 3/ 1 
#10 Conv. 128 1 × 1/ 1 
#11 Conv. 256 3 × 3/ 1 
#12 Maxpool  2 × 2/ 2 
#13 Conv. 512 3 × 3/ 1 
#14 Conv. 256 1 × 1/ 1 
#15 Conv. 512 3 × 3/ 1 
#16 Conv. 256 1 × 1/ 1 
#17 Conv. 512 3 × 3/ 1 
#18 Maxpool  2 × 2/ 2 
#19 Conv. 1024 3 × 3/ 1 
#20 Conv. 512 1 × 1/ 1 
#21 Conv. 1024 3 × 3/ 1 
#22 Conv. 512 1 × 1/ 1 
#23 Conv. 1024 3 × 3/ 1 
#24 Conv. 1000 1 × 1 
#25 Avgpool  Global 
#26 Softmax    

ResNet-50 (RetinaNet) 
Layer Type Filters  
#1 Conv. 7 × 7, 64, stride 2  
#2 Max-Pool 3 × 3, stride 2  

#3..11 Conv. 
⎡

⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤

⎦ × 3     

#12..23 Conv. 
⎡

⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤

⎦ × 3     

#24..41 Conv. 
⎡

⎣
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤

⎦ × 3     

#42..50 Conv. 
⎡

⎣
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤

⎦ × 3     

#51  Avgpool  
#52  1000-d FC  
#53  Softmax   
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they still rely on a handcrafted region proposal method. To overcome 
this limitation, He, Gkioxari, Dollár, and Girshick (2017) introduced a 
region proposal network (RPN), which implicit produces candidate lo-
cations. With this approach, the features produced by the last convolu-
tional layer are used on both (a) region proposal and (b) region 
classification tasks. 

Despite their advatages, the above approaches must still handle a 
two-stage pipeline whenever a region proposal strategy is needed, 
regardless of whether or not this need is implicit. A more ingenious 
alternative was proposed by Redmon et al. (2016) with the Yolo archi-
tecture, in which the authors proposed a regression-based approach that 
encapsulates all stages into a single network. With a single forward pass, 
the network provides bounding box locations and class probabilities. An 
essential aspect of Yolo is that it can encode the context and appearance 
from the neighborhood of objects, which is an important feature for 
implicit digit segmentation. A year later, the RetinaNet (Lin et al., 2017) 
was proposed and add a Feature Pyramid Network (FPN) to produce 
multi-scale features. Its novelty lay in its introduction of an improved 
loss function known as focal loss to deal with class imbalance among 
background and foreground samples, which stifles the learning process 
as most image locations contain no objects. Although the RetinaNet 
achieves the state-of-art in object detection benchmarks, Yolo provides a 
good tradeoff between speed and accuracy. 

3. Problem statement 

As stated earlier, traditional approaches address the problem by 
grouping foreground pixels into connected components, and then clas-
sifying them. The main problem with in scenario is that when a group of 
pixels is extracted from an image, only a local view of the problem is 
obtained, with a lot of contextual information eliminated. Without this 
valuable information, the algorithms suffer from the presence of noise 

Fig. 5. CRNN architecture proposed by Shi et al. (2017): (a) the pipeline from convolutional layers to transcription layer and (b) the receptive field for each 
feature vector. 

Table 2 
CRNN Architecture proposed by Shi et al. (2017).  

Layer Type Filters Size/Stride 

#1 Convolutional 64 3 × 3/ 1 
#2 Maxpool  2 × 2/ 2 
#3 Convolutional 128 3 × 3/ 1 
#4 Maxpool  2 × 2/ 2 
#5 Convolutional 256 3 × 3/ 1 
#6 Convolutional 256 3 × 3/ 1 
#7 Maxpool  1 × 2/ 2 
#8 Convolutional 512 3 × 3/ 1 
#9 BatchNormalization   
#10 Convolutional 512 3 × 3/ 1 
#11 BatchNormalization   
#12 Maxpool  1 × 2/ 2 
#13 Convolutional 512 2 × 2/ 1 
#14 Map-to-Sequence   
#15 Bidirecional-LSTM 256 (hidden units)  
#16 Bidirecional-LSTM 256 (hidden units)  
#17 Transcription    
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and touching digits. 
An end-to-end approach addresses this problem holistically. Deep 

learning models can learn the interaction between digits in the context 
of an image, which contains noise, touching, overlapping, and broken 
digits. Therefore, end-to-end approaches usually have short pipelines: 
the object detector D receives as input an image I containing n digits 
(objects) and produces as output the location (bounding boxes) and the 
digit classes [0,…,9] associated with an estimation of the posterior 
probability. Considering that the input image I may contain n connected 
components, the most probable interpretation of the written amount M 
is given by Eq. (1). It is worth noting that the CRNN approach does not 
provide bounding box locations because it does not implement bounding 
box regressors. However, the digit’s location may be estimated by the 
receptive fields of the feature sequence (Fig. 5b). 

P(M|I) =
∏n

i=1
P(ωj|xi) (1)  

where ωi = {0…9} and xi stands for the digits candidates. 

4. End-to-end strategies for HDSR 

In this section, we present all the approaches evaluated in our work. 
Section 4.1 describes the dynamic selection approaches proposed by 
Hochuli et al. (2018) and Aly and Mohamed (2019), which represented a 
breakthrough in the HDSR field as they introduced a set of classifiers to 
produce a segmentation-free solution for the HDSR field. Section 4.2 
describes the object detection approaches (Yolo and RetinaNet), while 
Section 4.3 describes the sequence-to-sequence framework (CRNN). The 
training protocol used for all models is presented in Section 4.4. 

To ensure a fair evaluation, we used the source code provided by the 
authors whenever they were available. The repositories for the ap-
proaches reported in Hochuli et al. (2018), Redmon et al. (2016) and Lin 

et al. (2017) are available in,1,2 and,3 respectively. In the case of the 
CRNN, the original code4 was outdated, and therefore, we used a more 
recent version.5 Aly and Mohamed (2019) did not share their source 
code, and as a result, in this paper, we replicate the results reported by 
the authors. 

4.1. Dynamic selection approaches 

The dynamic selection framework proposed by Hochuli et al. (2018) 
is depicted in Fig. 2a. Here, a digit string x is first classified by the Length 
classifier (L ), which will assign a probability of having 1, 2, 3, or 4 
touching digits. The digit classification module comprises three classi-
fiers (C 1, C 2, C 3) designed to discriminate 10 [0…9], 100 [00…99], 
and 1000 [000…999] classes. The classifiers that will be used for a given 
image depend on the output of the Length Classifier. In accordance with 
a fusion rule, more than one digit classifier may be invoked to mitigate 
any possible confusion. 

The fusion rule used in this case considers the Top-2 outputs of L . 
Let L i

(x) = pi(x) be the probability of the input pattern, and let x be 
composed of i, (i = 1, 2,3, 4) digits. Let C 1(x) = max

0⩽i⩽9
pi(x), C 2(x) =

max
0⩽i⩽99

pi(x), and C 3(x) = max
0⩽i⩽999

pi(x) be the probability produced by 10- 

class, 100-class, and 1000-class classifiers, respectively, for the input 
pattern x. Let Top1(C ) and Top2(C ) be the functions that return the 
classes with first and second highest scores of a given classifier C , 
respectively. Then, x is assigned to the class ω ∈ [0…1110], according to 
Eq. (2), 

P(ω|x)
{

ifL (x) < T, max(C Top1(L )(x),C Top2(L )(x))
otherwise, C Top1(L )(x)

(2)  

where T is a threshold defined empirically on the validation set. 
The authors justify dealing with 1, 2, and 3 touching digits because 

most of the touching occurs between two digits and sometimes between 
three digits (Wang, Govindaraju, & Srihari, 2000). Strings composed of 
more than three touching digits are rare in real problems, and where one 
occurs, it is rejected by L . 

An alternative approach, depicted in Fig. 2b, was proposed by Aly 
and Mohamed (2019). In this case, the length classifier and the fusion 

Fig. 6. Synthetic data representing numerical strings ranging from 2 to 6 digits.  

Table 3 
Distribution of the synthetic dataset.  

Length/Classes Samples Authors Purpose 

2-Digit String 42,614 1000–1599 Training  
14,202 1600–1799 Validation  
14,838 1800–1999 Testing  

3-Digit String 76,890 1000–1599 Training  
25,570 1600–1799 Validation  
27,025 1800–1999 Testing  

4-Digit String 82,625 1000–1599 Training  
27,487 1600–1799 Validation  
29,166 1800–1999 Testing  

5-Digit String 82,944 1000–1599 Training  
27,663 1600–1799 Validation  
29,371 1800–1999 Testing  

6-Digit String 82,926 1000–1599 Training  
27,609 1600–1799 Validation  
29,396 1800–1999 Testing  

Table 4 
Average recognition time of end-to-end approaches.  

Method #Models (#Classes) Recognition (sec)1   

1-Digit 3-Digit 

CRNN 1 (10) 0.001 0.001 
Yolo 1 (10) 0.010 0.011 

Hochuli et al., 2018 4 (1114) 0.060 0.062 
RetinaNet 1 (10) 0.160 0.161  

1 NVIDIA Titan Xp GPU. 

1 https://github.com/andrehochuli/digitstringrecognition.  
2 https://pjreddie.com/darknet/yolov2/.  
3 https://github.com/facebookresearch/Detectron.  
4 https://github.com/bgshih/crnn.  
5 https://github.com/yalecyu/crnn.caffe. 
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rule were eliminated by a cascade architecture of PCA-SVMNet classi-
fiers, which is a combination of PCA-Convolutional layers used to 
extract features and a linear multi-class SVM to predict classes. An extra 
class was introduced on each classifier as rejection, i.e., for the isolated 
digit classifier (10[0…9]), the class ‘11’ contains samples of touching 
digits ([00…999]). The number of classes of each SVM classifier in-
creases according to the level on the cascade. 

4.2. Object detection approaches 

Yolo (Redmon et al., 2016) is a general-purpose object detection 
framework that can be trained in an end-to-end fashion. Using a single 
network and looking at the entire image, it can predict bounding boxes 
and classes with a single forward pass instead of applying the model at 
every location as in the case with traditional sliding window or region 
purpose-based methods (Girshick, 2015; Ren et al., 2015). The frame-
work is illustrated in Fig. 3. 

First, the convolutional layers (see Section 4.2.1) extract features 
from the entire image, and then the detection layer divides the image 
into a grid. Next, each grid cell predicts the coordinates of bounding 
boxes, and the confidence of each box encloses an object. Handpicked 
anchor boxes are preliminary defined to help the network learn how to 
predict the right bounding boxes. Moreover, it provides class probabil-
ities for the cells belonging to a given object. Finally, to mitigate 
confusion among overlapped boxes, the Non-Maximum Suppression 
(NMS) algorithm is used. 

The input resolution of the Darknet reported in Redmon et al. (2016) 
is 416× 416. However, given that strings of digits are usually wider than 
higher, we used an initial input size of 128 × 256 (height × width) to 
train the model. It is worth mentioning, though, that this architecture 
does not set the input image size. Rather, it changes the network after 
every few iterations. After, every ten batches, the network randomly 

Table 5 
Performance of the segmentation algorithms (reported in Ribas et al., 2013; Hochuli et al., 2018; Gattal and Chibani, 2015), in terms of correct segmentation, on the TP 
Database.  

Strategy Method Performance Connection Type (%) Segmentation   

% I II III V Cuts 

Seg-Based Shi and Govindaraju (1997) 59.30 68.31 59.72 60.35 25.44 1 
Congedo et al. (1995) 63.07 62.88 67.51 59.40 40.45 1 
Lacerda and Mello (2013) 65.79 71.75 71.21 63.64 56.57 1 
Elnagar and Alhajj (2003) 67.34 63.88 71.51 56.40 58.73 1 
Pal et al. (2003) 71.21 73.96 74.69 80.09 41.52 1 
Oliveira et al. (2000) 88.03 90.40 90.78 89.01 64.88 1 
Fujisawa et al. (1992) 89.85 95.45 91.27 83.57 63.72 3.66 
Fenrich and Krishnamoorthy (1990) 92.37 97.54 93.79 99.45 65.57 4.07 
Gattal and Chibani (2015) 93.24 96.67 93.75 99.68 77.58 24.11 
Chen and Wang (2000) 93.80 97.87 94.23 97.55 76.76 45.40  

Seg-Free CRNN 68.58 68.52 64.19 84.83 56.81 0 
RetinaNet 88.48 89.95 88.51 97.15 78.32 0 
Aly and Mohamed (2019) 95.05 95.65 96.20 97.15 91.21 0 
Yolo 96.53 96.98 97.64 98.97 92.55 0 
Hochuli et al. (2018) 97.12 97.02 97.89 98.97 93.03 0  

Fig. 7. Distribution of the dataset (a) Distribution regarding isolated and touching digits, and (b) Distribution of the 10 classes of digits in the database.  

Fig. 8. Types of connected numeral string (extracted from Ribas et al., 2013).  
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chooses a new image dimension size, and the training is resumed. This 
forces the network to learn to accurately predict across a variety of input 
dimensions. In Section 5.5, we show through experiments that during 
recognition, the input size can be easily defined as a function of the 
testing input image. Because Yolo looks at the whole input, it implicitly 
encodes contextual information about objects and their neighborhood. 

The RetinaNet architecture (Lin et al., 2017) is depicted in Fig. 4. A 
Feature Pyramid Network (FPN) on the top of convolutional layers 
produces rich and multi-scale features based on a single input resolution. 
Compared with Yolo, both frameworks have a similar workflow despite 
these slight changes: the convolutional layers produce features to 
bounding box regressors and class predictors, which, with the aid of 
anchors boxes, determine locations and classes for objects in the input 
image. 4.2.1 provides detailed information about convolutional layers as 
well as a definition of anchors. 

What distingues RetinaNet from other approaches is its proposed loss 
function, also know as the focal loss. The authors evidence that a sig-
nificant issue encountered in most object detection approaches is the 
class imbalance that exists among foreground and background samples. 
Since most image locations do not contain an object of interest, the ratio 
between foreground and background locations is about 1:100 or even 
1:1000. Therefore, the background samples dominate the loss gradient, 

and consequently, the result is a biased model. The solution proposed is 
to define a loss function that penalizes “easy” classified samples. 

Let the cross-entropy loss (CE) for classification be: 

CE(p, y) =
{

− log(p) if y = 1
− log(1 − p) otherwise. (3)  

where y ∈ {±1} denotes the ground-truth class and p ∈ [0, 1] is the 
estimated probability for the class with label y = 1. For the sake of 
simplicity, let pt be: 

pt =

{
p if y = 1

1 − p otherwise, (4) 

Fig. 10. Missed predictions of CRNN for TP dataset: (a) ‘75’ as ‘715’ (TYPE-I), (b) ‘96’ as ‘966’ (TYPE-II), (c) ‘25’ as ‘235’ (TYPE-III) and (d) ‘02’ as ‘062’ (TYPE-V).  

Fig. 11. Detections of RetinaNet for TP dataset: (a) ‘51’ as ‘57’, (b) ‘31’ as ‘34’, (c) ‘61’ as ‘6’, representing missed prediction, and (d) ‘25’ as ‘25’ and (e) ‘53’ as ‘53’ 
representing correct predictions. 

Fig. 12. (a) Ground truth for a 4-digit string (0256) and (b) Shape of digits impacted by its neighbors.  

Fig. 9. Missed detections of Yolo for TDP dataset: (a) ‘51’ as ‘57’, (b) ‘21’ as ‘24’, (c) ‘12’ as ‘62’ and (d) ‘76’ as ‘7’.  

Table 6 
Accuracy of the segmentation-free approaches on the synthetic data. (The best 
performances are highlighted in bold).  

Method Isolated digit 2-digit 3-digit 4-digit 

Hochuli et al. (2018) 99.56 99.00 94.88 – 
CRNN 21.97 65.33 84.29 90.61 
RetinaNet 86.63 87.32 81.58 77.52 
Yolo 99.42 98.68 96.89 95.50  
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Finally, CE(p,y) = CE(pt) = − log(pt). 
Once a weighting factor ( − αtlog(pt)) should balance the priority of 

background and foreground, it does not give attention to easy or hard 
samples. Therefore, the author proposes to add a modulating factor 
(1 − pt)

γ to the cross-entropy loss, with tunable focusing parameter γ⩾0: 

FL(pt) = − αt(1 − pt)
γlog(pt). (5) 

When an example is misclassified and pt is small, the modulating 
factor is close to 1, and the loss is unaffected. As pt→1, the factor goes to 
0 and the loss for well-classified examples is down-weighted. The 
focusing parameter γ smoothly adjusts the rate at which easy examples 
are down-weighted. When γ = 0, FL is equivalent to CE, and as γ is 
increased, the effect of the modulating factor is likewise increased. 

4.2.1. Network architectures 
The network architectures used by both Yolo and RetinaNet are 

presented in Table 1. Yolo was first introduced with an architecture 
called Darknet (Redmon & Farhadi, 2017) to perform the classification 

of 1000 object categories. It is composed of 19 convolutional layers and 
5 max-pooling layers. To perform detection, they suppressed the last 
convolutional layer and added three 3 × 3 convolutional layer with 
1024 filters. 

The concept of residual networks (ResNet) was introduced by He, 
Zhang, Ren, and Sun (2016) to deal with the vanish gradient issue in 
deep networks. It provided a breakthrough as it allowed to skipping 
connections between convolution blocks. Using this concept, the authors 

Fig. 13. Predictions of sequence-to-sequence approach: (a) ‘02’ as ‘02’ and (b) ‘3076‘ as ‘3076’ representing correct predictions, (c) ‘02’ as ‘021’, (d) ‘6014’ as 
‘60124’ and (e) ‘9646’ as ‘96416’ representing missed predictions. 

Fig. 14. Missed predictions of RetinaNet: (a) ‘15’ as ‘5’, (b) ‘32‘ as ‘3’, (c) ‘59’ as ‘509’ and (d) ‘921’ as ‘9241’.  

Fig. 15. Correct predictions of Yolo approach: (a) ‘15’ as ‘15’, (b) ‘32‘ as ‘32’, (c) ‘59’ as ‘59’ and (d) ‘921’ as ‘921’.  

Table 7 
Recognition rates for 2- to 6-digit strings of NIST SD19 dataset.  

Method Recognition Error (%)  

Rate (%) Classification Detection 

Yolo 97.1 2.4 0.5 
Aly and Mohamed (2019) 96.1 N/A N/A 
Hochuli et al. (2018) 95.2 3.9 0.9 
CRNN 80.3 11.8 7.9 
RetinaNet 75.3 1.5 23.2  
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proposed several networks between 34 and 152 layers, and which ach-
ieved outstanding performance on the benchmark datasets. The ResNet- 
50 provides a good tradeoff between speed and accuracy and it is the 
backbone for the RetinaNet framework. Its architecture is detailed in 
Table 1. Moreover, an FPN with levels ranging from P3 to P7, produces 
rich and multi-scale features from a single input resolution. 

The default dimensions of anchor boxes were defined by authors 
using samples of the Imagenet Dataset, composed of 1000 classes of real- 
life objects. Although the dataset includes a wide range of classes, to 
make anchors feasible for digits, we performed a k-means clustering 
over 10,000 ground-truth bounding boxes from the training samples. 
This resulted in three anchors with the following aspect ratios: 0.5, 0.6 
and 1.0. 

4.3. Sequence-to-sequence approach 

A Convolutional Recurrent Neural Networks (CRNN) (Voigtlaender 
et al., 2016; Shi et al., 2017; Dutta et al., 2018) is a sequence-to- 
sequence model that can be trained from end-to-end. The pipeline for 
a such network in Fig. 5a. First, convolutional layers extract features 
from an input image, and then a sequence of feature vectors is extracted 
from feature maps. 

Since each region of the feature map is associated with a receptive 
field in the input image, each vector in the sequence is a descriptor of 
this image field, as illustrated in Fig. 5b. Next, this sequence fed the 
recurrent layers, which are composed of a bidirectional Long-Short Term 
Memory (LSTM) (Schuster & Paliwal, 1997) network, producing a per- 
frame prediction from left to right of the image. Finally, the 

transcription layer determines the correct sequence of classes to the 
input image by removing the repeated adjacent labels and the blanks, 
represented by the character ‘-’. This solution is well suited when the 
past and future context of a sequence contribute to the recognition of the 
whole input. With the aid of contextual information, such as a lexicon, 
this approach achieves high text recognition performance. The appli-
cation of this solution to handwritten digits is a matter of discussion once 
we have fewer classes than words (0..9), but there is no lexicon to 
mitigate possible confusion. 

4.3.1. Network architecture 
Shi et al. (2017) proposed the CRNN architecture to recognize En-

glish words. To produce feature maps with a larger width, they adopted 
1 × 2 size max-pooling on layers #7 and #12 instead of squared ones 
(see Table 2). The input resolution is defined as 32 × 128 (height ×
width). We kept the network architecture unchanged where we want to 

Fig. 16. Detection problems: (a) 331 recognized as 33, (b) 91 recognized as 9, (c) 2415 recognized as 245, (d) 5438 recognized as 54138, (e) 4188 recognized as 488, 
(f) 21 recognized as 4, and (g) 260 recognized as 2670. 

Fig. 17. Correct detection: (a) 060968, (b) 040, (c) 5594, and (d) 156085.  

Fig. 18. Misclassification (a) 07 recognized as 87, (b) 02 recognized as 42, (c) 16 recognized as 76, (d) 61 recognized as 62, (e) 34 recognized as 84, and (f) 2956 
recognized as 2952. 

Fig. 19. Missed prediction of Hochuli et al. (2018): 314200 as 319200. The 
classifier (L) correctly predicted the length of components, however, the 1-digit 
classifier (D) confused the number ‘4’ as ‘9’. 
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evaluate handwritten digit recognition performance. 

4.4. Training 

Since deep networks require a considerable amount of data to learn a 
representation, we created a synthetic dataset composed of numerical 
strings ranging from 2- to 6-digits, and containing isolated and touching 
components. The rationale for this strategy was to create a dataset with 
contextual information about the neighborhood of isolated and touching 
digits. The strings are built by concatenating isolated digits of NIST SD19 
(Grother, 2016) through the algorithm described in Ribas et al. (2013). 
Fig. 6 shows some samples. 

To avoid building a biased dataset, we used information on authors 
available on the NIST SD19, which ensure that digits from different 
authors were used exclusively for training, validation, and testing. 
Table 3 shows the purpose (training, validation, and testing), as well as 
the amount of data created.6 

Another aspect we took into consideration when creating this dataset 
was the distribution of isolated and touching digits in the strings. When 
analyzing real datasets, one may observe something similar to an 
exponential distribution dominated by isolated digits. Fig. 7a shows 
such a distribution while 7b depicts the distribution of the 10 classes of 
digits in the database. The digit “1” is less represented since it is the class 
with less occurrence in touching strings (Ribas et al., 2013). 

The models detailed in Sections 4.1–4.3 were trained from scratch 
using the synthetic data described in Table 3. Except by input size, 
training is performed with the Stochastic Gradient Descent (SGD) using 
back-propagation with mini-batches of 64 instances, a momentum factor 
of 0.9, and a weight decay of 5× 10− 4. Initially, the learning rate is set to 
10− 3, to allow the weights to quickly fit the long ravines in the weight 
space, after which it is reduced over time (until 5× 10− 4) to make the 
weights fit the sharp curvatures. 

In the present work, regularization was implemented through early- 

stopping, which prevents overfitting from interrupting the training 
procedure once the performance of the network on a validation set de-
teriorates. During training, the network’s performance on the training 
set will continue to improve, but its performance on the validation set 
will only improve up to a certain point, where the network starts to 
overfit the training data. At that point, the learning algorithm is termi-
nated. The models were trained using an NVidia GeForce Titan X GPU.7 

4.4.1. Time consuming 
Table 4 presents the average time consumed by each approach in 

terms of recognition. Since training is not often used, the impact of the 
time consumed for this task is not considered in this evaluation. 

In light of this, we can observe that the number of objects (digits) 
that composing a string does not contribute to a significant increase in 
the recognition time for all approaches. The reason for this is that the 
network forward has a similar cost irrespective of the number of objects 
in the input. It is worth mentioning that the time analysis for Aly and 
Mohamed (2019) is not reported once the code is not released. 

5. Experiments 

We designed a set of experiments on five different benchmarks to 
allow a better comparison of the different approaches. Firstly, we used 
the challenging Touching Pairs (TP) dataset (Section 5.1), which con-
tains different touching pairs styles. Then, we focus on the Synthetic 
Touching Strings dataset (Section 5.2) to evaluate the limits of each 
approach in a hard task, i.e., one using strings with up to four touching 
digits. The third dataset (Section 5.3) is a well-known NIST-SD19 
composed of 11,585 strings ranging from 2 to 6 digits. The fourth 
benchmark was built for the ICFHR 2014 HDSR challenge (Section 5.4), 
which contains two different datasets. Finally, we present an experiment 
with very long strings to emphasize the power of the object-detection 
approach. 

Fig. 20. Missed predictions of CRNN for NIST dataset: (a) ‘9428’ as ‘94728’ and (b) ‘2956’ as ‘29576’ representing over-segmentation errors (length), and (c) ‘1206’ 
as ’1706‘ and (d) ‘7554’ as ‘7594’ representing misclassification. 

Fig. 21. Missed detections of RetinaNet for NIST dataset: (a) ‘5021’ as ‘502’ , (b) ‘889’ as ‘88’, (c) ‘600’ as ‘6000’ and (d) ‘74973’ as ‘749073’.  

6 All the synthetic data is available upon request for research purposes at 
https://web.inf.ufpr.br/vri/databases-software/touching-digits/. 

7 All trained classifiers are available for research purposes at https://web.inf. 
ufpr.br/vri/databases-software/touching-digits/. 
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5.1. TP dataset 

The TP dataset contains 79,464 samples of touching digits and it was 
proposed in Ribas et al. (2013) as a benchmark for segmentation algo-
rithms. The authors were interested in evaluating when the segmenta-
tion cuts may produce a correct segmentation no matter how many cuts 
were produced. The solution in these situations is straightforward for 
approaches that produce only one cut: if the resulting components (after 
classification) match the ground-truth, the segmentation is deemed 
correct. However, for approaches that produce multiple cuts, the seg-
mentation is only deemed correct, if there are at least two correct digits 
among hypotheses. 

For this experiment, we assume a correct segmentation when the 
model provides the correct number of digits/objects and classes. 
Otherwise, there is an error. Two sources of errors are possible: a wrong 
estimation of the string length or its misclassification. Table 5 compares 
the results of the end-to-end approaches with both segmentation-based 
and segmentation-free algorithms. It should be mentioned that all the 
works presented in Table 5 use the same testing set proposed in Ribas 
et al. (2013). The training sets for both the segmentation-based and the 
segmentation-free algorithms used isolated digits extracted from NIST 
SD19. However, they differ in that all segmentation-based approaches 
use isolated digits to train single-digit classifiers while the segmentation- 
free ones use the strings of digits described in Table 3. Table 5 also il-
lustrates the performance according to the connection types depicted in 
Fig. 8. 

5.1.1. Discussion 
Algorithms based on a single segmentation hypothesis (segmentation 

cuts = 1) usually fail in more complex touching cases (e.g., type V) since 
just one segmentation cut is often not enough to correctly split the digits. 
On the other hand, algorithms based on multiple cuts, such as Chen and 
Wang (2000) and Gattal and Chibani (2015), find the correct segmen-
tation but at a high computational cost, which makes them impractical 
for real applications. 

Yolo compares to Hochuli et al. (2018) in terms of classification for 
most types of connections depicted in Fig. 8, except on Type V. In this 
case, the task-specific classifier trained on touching pairs performs 
better since it can cope with highly slanted images better. This is related 
to the limitations of Yolo, as reported by Redmon et al. (2016). Yolo 
imposes strong spatial constraints on bounding box predictions since 
each grid cell only predicts two boxes and can only have one class. This 
spatial constraint limits the number of nearby objects that the model can 
predict. In our case, we observed this phenomenon in Fig. 9d. 

CRNN and RetinaNet, on the other hand, performed quite poorly 
with performances even worse than those of several segmentation-based 
algorithms. One of the bottlenecks of the CRNN is that the local 
perspective of the problem given by each receptive field, or by a sub- 
sequence, may represent a digit fragment. In this case, a fragment of a 
digit taken out of context can be easily misclassified with high proba-
bility when its shape is somewhat similar to that of a digit. This issue is 
quite similar to the over-segmentation strategy implemented by 
segmentation-based approaches. Considering that there is no lexicon or 
post-processing method, the transcription layer may collapse by missed 
predictions. The worst performance is seen in complex cases, i.e., type V, 
where the neighborhood of digits is severely affected because it has 
more overlapping than other types. In analyzing the errors, we observe 
that most of these complex cases could be solved using contextual in-
formation, which, unfortunately, is not available in most applications of 
HDSR. These cases are depicted in Fig. 10. 

RetinaNet also fails to efficiently encode the neighborhood of digits, 
which explains the model collapse on hard overlapped digits (Type V). It 
should however, be noted that it performs well in easy cases, such as 
Type III. Moreover, pairs featuring the digit “1” produce more missed 
detections if their aspect ratio are significantly different from those of 
the other classes. Fig. 11 illustrates some of these problems. Ta
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5.2. Touching strings dataset 

This goal of this experiment is to illustrate the limits of the evaluated 
approaches when dealing with a challenging task, i.e., tasks involving 
strings with up to four touching digits (e.g., Fig. 12a). As pointed out 
earlier, this is not very often observed in real databases, but it is useful 
for assessing the limits of the proposed strategies discussed in this work. 
An important point here is that, as we can observe in Fig. 12b, the shape 
of the digits may be severely affected the neighbors, which is quite 
different from those observed in the isolated digit datasets especially 
those in the middle of the string. This is why learning from strings rather 
than from isolated digits is important, particularly for approaches that 
use contextual information into the learning process. 

In this experiment, 570,000 images of isolated digits, 2-, 3-, and 4- 
touching digits described in Hochuli et al. (2018) were used. The ac-
curacy of all the strategies employed and the average recognition time 
are reported in Table 6. As stated in Section 4.4.1, a more in-depth 
analysis of Aly and Mohamed (2019)’s approach is not reported as the 
code was not released. 

5.2.1. Discussion 
As can be observed, the best overall results were achieved by Yolo 

followed by the approach proposed in Hochuli et al. (2018). Yolo’s main 
advantage is that it has no constraints regarding the number of touching 
digits in the string. 

Regarding the CRNN, the design of its architecture imposes few 
constraints over its performance on digit strings. Since its input size is 
fixed, a shorter string has its aspect ratio stretched, which has more 
probability of suffering from over-segmentation. Fig. 13d illustrates a 
missed prediction of digit ‘2’ as a fragment of digit ‘4’. In such a case, 
taking the representation contained in the receptive fields, out of 
context, could reasonably leads to a digit ‘2’ being composed. An 
extrapolation is possible to the missed predictions of digit ‘1’ in Fig. 13c 
and e. Furthermore, in Fig. 13, we can observe the impact of the aspect 
ratio and aforementioned over-segmentation. 

RetinaNet suffers when encoding the neighborhood of digit. In 
Fig. 14a and b the aspect ratio of digits ‘1’ and ‘2’ are quite different 

from that of the neighborhood, which then results in a misclassification. 
In Fig. 14d, a segment touching misleads the network in the detection of 
a digit ‘4’. Moreover, the multi-scale strategy can magnify a fragment 
that can be confused with a digit. In such a case, the number ‘9’ was 
recognized as ‘0’, which is quite similar to over-segmentation. Fig. 14c 
illustrates the problem. The Yolo approach (Fig. 15) successfully over-
comes these issues. 

5.3. NIST SD19 strings 

Experiments using real-world strings are based on 11,585 numeral 
strings extracted from the hsf_7 series and distributed into five classes: 
2_digit (2,370), 3_digit (2,385) 4_digit (2,345), 5_digit (2,316), and 
6_digit (2,169) strings, respectively. The strings were cropped from 
original samples leaving a border of 5 pixels. These data exhibit different 
problems, such as touching and fragmentation, and were also used as 
test sets in Hochuli et al. (2018), Oliveira et al. (2002), Britto-Jr et al. 
(2003), Liu, Sako, and Fujisawa (2004), Oliveira and Sabourin (2004), 
Sadri, Suen, and Bui (2007) and Gattal et al. (2017). It is important to 
mention that hsf_7 was never used for training. 

5.3.1. Discussion 
To better compare the approaches, we divided the errors into two 

classes: misdetection and misclassification. Table 7 summarizes the re-
sults for this experiment for the approaches. 

The Yolo error analysis shows that most detection problems are 
related to the digit “1”. The problem occurs when (i) the height of the 
image is too small (Fig. 16a), (ii) is too high (Fig. 16b) or (iii) the slant of 
the image is big (Fig. 16c). In these cases, the digit “1” is not detected. 
Another source of error is the digit “4” (very often related to the digit 
“1”). In these cases, the model sometimes detects two objects (“4” and 
“1”) in the digit “4” (Fig. 16d) and sometimes just the digit “4” is 
detected, missing the digit “1’ (Fig. 16e). Finally, we observed a few 
samples behaving similarly to under-segmentation (Fig. 16f) and over- 
segmentation (Fig. 16g). 

It is worth mentioning that the average misdetection rate was below 
1%, and most of the cases featuring broken digits (Figs. 17a–c) and 

Table 9 
Distribution of Orand-Car and CVL datasets.   

Car-A Car-B CVL 

Length Train Val Test Train Val Test Train Val Test 

2 17 5 36 0 0 0 0 0 0 
3 176 28 387 0 0 0 0 0 0 
4 633 71 1425 60 3 5 0 0 0 
5 819 84 1475 1080 120 69 113 12 789 
6 127 18 363 1432 167 1241 683 75 4144 
7 27 2 87 127 10 1452 340 39 1765 
8 1 1 11 1 0 157 0 0 0 
9 0 0 0 0 0 2 0 0 0 
10 0 0 0 0 0 0 0 0 0  

Total 1800 209 3784 2700 300 2926 1136 126 6698  

Fig. 22. Sample data of (a) Car-A, (b) and (c) are samples of Car-B and (d) and (e) are samples of CVL dataset.  
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densely connected strings (Fig. 17d), where other approaches show their 
limitations, were successfully recognized by the Yolo. 

Table 7 shows an average error rate of 2.4%, in which most mis-
classifications is related to handwriting variability. Fig. 18 shows some 
common mistakes involving classes “0” and “1”. In these cases, the 
handwriting styles are poorly represented in the training set (see 
Fig. 19). 

In the method based on dynamic selection (Hochuli et al., 2018), 
misclassification is the primary source of error, with 1.0% due to length 
classifier and 2.9% to digit classifiers. Since most of the connected 
components in the NIST SD19 strings are composed of isolated digits, the 
1-digit classifier is responsible for most of the connected components 
classification. 

The detection errors of the CRNN reported in Table 7 occur both in 
isolated digits (Fig. 20a) and in the touching digits (Fig. 20b). As 
mentioned in Section 4.3, the aspect ratios of shorter and longer strings 
are deformed by a fixed input size, which explains the highest error rate 
for 2- and 6-digit strings. Performance was severely impacted by 
misclassification into all string sizes. Since the handwriting was highly 
variable, CRNN did not generalize the representation. This issue is 
depicted in Fig. 20c and d, where the digits ‘2’ and ‘5’ were missed. 

Finally, Table 7 shows that the bottleneck of RetinaNet is detection, 
as it either misdetects or overdetects digits. The former is related to the 
shape of digit, while the latter is caused by a multi-scale technique 
which allows a fragment of a digit to be magnified to a scale that 

represents a digit, with high accuracy. This issue is similar to over- 
segmentation. The aforementioned issues are depicted in Fig. 21. 

Table 8 compares the recognition rates of several systems reported in 
the literature on NIST-SD19. For completeness, we replicate the results 
compiled by Hochuli et al. (2018). The works by Britto-Jr et al. (2003), 
Oliveira et al. (2002) and Oliveira and Sabourin (2004) use different 
segmentation (implicit and explicit) and classification strategies, such as 
Hidden Markov Models, Multi-layer Perceptrons and Support Vector 
Machines. Except for Liu et al. (2004) and Ciresan (2008), all the works 
use the same strings for testing. Regarding the training data, all of them 
used isolated digits from NIST SD19. However, the number of digits and 
how they are used may vary according to the strategy used in each 
system. In the case of the Yolo, RetinaNet, CRNN, and Hochuli et al. 
(2018) approaches, the classifiers were trained with the synthetical 
strings reported in Table 3, which were built by combining the same 
isolated digits. 

The work presented by Sadri et al. (2007) is reported in two columns. 
The authors proposed a system based on over-segmentation, in which 
they used a genetic algorithm to optimize their segmentation algorithm. 
As pointed out in Hochuli et al. (2018), the second set of experiments 
(marked with an * in Table 8) is somehow biased since the heuristics 
were defined using a subset of the testing set. Gattal et al. (2017) also 
reported good performance, but evaluating their results is ccomplicated 
by the fact that several thresholds used for segmentation appear to be 
adjusted on the testing set. 

Finally, a straightforward comparison is possible with the 
segmentation-free methods proposed in Hochuli et al. (2018) and 
recently improved by Aly and Mohamed (2019), which implemented a 
different fusion strategy, even while, keeping the pre-processing steps 
and specific-task classifiers. As discussed in Section 4, the end-to-end 
approaches cuts off all the heuristics used for pre-processing, the need 
to train several deep learning models, and the parameter used in the 
fusion strategy. Additionally, Yolo improves the average recognition 
rate. 

Fig. 23. Missed predictions of RetinaNet for ORAND/CVL dataset: (a) ‘134’ as ‘234’ , (b) ‘27477’ as ‘24477’, (c) ‘71148’ as ‘9748’, (d) ‘1800000’ as ‘800000’, (e) 
‘62779’ as ‘32279’ and (f) ‘1396829’ as ‘396829’. 

Table 10 
Comparison of the recognition rates on Orand and CVL datasets (ICFHR 2014 
Competition).  

Methods CAR-A CAR-B CVL 

Tebessa I★ 37.05 26.62 59.30 
Tebessa II★ 39.72 27.72 61.23 

Hochuli et al. (2018) 50.10 40.20 66.10 
Singapore★ 52.30 59.30 50.40 
RetinaNet 72.51 69.17 61.06 

Pernanbuco★ 78.30 75.43 58.60 
Beijing★ 80.73 70.13 85.29 
CRNN* 88.01 89.79 26.01 

Saabni (2016)★,† 85.80 – 
Zhan et al. (2017) 89.75 91.14 2707 
Xu et al. (2018) 91.89 93.79 63.03 

Yolo 96.20 96.80 84.20  

★ Algorithms reported in Diem et al. (2014). 
† Unified CAR-A and CAR-B datasets. 
* Reported by Zhan et al. (2017). 

Table 11 
Distribution of CVL dataset in terms of string labels variability.    

# of Different 
Dataset Samples String Labels 

Train 1136 10 
Test 6698 26  
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5.4. ICFHR datasets 

The experiment in this case performed on two real-world datasets 
built for the ICFHR 2014 challenge on HDSR (Diem et al., 2014). 

The ORAND-CAR-2014 consists of digit strings of the courtesy 
amount recognition (CAR) field extracted from real bank checks with a 
resolution of 200 dpi. Besides the traditional challenges present in 
handwriting such as noise, broken digits, and touching, this dataset 
presents samples with background and currency symbols such as ‘#’, ‘$’, 
dots, commas, and dashes. The CVL Database was collected mostly 
amongst students of the Vienna University of Technology, and contains 
about 300 writers, female and male alike. The images are delivered with 
RGB information and at a resolution of 300 dpi. It includes varying sizes 
and writing styles. This database poses new challenges to the community 
since it is harder than previously published datasets, especially in terms 
of variance in writing style. Table 9 shows the amount of data used for 
training and testing in both datasets. Some samples are depicted in 
Fig. 22. 

Whenever the handwriting styles of these datasets are different from 
those of NIST SD19, models already trained using synthetic data provide 
unreliable results, since the encoded information is quite different. We 
thus trained all models using the data described in Table 9, since it is the 
protocol suggested in the ICFHR 2014 competition. We kept the training 
parameters unchanged, following that described in Section 4.4. To 
provide sufficient information to the object-detection approach, we 
annotated the digits bounding-boxes (ground-truths) of each training 
sample.8 This laborious task was necessary since most of the samples 
have a complex background, noise, and symbols, which are difficult to 
reproduce synthetically. 

5.4.1. Discussion 
Table 10 presents the performances of end-to-end approaches on the 

testing set. The performances of all methods are reported on the same 
testing datasets (Table 9), which were proposed in the ICFHR 2014 
challenge. Zhan et al. (2017) previously implemented the CRNN 
approach to these datasets; and we therefore, we just replicated the 
results. The worst results were found on the CVL dataset (26.01%). 
Besides the unbalanced distribution between the training and testing 
sets, a short variety of string labels in the training set (only 10) do not 
provide an efficient representation of digit iterations into a sequence. 
For example, the sequence pair “98”, which is not available in the 
training set, is found in two different strings of the testing set (“120398”, 
“662498”). Table 11 shows the poor variation of labels. Since these end- 
to-end models must learn the variability introduced by the neighbor-
hood, this lack of samples strongly penalizes such models. Unlike in the 
other benchmarks, in which the dynamic selection approach (Hochuli 
et al., 2018) performed quite well, it struggled in these experiments, 
mostly because of its heuristic-based pre-processing module. Since 
ORAND-CAR provides a hard background and currency symbols, the 
pre-processing module collapsed when detecting connected compo-
nents. It performed slightly better on the CVL dataset, which has no 
significant challenges in background suppression. However, the poor 
distribution of the training set penalized the performance of the specific- 
task classifiers. 

The Yolo and RetinaNet object-based models achieve a performance 
close to those reported in Section 5.3, which denote that the network 
could encode a hard background. A remarkable performance was ach-
ieved by the Yolo, point to the robustness of the model in encoding 
context, noise, and background. The ORAND/CVL dataset also faced 
challenges in the form of overlapping digits, handwriting variability, 
and different aspect ratios that severely impact the models perfor-
mances. These issues are illustrated in Figs. 23 and 24. 

Finally, the main drawback of object-based approaches is the labo-
rious task of data annotation when synthetic samples are not applicable. 

5.5. Very large strings 

The results show that approaching the HDSR as an object detection/ 
recognition problem is absolutely feasible. Additionally, it produced 
(with Yolo) the most consistent performance for all the benchmarks used 
in this study. In this final experiment, our goal is to assess the Yolo on 
very large strings. 

As mentioned previously, the images were resized to 128 × 256 
(height × width) for training. However, since Yolo changes the input size 
after every few iterations during training, this network can recognize 
testing images of different sizes. The question is how to properly resize 
the testing input image to maximize the network’s performance. This is 
relevant since the image width may vary considerably according to the 
number of digits in the string. A 20-digit string is significantly longer 
than a 2-digit string, for example. Resizing both of them to 128 × 256 is 

Fig. 24. Missed predictions of Yolo for ORAND/CVL dataset: (a) ‘7630500’ as ‘7030500’ , (b) ‘7204’ as ‘2204’, (c) ‘171448’ as ‘121498’, (d) ‘280634’ as ‘280034 ’ 
and (e) ‘7062543’ as ‘7002543’. 

Table 12 
Image input size that maximizes the recognition rate for each string length.  

String Average Input Image Recognition 
Length String Width Size (IIw)  Rate (%)  

(Sw)  (128× w)

2 75 128 98.6 
4 150 256 97.6 
6 228 384 97.6 
8 306 512 96.4 
10 381 640 94.8 
12 448 768 94.2 
14 524 896 91.0 
16 596 1024 90.6 
18 666 1152 88.8 
20 750 1280 89.6  

8 The annotated dataset is available upon request for research purposes at 
https://web.inf.ufpr.br/vri/databases-software/touching-digits/. 
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not the right choice. 
To address this, we experimented on 5,000 strings ranging from 2 to 

20 digits, which were synthetically created by concatenating isolated 
digits from NIST SD19. For each string length, we tested the input image 
width in the following range: [128, 256, 384, 512, 640, 768, 896, 1024,
1152,1280]. The image height was always 128. Table 12 summarizes the 
image input size that maximizes the recognition rate for each string 
length. 

5.5.1. Discussion 
From Table 12, we can notice that there is a quasi-linear relation 

between the average string width of the testing images9 and the best 
input size for the Yolo. In light of this, we propose a rule (Eq. (6)) to 
compute the input size width of the Yolo based on the width of the 
testing image. Such a rule is used for all experiments reported in this 
paper. 

IIw =

{
128 for Sw⩽75

Sw × 1.70 otherwise (6) 

Fig. 25 shows some examples of 20-digit strings recognized by the 
system using the rule above. These corroborate the efficiency of the 
adopted resizing strategy and show that the approach can perform well 
even for very long strings composed of broken, overlapping, and 
different configurations of touching digits. 

5.6. Summary of the experiments 

Fig. 26 summarizes the performance of the assessed methods on the 
different datasets used in this study. As we can see, Yolo achieved 
outstanding performance in all scenarios. However, its bottleneck is the 
ground-truth annotation when synthetic samples are not feasible. 

Even though RetinaNet also implements an object detection 
approach, it suffers from the built-in multi-scale strategy (FPN), once a 
magnified fragment of digit misleads the model. A similar issue occurs 
with CRNN in which the various different receptive fields fragment the 
input. These issues are close to the over-segmentation problem faced by 
segmentation-based algorithms. 

Finally, the segmentation-free approach of Hochuli et al. (2018) 
perform well in scenarios where there is no hard background, but, suffer 
from handling a complex pipeline composed of heuristic process and 
multiple classifiers. We did not add the Aly and Mohamed (2019) 
method in this comparison because we had no access to its source code. 

6. Conclusion 

This paper described end-to-end solutions for HDSR in which the 
string of digits is assumed to be composed of objects that can be auto-
matically detected and recognized. To this end, several strategies were 
evaluated. 

A robust experimental protocol based on numeral string datasets was 
defined to validate the proposed methods containing several types of 
noise, touching digits, fragmentation, complexes backgrounds, and long 
strings. The experimental results show that the object-detection 
approach is a feasible end-to-end solution that compares favorably to 
the state-of-the-art in HDSR in terms of recognition rates. Also, it 
considerably reduces the complexity of the string recognition task and 
avoiding heuristic-based methods, special pre-processing, segmentation, 
and classifiers devoted to specific-length strings, meaning, no con-
straints related to the string length exist. However, the difficulty posed 
by need for data annotation when synthetic samples are not applicable is 
the main drawback of this approach. 

Conversely, the sequence-to-sequence strategy provides a short 
pipeline. No significant efforts related to the annotation of ground-truth 
is needed, as in the case with the object-detection based approach. 
However, the strategy depends on contextual information, such as a 
lexicon, to achieve good results. Thus, its design for handwritten digits 
needed to be reviewed. 
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