
Expert Systems With Applications 165 (2021) 114196

Available online 9 November 2020
0957-4174/© 2020 Elsevier Ltd. All rights reserved.

A comprehensive comparison of end-to-end approaches for handwritten
digit string recognition

Andre G. Hochuli a,*, Alceu S. Britto Jr a, David A. Saji b, José M. Saavedra b, Robert Sabourin c,
Luiz S. Oliveira d

a Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil, R. Imaculada Conceição, 1155, Curitiba, PR 80215-901, Brazil
b Computer Vision Research Group, ORAND S.A, Estado 360, of 702, Santiago, Chile
c École de Technologie Supérieure (ÉTS), 1100 Notre Dame West, Montreal, Quebec, Canada
d Federal University of Parana (UFPR), Curitiba, Brazil, Rua Cel. Francisco H. dos Santos, 100, PR 81531-990, Brazil

A R T I C L E I N F O

Keywords:
Handwritten digit string recognition
Handwritten digit segmentation
Convolutional neural networks
Deep learning

A B S T R A C T

Over the last decades, most approaches proposed for handwritten digit string recognition (HDSR) have resorted
to digit segmentation, which is dominated by heuristics, thereby imposing substantial constraints on the final
performance. Few of them have been based on segmentation-free strategies where each pixel column has a
potential cut location. Recently, segmentation-free strategies has added another perspective to the problem,
leading to promising results. However, these strategies still show some limitations when dealing with a large
number of touching digits. To bridge the resulting gap, in this paper, we hypothesize that a string of digits can be
approached as a sequence of objects. We thus evaluate different end-to-end approaches to solve the HDSR
problem, particularly in two verticals: those based on object-detection (e.g., Yolo and RetinaNet) and those based
on sequence-to-sequence representation (CRNN).

The main contribution of this work lies in its provision of a comprehensive comparison with a critical analysis
of the above mentioned strategies on five benchmarks commonly used to assess HDSR, including the challenging
Touching Pair dataset, NIST SD19, and two real-world datasets (CAR and CVL) proposed for the ICFHR 2014
competition on HDSR. Our results show that the Yolo model compares favorably against segmentation-free
models with the advantage of having a shorter pipeline that minimizes the presence of heuristics-based
models. It achieved a 97%, 96%, and 84% recognition rate on the NIST-SD19, CAR, and CVL datasets,
respectively.

1. Introduction

Research in handwritten digit string recognition (HDSR) has picked
up over the past few decades. Most works covering the subject share a
common strategy, which involves segmenting a string into isolated
digits and then applying a classifier capable of recognizing 10 classes
(0…9). However, a straightforward solution becomes unfeasible in the
presence of noise, broken digits, and in the worst case, touching digits.
The impacts of the first two cases are reduced when some heuristic-
based pre-processing modules are applied. The challenge, however re-
mains over touching digits.

To handle the presence of touching digits, algorithms based on
contour and profile information over segment the numerical string,

generating components that may represent a digit or part of it. After
each resulting component is classified, a fusion method determines the
best combination among many hypotheses. The rationale behind over-
segmentation is to maximize the chances of producing the correct seg-
mentation, even at a high post-processing computational cost. This
strategy is illustrated in Fig. 1. Readers interested in different global and
local approaches may refer to Casey and Lecolinet (1996) and Ribas,
Oliveira, Britto, and Sabourin (2013). These two works survey the state-
of-the-art up to 2012, while the approaches proposed by Gattal and
Chibani (2015) and Gattal, Chibani, and Hadjadji (2017) were the last
attempts using the segmentation-based approach.

The alternative approaches resort to segmentation-free based
methods (Choi & Oh, 1999; Procter, Illingworth, & Elms, 1998; Britto-

* Corresponding author.
E-mail addresses: aghochuli@ppgia.pucpr.br (A.G. Hochuli), alceu@ppgia.pucpr.br (A.S. Britto Jr), david.saji@ing.uchile.cl (D.A. Saji), jose.saavedra@orand.cl

(J.M. Saavedra), robert.sabourin@etsmtl.ca (R. Sabourin), luiz.oliveira@ufpr.br (L.S. Oliveira).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2020.114196
Received 17 December 2019; Received in revised form 25 September 2020; Accepted 29 October 2020

mailto:aghochuli@ppgia.pucpr.br
mailto:alceu@ppgia.pucpr.br
mailto:david.saji@ing.uchile.cl
mailto:jose.saavedra@orand.cl
mailto:robert.sabourin@etsmtl.ca
mailto:luiz.oliveira@ufpr.br
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2020.114196
https://doi.org/10.1016/j.eswa.2020.114196
https://doi.org/10.1016/j.eswa.2020.114196
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.114196&domain=pdf

Expert Systems With Applications 165 (2021) 114196

2

Jr, Sabourin, Bortolozzi, & Suen, 2003; Ciresan, Meier, & Schmidhuber,
2012; Hochuli, Oliveira, Souza Britto, & Sabourin, 2018) in which the
string is recognized without the need for its a priori segmentation into
isolated digits. This approach only recently started gaining attention
among the research community, prodded by advances in machine
learning thanks to deep learning techniques. While over-segmentation
based methods demand certain specific strategies to generate segmen-
tation cuts, a robust isolated digit recognizer, as well as a strategy for
searching the best path among the generated segmentation hypothesis,
the segmentation-free demands a significant amount of training data.
Both strategies are caracterized by common complexes pipelines sur-
rounded by handcrafted features, heuristic modules, and fusion rules to
assembly task-specific classifiers. The need for an end-to-end approach is
therefore evident.

Contrary to the handwritten digit string recognition, the object
recognition field is evolving very rapidly. Each year, new algorithms

surface and outperform the previous ones. Consequently, there presently
are a plethora of ready-to-use pre-trained deep learning end-to-end
models available (Redmon, Divvala, Girshick, & Farhadi, 2016; Red-
mon & Farhadi, 2017; Girshick, Donahue, Darrell, & Malik, 2014; Gir-
shick, 2015; Ren, He, Girshick, & Sun, 2015; Lin, Goyal, Girshick, He, &
Dollár, 2017). In the same vein, sequence-to-sequence based models
(Voigtlaender, Doetsch, & Ney, 2016; Shi, Bai, & Yao, 2017; Dutta,
Krishnan, Mathew, & Jawahar, 2018) have produced end-to-end solu-
tions for temporal series, handwritten text, and text scene recognition.
Besides high performance, these approaches contribute significantly by
providing a reduced number of handcrafted features and heuristics
methods, producing a straightforward pipeline as compared to related
state-of-the-art works.

In discussing end-to-end approaches, one aspect that is very often
highlighted in the literature is the importance of context. Several recent
computer vision approaches have demonstrated that the use of context

Fig. 1. (a) Segmentation paths for the string “56” and (b) Images that can be easily confused with digits “0” and “1” (extracted from Vellasques et al., 2008).

Fig. 2. Dynamic Selection approaches proposed by (a) Hochuli et al. (2018) and (b) Aly and Mohamed (2019).

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

3

improves recognition performance (Divvala, Hoiem, Hays, Efros, &
Hebert, 2009). In the case of digit string recognition, contextual infor-
mation is more limited, but it nonetheless plays a vital role, as demon-
strated in Oliveira, Sabourin, Bortolozzi, and Suen (2002).

In this paper, we argue that a string of digits is a sequence of objects.
Therefore, we restricted our scope to the following neural network-
based approaches: (a) Yolo (Redmon et al., 2016; Redmon & Farhadi,
2017), (b) RetinaNet (Lin et al., 2017) which is a state-of-the-art ar-
chitectures for object detection/recognition, and (c) CRNN (Shi et al.,
2017), a sequence-to-sequence model composed of a convolutional
network combined with a long-short term memory (LSTM) (Schuster &
Paliwal, 1997). To complete our analysis, we also consider two ap-
proaches based on dynamic selection (Hochuli, Oliveira, Britto, & Sab-
ourin, 2018 and Aly & Mohamed, 2019). To deploy end-to-end
approaches for this problem, we generate a large dataset of strings
mimicking real datasets, which provides contextual information for
training. Even though Zhan, Wang, and Lu, 2017 applied CRNN for
courtesy amount recognition on bank checks, we provide an in-depth
analysis of this model based on different challenging benchmarks, and
compare it with other end-to-end approaches, such as those that are
object detection-based.

The main contributions of this work lies in its provision of a
comprehensive comparison, along with a critical analysis of the end-to-
end object recognition strategies, sequence-to-sequence approaches
used for handwritten words, and the recently published specific
segmentation-free HDSR methods. Our extensive experimental protocol
include experiments on the following benchmarks: (i) Touching Pair
(TP) dataset (Ribas et al., 2013), which contains 79,464 touching digits
and has been used a benchmark for both heuristic-based and
segmentation-free algorithms; (ii) 570,000 images of strings composed
of 2-, 3-, and 4-touching digits; (iii) NIST SD19, which is composed of
11,585 real-world numerical strings, ranging from 2 to 6 digits, and (iv)

ICFHR 2014 competition (Diem et al., 2014), which contains real
courtesy amount of bank checks and a significant variability of hand-
written styles.

Our experimental analysis shows the limits of the proposed strategies
for the HDSR. End-to-end approaches, especially in the Yolo model,
compare favorably against the segmentation-free methods in Hochuli
et al. (2018) and Hochuli et al. (2018) with the clear advantage of
having a shorter pipeline that minimizes the presence of heuristic-based
modules, such as those pre-processing. On the other hand, bottlenecks
associated with the laborious task of annotation of ground-truths when
synthetic data are not applicable and the lack of lexicon for digit strings
is a matter of discussion.

This paper is organized as follows: Section 2 examines related works.
The problem statement is presented in Section 3. A detailed review of
architectures is given in Section 4. In Section 5, we tackle the approaches
using the aforementioned datasets. Finally, Section 6 concludes this
work.

2. Related works

To avoid the burden of over-segmentation, some authors have
devoted efforts towards segmentation-free approaches. To the best of
our knowledge, the first attempt in this direction was in the Space
Displacement Neural Network (SDNN) introduced by Matan, Burges,
LeCun, and Denker (1992). This strategy produces a series of output
vectors used by a post-processor to extract the best possible label
sequence from the vector sequence. As stated by LeCun, Bottou, Bengio,
and Haffner (1998), SDNN is an attractive technique but has not
managed to yield better results than heuristic over-segmentation
methods.

The Hidden Markov Model (HMM), initially developed in the field of
speech recognition, has been used to build segmentation-free methods

Fig. 3. The Yolo framework divides the image into a grid and for each cell predicts bounding boxes and classes.

Fig. 4. RetinaNet Framework: A Feature Pyramid Network (FPN) on top of convolutional layers produces rich and multi-scale features from one single input.
Moreover, the proposed loss function (focal) improved the class imbalance issue among background and foreground samples.

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

4

for handwriting recognition. Elms, Procter, and Illingworth (1998) first
applied HMM to word recognition and then adapted their work to
classify handwritten digit strings of unknown length (Procter et al.,
1998). Britto-Jr et al. (2003) revisited these two studies and proposed a
two-stage segmentation-free method using features extracted from lines
and columns that are processed by a set of HMMs. This framework
achieved an average recognition rate of 91.0% in NIST-SD19.

Choi and Oh (1999) designed a framework based on 100 neural
networks to avoid the segmentation of touching pairs. Their approach
achieves 95.3% of the recognition rate of touching pairs extracted from
NIST-SD19 (Grother, 2016). A decade later, Ciresan (2008) took
advantage of Convolutional Neural Networks by training two CNNs, one
for isolated digits and one for touching pairs. The authors combined
these two networks to recognize 3-digit strings of the NIST database
achieving a 93.4% recognition rate. At that time, strings with three
digits connected were not considered.

Another decade later, advances in the field of machine learning,
especially with the popularization and better understanding of deep
learning techniques (Bengio, Courville, & Vincent, 2013; Gu et al.,
2017), lead to advances in different areas of handwriting recognition,
such as digit recognition (Das, Saha, & Nasipuri, 2016; Sabour, Frosst, &

Hinton, 2017), character recognition (Xiao et al., 2017; Laroca et al.,
2018; Laroca et al., 2019), word recognition (Roy, Bhunia, Das, Dey, &
Pal, 2016; Tamen, Drias, & Boughaci, 2017; Wua, Yin, & Liu, 2017),
script identification (Ziyong, Zhaoyang, Shuanping, & Jun, 2017), and
signature verification (Hafemann, Sabourin, & Oliveira, 2017).
Leveraging this evolution, Hochuli et al. (2018) introduced a
segmentation-free approach capable of recognizing digit strings of any
size. In their work, the authors combined four CNNs into a Dynamic
Selection (DS) scheme (Britto, Sabourin, & Oliveira, 2014; Cruz, Sabo-
urin, & Cavalcanti, 2018). The first CNN works as a high-level classifier
that determines the size of components, while the other three operate at
a low-level by classifying 1-digit, 2-digit, and 3-digit components,
respectively. This approach achieved the state-of-the-art for NIST-SD19
and Touching Pairs (Ribas et al., 2013) datasets, surpassing
segmentation-based and segmentation-free methods.

Despite this good performance, this approach has certain limitations.
First, it is based on a hierarchical framework composed of heuristic-
based pre-processing and four classifiers, which leads to various error
sources. Second, the strategy recognizes strings of any size but limited to
3-digit touching. To mitigate some of these problems, Hochuli et al.
(2018) reduced the number of classifiers by introducing a single clas-
sifier (C 1110) capable of classifying 1110 classes (0…9, 00…99,
and 000…999). Although these approaches achieve high recognition

rates, they are still carried by complex pipelines, and are surrounded by
heuristic processes, pre-processing modules, and fusion strategies.

Recently, sequence-to-sequence architectures have been successfully
applied to the tasks of handwritten text recognition and scene text
recognition (Voigtlaender et al., 2016; Shi et al., 2017; Dutta et al.,
2018). Those solutions combine a Convolutional Neural Network (CNN)
and a Recurrent Neural Network (RNN) to produce a sequence of
probabilities interpreted by a transcription layer. This pipeline produces
an end-to-end trainable model which achieves state-of-art performance
of handwritten text recognition. However, it relies on a specific lexicon
to mitigate confusions.

In object recognition, the main goal is to detect and recognize a set of
predefined classes of objects in a given input image. Until the last
decade, a classical approach used to be based on a sliding window and its
variants (Lampert, Blaschko, & Hofmann, 2008; Felzenszwalb, McAl-
lester, & Ramanan, 2008; Felzenszwalb, Girshick, McAllester, & Ram-
anan, 2010). This approach uses a classifier trained with handcrafted
features at several spatial locations of the image. A limitation is the high
number of windows needed to search over multiple scales and aspect
ratios. Moreover, in this exhaustive search strategy, the computational
cost increases very rapidity.

A breakthrough occurred due to the arising of large-scale datasets
(Russakovsky et al., 2015; Lin et al., 2014), the popularization of GPUs
and the popularization of deep networks in the ILSVRC 2012 (Russa-
kovsky et al., 2015). At that time, this field had recovered the attention
of the research community, and several deep learning-based methods
were proposed to improve the state-of-art (Han, Zhang, Cheng, Liu, &
Xu, 2018).

One of the first successful approaches in this regard consisted of the
Region-based Convolutional Network (R-CNN) proposed by Girshick
et al. (2014). This architecture begins by extracting region proposals
from the image space using the selective search algorithm (Uijlings, van
de Sande, Gevers, & Smeulders, 2013). Then, each region is warped to a
fixed size, and a CNN extracts features. Finally, an SVM classifier de-
termines a class, and a bounding-box regressor refines the locations. The
main drawback of this strategy is that it requires the extraction of fea-
tures of each warped region proposal, which is computationally
expensive.

To overcome this obstacle, SPPnet (He, Zhang, Ren, & Sun, 2015)
and Fast-RCNN (Girshick, 2015) have been proposed. These models
predict region proposals direct over feature maps. A spatial pooling layer
is introduced to produce fixed-length representations (wrapping at
feature level). Although these strategies speed up the entire process,

Table 1
Architectures of Darknet (left) and ResNet-50 (right). In the ResNet-50, a
downsampling with a stride of 2 is performed after each convolutional block.

Darknet (Yolo)

Layer Type Filters Size/Stride
#1 Conv. 32 3 × 3/ 1
#2 Maxpool 2 × 2/ 2
#3 Conv. 64 3 × 3/ 1
#4 Maxpool 2 × 2/ 2
#5 Conv. 128 3 × 3/ 1
#6 Conv. 64 1 × 1/ 1
#7 Conv. 128 3 × 3/1
#8 Maxpool 2 × 2/ 2
#9 Conv. 256 3 × 3/ 1
#10 Conv. 128 1 × 1/ 1
#11 Conv. 256 3 × 3/ 1
#12 Maxpool 2 × 2/ 2
#13 Conv. 512 3 × 3/ 1
#14 Conv. 256 1 × 1/ 1
#15 Conv. 512 3 × 3/ 1
#16 Conv. 256 1 × 1/ 1
#17 Conv. 512 3 × 3/ 1
#18 Maxpool 2 × 2/ 2
#19 Conv. 1024 3 × 3/ 1
#20 Conv. 512 1 × 1/ 1
#21 Conv. 1024 3 × 3/ 1
#22 Conv. 512 1 × 1/ 1
#23 Conv. 1024 3 × 3/ 1
#24 Conv. 1000 1 × 1
#25 Avgpool Global
#26 Softmax

ResNet-50 (RetinaNet)
Layer Type Filters
#1 Conv. 7 × 7, 64, stride 2
#2 Max-Pool 3 × 3, stride 2

#3..11 Conv.
⎡

⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤

⎦ × 3

#12..23 Conv.
⎡

⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤

⎦ × 3

#24..41 Conv.
⎡

⎣
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤

⎦ × 3

#42..50 Conv.
⎡

⎣
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤

⎦ × 3

#51 Avgpool
#52 1000-d FC
#53 Softmax

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

5

they still rely on a handcrafted region proposal method. To overcome
this limitation, He, Gkioxari, Dollár, and Girshick (2017) introduced a
region proposal network (RPN), which implicit produces candidate lo-
cations. With this approach, the features produced by the last convolu-
tional layer are used on both (a) region proposal and (b) region
classification tasks.

Despite their advatages, the above approaches must still handle a
two-stage pipeline whenever a region proposal strategy is needed,
regardless of whether or not this need is implicit. A more ingenious
alternative was proposed by Redmon et al. (2016) with the Yolo archi-
tecture, in which the authors proposed a regression-based approach that
encapsulates all stages into a single network. With a single forward pass,
the network provides bounding box locations and class probabilities. An
essential aspect of Yolo is that it can encode the context and appearance
from the neighborhood of objects, which is an important feature for
implicit digit segmentation. A year later, the RetinaNet (Lin et al., 2017)
was proposed and add a Feature Pyramid Network (FPN) to produce
multi-scale features. Its novelty lay in its introduction of an improved
loss function known as focal loss to deal with class imbalance among
background and foreground samples, which stifles the learning process
as most image locations contain no objects. Although the RetinaNet
achieves the state-of-art in object detection benchmarks, Yolo provides a
good tradeoff between speed and accuracy.

3. Problem statement

As stated earlier, traditional approaches address the problem by
grouping foreground pixels into connected components, and then clas-
sifying them. The main problem with in scenario is that when a group of
pixels is extracted from an image, only a local view of the problem is
obtained, with a lot of contextual information eliminated. Without this
valuable information, the algorithms suffer from the presence of noise

Fig. 5. CRNN architecture proposed by Shi et al. (2017): (a) the pipeline from convolutional layers to transcription layer and (b) the receptive field for each
feature vector.

Table 2
CRNN Architecture proposed by Shi et al. (2017).

Layer Type Filters Size/Stride

#1 Convolutional 64 3 × 3/ 1
#2 Maxpool 2 × 2/ 2
#3 Convolutional 128 3 × 3/ 1
#4 Maxpool 2 × 2/ 2
#5 Convolutional 256 3 × 3/ 1
#6 Convolutional 256 3 × 3/ 1
#7 Maxpool 1 × 2/ 2
#8 Convolutional 512 3 × 3/ 1
#9 BatchNormalization
#10 Convolutional 512 3 × 3/ 1
#11 BatchNormalization
#12 Maxpool 1 × 2/ 2
#13 Convolutional 512 2 × 2/ 1
#14 Map-to-Sequence
#15 Bidirecional-LSTM 256 (hidden units)
#16 Bidirecional-LSTM 256 (hidden units)
#17 Transcription

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

6

and touching digits.
An end-to-end approach addresses this problem holistically. Deep

learning models can learn the interaction between digits in the context
of an image, which contains noise, touching, overlapping, and broken
digits. Therefore, end-to-end approaches usually have short pipelines:
the object detector D receives as input an image I containing n digits
(objects) and produces as output the location (bounding boxes) and the
digit classes [0,…,9] associated with an estimation of the posterior
probability. Considering that the input image I may contain n connected
components, the most probable interpretation of the written amount M
is given by Eq. (1). It is worth noting that the CRNN approach does not
provide bounding box locations because it does not implement bounding
box regressors. However, the digit’s location may be estimated by the
receptive fields of the feature sequence (Fig. 5b).

P(M|I) =
∏n

i=1
P(ωj|xi) (1)

where ωi = {0…9} and xi stands for the digits candidates.

4. End-to-end strategies for HDSR

In this section, we present all the approaches evaluated in our work.
Section 4.1 describes the dynamic selection approaches proposed by
Hochuli et al. (2018) and Aly and Mohamed (2019), which represented a
breakthrough in the HDSR field as they introduced a set of classifiers to
produce a segmentation-free solution for the HDSR field. Section 4.2
describes the object detection approaches (Yolo and RetinaNet), while
Section 4.3 describes the sequence-to-sequence framework (CRNN). The
training protocol used for all models is presented in Section 4.4.

To ensure a fair evaluation, we used the source code provided by the
authors whenever they were available. The repositories for the ap-
proaches reported in Hochuli et al. (2018), Redmon et al. (2016) and Lin

et al. (2017) are available in,1,2 and,3 respectively. In the case of the
CRNN, the original code4 was outdated, and therefore, we used a more
recent version.5 Aly and Mohamed (2019) did not share their source
code, and as a result, in this paper, we replicate the results reported by
the authors.

4.1. Dynamic selection approaches

The dynamic selection framework proposed by Hochuli et al. (2018)
is depicted in Fig. 2a. Here, a digit string x is first classified by the Length
classifier (L), which will assign a probability of having 1, 2, 3, or 4
touching digits. The digit classification module comprises three classi-
fiers (C 1, C 2, C 3) designed to discriminate 10 [0…9], 100 [00…99],
and 1000 [000…999] classes. The classifiers that will be used for a given
image depend on the output of the Length Classifier. In accordance with
a fusion rule, more than one digit classifier may be invoked to mitigate
any possible confusion.

The fusion rule used in this case considers the Top-2 outputs of L .
Let L i

(x) = pi(x) be the probability of the input pattern, and let x be
composed of i, (i = 1, 2,3, 4) digits. Let C 1(x) = max

0⩽i⩽9
pi(x), C 2(x) =

max
0⩽i⩽99

pi(x), and C 3(x) = max
0⩽i⩽999

pi(x) be the probability produced by 10-

class, 100-class, and 1000-class classifiers, respectively, for the input
pattern x. Let Top1(C) and Top2(C) be the functions that return the
classes with first and second highest scores of a given classifier C ,
respectively. Then, x is assigned to the class ω ∈ [0…1110], according to
Eq. (2),

P(ω|x)
{

ifL (x) < T, max(C Top1(L)(x),C Top2(L)(x))
otherwise, C Top1(L)(x)

(2)

where T is a threshold defined empirically on the validation set.
The authors justify dealing with 1, 2, and 3 touching digits because

most of the touching occurs between two digits and sometimes between
three digits (Wang, Govindaraju, & Srihari, 2000). Strings composed of
more than three touching digits are rare in real problems, and where one
occurs, it is rejected by L .

An alternative approach, depicted in Fig. 2b, was proposed by Aly
and Mohamed (2019). In this case, the length classifier and the fusion

Fig. 6. Synthetic data representing numerical strings ranging from 2 to 6 digits.

Table 3
Distribution of the synthetic dataset.

Length/Classes Samples Authors Purpose

2-Digit String 42,614 1000–1599 Training
14,202 1600–1799 Validation
14,838 1800–1999 Testing

3-Digit String 76,890 1000–1599 Training
25,570 1600–1799 Validation
27,025 1800–1999 Testing

4-Digit String 82,625 1000–1599 Training
27,487 1600–1799 Validation
29,166 1800–1999 Testing

5-Digit String 82,944 1000–1599 Training
27,663 1600–1799 Validation
29,371 1800–1999 Testing

6-Digit String 82,926 1000–1599 Training
27,609 1600–1799 Validation
29,396 1800–1999 Testing

Table 4
Average recognition time of end-to-end approaches.

Method #Models (#Classes) Recognition (sec)1

1-Digit 3-Digit

CRNN 1 (10) 0.001 0.001
Yolo 1 (10) 0.010 0.011

Hochuli et al., 2018 4 (1114) 0.060 0.062
RetinaNet 1 (10) 0.160 0.161

1 NVIDIA Titan Xp GPU.

1 https://github.com/andrehochuli/digitstringrecognition.
2 https://pjreddie.com/darknet/yolov2/.
3 https://github.com/facebookresearch/Detectron.
4 https://github.com/bgshih/crnn.
5 https://github.com/yalecyu/crnn.caffe.

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

7

rule were eliminated by a cascade architecture of PCA-SVMNet classi-
fiers, which is a combination of PCA-Convolutional layers used to
extract features and a linear multi-class SVM to predict classes. An extra
class was introduced on each classifier as rejection, i.e., for the isolated
digit classifier (10[0…9]), the class ‘11’ contains samples of touching
digits ([00…999]). The number of classes of each SVM classifier in-
creases according to the level on the cascade.

4.2. Object detection approaches

Yolo (Redmon et al., 2016) is a general-purpose object detection
framework that can be trained in an end-to-end fashion. Using a single
network and looking at the entire image, it can predict bounding boxes
and classes with a single forward pass instead of applying the model at
every location as in the case with traditional sliding window or region
purpose-based methods (Girshick, 2015; Ren et al., 2015). The frame-
work is illustrated in Fig. 3.

First, the convolutional layers (see Section 4.2.1) extract features
from the entire image, and then the detection layer divides the image
into a grid. Next, each grid cell predicts the coordinates of bounding
boxes, and the confidence of each box encloses an object. Handpicked
anchor boxes are preliminary defined to help the network learn how to
predict the right bounding boxes. Moreover, it provides class probabil-
ities for the cells belonging to a given object. Finally, to mitigate
confusion among overlapped boxes, the Non-Maximum Suppression
(NMS) algorithm is used.

The input resolution of the Darknet reported in Redmon et al. (2016)
is 416× 416. However, given that strings of digits are usually wider than
higher, we used an initial input size of 128 × 256 (height × width) to
train the model. It is worth mentioning, though, that this architecture
does not set the input image size. Rather, it changes the network after
every few iterations. After, every ten batches, the network randomly

Table 5
Performance of the segmentation algorithms (reported in Ribas et al., 2013; Hochuli et al., 2018; Gattal and Chibani, 2015), in terms of correct segmentation, on the TP
Database.

Strategy Method Performance Connection Type (%) Segmentation

% I II III V Cuts

Seg-Based Shi and Govindaraju (1997) 59.30 68.31 59.72 60.35 25.44 1
Congedo et al. (1995) 63.07 62.88 67.51 59.40 40.45 1
Lacerda and Mello (2013) 65.79 71.75 71.21 63.64 56.57 1
Elnagar and Alhajj (2003) 67.34 63.88 71.51 56.40 58.73 1
Pal et al. (2003) 71.21 73.96 74.69 80.09 41.52 1
Oliveira et al. (2000) 88.03 90.40 90.78 89.01 64.88 1
Fujisawa et al. (1992) 89.85 95.45 91.27 83.57 63.72 3.66
Fenrich and Krishnamoorthy (1990) 92.37 97.54 93.79 99.45 65.57 4.07
Gattal and Chibani (2015) 93.24 96.67 93.75 99.68 77.58 24.11
Chen and Wang (2000) 93.80 97.87 94.23 97.55 76.76 45.40

Seg-Free CRNN 68.58 68.52 64.19 84.83 56.81 0
RetinaNet 88.48 89.95 88.51 97.15 78.32 0
Aly and Mohamed (2019) 95.05 95.65 96.20 97.15 91.21 0
Yolo 96.53 96.98 97.64 98.97 92.55 0
Hochuli et al. (2018) 97.12 97.02 97.89 98.97 93.03 0

Fig. 7. Distribution of the dataset (a) Distribution regarding isolated and touching digits, and (b) Distribution of the 10 classes of digits in the database.

Fig. 8. Types of connected numeral string (extracted from Ribas et al., 2013).

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

8

chooses a new image dimension size, and the training is resumed. This
forces the network to learn to accurately predict across a variety of input
dimensions. In Section 5.5, we show through experiments that during
recognition, the input size can be easily defined as a function of the
testing input image. Because Yolo looks at the whole input, it implicitly
encodes contextual information about objects and their neighborhood.

The RetinaNet architecture (Lin et al., 2017) is depicted in Fig. 4. A
Feature Pyramid Network (FPN) on the top of convolutional layers
produces rich and multi-scale features based on a single input resolution.
Compared with Yolo, both frameworks have a similar workflow despite
these slight changes: the convolutional layers produce features to
bounding box regressors and class predictors, which, with the aid of
anchors boxes, determine locations and classes for objects in the input
image. 4.2.1 provides detailed information about convolutional layers as
well as a definition of anchors.

What distingues RetinaNet from other approaches is its proposed loss
function, also know as the focal loss. The authors evidence that a sig-
nificant issue encountered in most object detection approaches is the
class imbalance that exists among foreground and background samples.
Since most image locations do not contain an object of interest, the ratio
between foreground and background locations is about 1:100 or even
1:1000. Therefore, the background samples dominate the loss gradient,

and consequently, the result is a biased model. The solution proposed is
to define a loss function that penalizes “easy” classified samples.

Let the cross-entropy loss (CE) for classification be:

CE(p, y) =
{

− log(p) if y = 1
− log(1 − p) otherwise. (3)

where y ∈ {±1} denotes the ground-truth class and p ∈ [0, 1] is the
estimated probability for the class with label y = 1. For the sake of
simplicity, let pt be:

pt =

{
p if y = 1

1 − p otherwise, (4)

Fig. 10. Missed predictions of CRNN for TP dataset: (a) ‘75’ as ‘715’ (TYPE-I), (b) ‘96’ as ‘966’ (TYPE-II), (c) ‘25’ as ‘235’ (TYPE-III) and (d) ‘02’ as ‘062’ (TYPE-V).

Fig. 11. Detections of RetinaNet for TP dataset: (a) ‘51’ as ‘57’, (b) ‘31’ as ‘34’, (c) ‘61’ as ‘6’, representing missed prediction, and (d) ‘25’ as ‘25’ and (e) ‘53’ as ‘53’
representing correct predictions.

Fig. 12. (a) Ground truth for a 4-digit string (0256) and (b) Shape of digits impacted by its neighbors.

Fig. 9. Missed detections of Yolo for TDP dataset: (a) ‘51’ as ‘57’, (b) ‘21’ as ‘24’, (c) ‘12’ as ‘62’ and (d) ‘76’ as ‘7’.

Table 6
Accuracy of the segmentation-free approaches on the synthetic data. (The best
performances are highlighted in bold).

Method Isolated digit 2-digit 3-digit 4-digit

Hochuli et al. (2018) 99.56 99.00 94.88 –
CRNN 21.97 65.33 84.29 90.61
RetinaNet 86.63 87.32 81.58 77.52
Yolo 99.42 98.68 96.89 95.50

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

9

Finally, CE(p,y) = CE(pt) = − log(pt).
Once a weighting factor (− αtlog(pt)) should balance the priority of

background and foreground, it does not give attention to easy or hard
samples. Therefore, the author proposes to add a modulating factor
(1 − pt)

γ to the cross-entropy loss, with tunable focusing parameter γ⩾0:

FL(pt) = − αt(1 − pt)
γlog(pt). (5)

When an example is misclassified and pt is small, the modulating
factor is close to 1, and the loss is unaffected. As pt→1, the factor goes to
0 and the loss for well-classified examples is down-weighted. The
focusing parameter γ smoothly adjusts the rate at which easy examples
are down-weighted. When γ = 0, FL is equivalent to CE, and as γ is
increased, the effect of the modulating factor is likewise increased.

4.2.1. Network architectures
The network architectures used by both Yolo and RetinaNet are

presented in Table 1. Yolo was first introduced with an architecture
called Darknet (Redmon & Farhadi, 2017) to perform the classification

of 1000 object categories. It is composed of 19 convolutional layers and
5 max-pooling layers. To perform detection, they suppressed the last
convolutional layer and added three 3 × 3 convolutional layer with
1024 filters.

The concept of residual networks (ResNet) was introduced by He,
Zhang, Ren, and Sun (2016) to deal with the vanish gradient issue in
deep networks. It provided a breakthrough as it allowed to skipping
connections between convolution blocks. Using this concept, the authors

Fig. 13. Predictions of sequence-to-sequence approach: (a) ‘02’ as ‘02’ and (b) ‘3076‘ as ‘3076’ representing correct predictions, (c) ‘02’ as ‘021’, (d) ‘6014’ as
‘60124’ and (e) ‘9646’ as ‘96416’ representing missed predictions.

Fig. 14. Missed predictions of RetinaNet: (a) ‘15’ as ‘5’, (b) ‘32‘ as ‘3’, (c) ‘59’ as ‘509’ and (d) ‘921’ as ‘9241’.

Fig. 15. Correct predictions of Yolo approach: (a) ‘15’ as ‘15’, (b) ‘32‘ as ‘32’, (c) ‘59’ as ‘59’ and (d) ‘921’ as ‘921’.

Table 7
Recognition rates for 2- to 6-digit strings of NIST SD19 dataset.

Method Recognition Error (%)

Rate (%) Classification Detection

Yolo 97.1 2.4 0.5
Aly and Mohamed (2019) 96.1 N/A N/A
Hochuli et al. (2018) 95.2 3.9 0.9
CRNN 80.3 11.8 7.9
RetinaNet 75.3 1.5 23.2

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

10

proposed several networks between 34 and 152 layers, and which ach-
ieved outstanding performance on the benchmark datasets. The ResNet-
50 provides a good tradeoff between speed and accuracy and it is the
backbone for the RetinaNet framework. Its architecture is detailed in
Table 1. Moreover, an FPN with levels ranging from P3 to P7, produces
rich and multi-scale features from a single input resolution.

The default dimensions of anchor boxes were defined by authors
using samples of the Imagenet Dataset, composed of 1000 classes of real-
life objects. Although the dataset includes a wide range of classes, to
make anchors feasible for digits, we performed a k-means clustering
over 10,000 ground-truth bounding boxes from the training samples.
This resulted in three anchors with the following aspect ratios: 0.5, 0.6
and 1.0.

4.3. Sequence-to-sequence approach

A Convolutional Recurrent Neural Networks (CRNN) (Voigtlaender
et al., 2016; Shi et al., 2017; Dutta et al., 2018) is a sequence-to-
sequence model that can be trained from end-to-end. The pipeline for
a such network in Fig. 5a. First, convolutional layers extract features
from an input image, and then a sequence of feature vectors is extracted
from feature maps.

Since each region of the feature map is associated with a receptive
field in the input image, each vector in the sequence is a descriptor of
this image field, as illustrated in Fig. 5b. Next, this sequence fed the
recurrent layers, which are composed of a bidirectional Long-Short Term
Memory (LSTM) (Schuster & Paliwal, 1997) network, producing a per-
frame prediction from left to right of the image. Finally, the

transcription layer determines the correct sequence of classes to the
input image by removing the repeated adjacent labels and the blanks,
represented by the character ‘-’. This solution is well suited when the
past and future context of a sequence contribute to the recognition of the
whole input. With the aid of contextual information, such as a lexicon,
this approach achieves high text recognition performance. The appli-
cation of this solution to handwritten digits is a matter of discussion once
we have fewer classes than words (0..9), but there is no lexicon to
mitigate possible confusion.

4.3.1. Network architecture
Shi et al. (2017) proposed the CRNN architecture to recognize En-

glish words. To produce feature maps with a larger width, they adopted
1 × 2 size max-pooling on layers #7 and #12 instead of squared ones
(see Table 2). The input resolution is defined as 32 × 128 (height ×
width). We kept the network architecture unchanged where we want to

Fig. 16. Detection problems: (a) 331 recognized as 33, (b) 91 recognized as 9, (c) 2415 recognized as 245, (d) 5438 recognized as 54138, (e) 4188 recognized as 488,
(f) 21 recognized as 4, and (g) 260 recognized as 2670.

Fig. 17. Correct detection: (a) 060968, (b) 040, (c) 5594, and (d) 156085.

Fig. 18. Misclassification (a) 07 recognized as 87, (b) 02 recognized as 42, (c) 16 recognized as 76, (d) 61 recognized as 62, (e) 34 recognized as 84, and (f) 2956
recognized as 2952.

Fig. 19. Missed prediction of Hochuli et al. (2018): 314200 as 319200. The
classifier (L) correctly predicted the length of components, however, the 1-digit
classifier (D) confused the number ‘4’ as ‘9’.

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

11

evaluate handwritten digit recognition performance.

4.4. Training

Since deep networks require a considerable amount of data to learn a
representation, we created a synthetic dataset composed of numerical
strings ranging from 2- to 6-digits, and containing isolated and touching
components. The rationale for this strategy was to create a dataset with
contextual information about the neighborhood of isolated and touching
digits. The strings are built by concatenating isolated digits of NIST SD19
(Grother, 2016) through the algorithm described in Ribas et al. (2013).
Fig. 6 shows some samples.

To avoid building a biased dataset, we used information on authors
available on the NIST SD19, which ensure that digits from different
authors were used exclusively for training, validation, and testing.
Table 3 shows the purpose (training, validation, and testing), as well as
the amount of data created.6

Another aspect we took into consideration when creating this dataset
was the distribution of isolated and touching digits in the strings. When
analyzing real datasets, one may observe something similar to an
exponential distribution dominated by isolated digits. Fig. 7a shows
such a distribution while 7b depicts the distribution of the 10 classes of
digits in the database. The digit “1” is less represented since it is the class
with less occurrence in touching strings (Ribas et al., 2013).

The models detailed in Sections 4.1–4.3 were trained from scratch
using the synthetic data described in Table 3. Except by input size,
training is performed with the Stochastic Gradient Descent (SGD) using
back-propagation with mini-batches of 64 instances, a momentum factor
of 0.9, and a weight decay of 5× 10− 4. Initially, the learning rate is set to
10− 3, to allow the weights to quickly fit the long ravines in the weight
space, after which it is reduced over time (until 5× 10− 4) to make the
weights fit the sharp curvatures.

In the present work, regularization was implemented through early-

stopping, which prevents overfitting from interrupting the training
procedure once the performance of the network on a validation set de-
teriorates. During training, the network’s performance on the training
set will continue to improve, but its performance on the validation set
will only improve up to a certain point, where the network starts to
overfit the training data. At that point, the learning algorithm is termi-
nated. The models were trained using an NVidia GeForce Titan X GPU.7

4.4.1. Time consuming
Table 4 presents the average time consumed by each approach in

terms of recognition. Since training is not often used, the impact of the
time consumed for this task is not considered in this evaluation.

In light of this, we can observe that the number of objects (digits)
that composing a string does not contribute to a significant increase in
the recognition time for all approaches. The reason for this is that the
network forward has a similar cost irrespective of the number of objects
in the input. It is worth mentioning that the time analysis for Aly and
Mohamed (2019) is not reported once the code is not released.

5. Experiments

We designed a set of experiments on five different benchmarks to
allow a better comparison of the different approaches. Firstly, we used
the challenging Touching Pairs (TP) dataset (Section 5.1), which con-
tains different touching pairs styles. Then, we focus on the Synthetic
Touching Strings dataset (Section 5.2) to evaluate the limits of each
approach in a hard task, i.e., one using strings with up to four touching
digits. The third dataset (Section 5.3) is a well-known NIST-SD19
composed of 11,585 strings ranging from 2 to 6 digits. The fourth
benchmark was built for the ICFHR 2014 HDSR challenge (Section 5.4),
which contains two different datasets. Finally, we present an experiment
with very long strings to emphasize the power of the object-detection
approach.

Fig. 20. Missed predictions of CRNN for NIST dataset: (a) ‘9428’ as ‘94728’ and (b) ‘2956’ as ‘29576’ representing over-segmentation errors (length), and (c) ‘1206’
as ’1706‘ and (d) ‘7554’ as ‘7594’ representing misclassification.

Fig. 21. Missed detections of RetinaNet for NIST dataset: (a) ‘5021’ as ‘502’ , (b) ‘889’ as ‘88’, (c) ‘600’ as ‘6000’ and (d) ‘74973’ as ‘749073’.

6 All the synthetic data is available upon request for research purposes at
https://web.inf.ufpr.br/vri/databases-software/touching-digits/.

7 All trained classifiers are available for research purposes at https://web.inf.
ufpr.br/vri/databases-software/touching-digits/.

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

12

5.1. TP dataset

The TP dataset contains 79,464 samples of touching digits and it was
proposed in Ribas et al. (2013) as a benchmark for segmentation algo-
rithms. The authors were interested in evaluating when the segmenta-
tion cuts may produce a correct segmentation no matter how many cuts
were produced. The solution in these situations is straightforward for
approaches that produce only one cut: if the resulting components (after
classification) match the ground-truth, the segmentation is deemed
correct. However, for approaches that produce multiple cuts, the seg-
mentation is only deemed correct, if there are at least two correct digits
among hypotheses.

For this experiment, we assume a correct segmentation when the
model provides the correct number of digits/objects and classes.
Otherwise, there is an error. Two sources of errors are possible: a wrong
estimation of the string length or its misclassification. Table 5 compares
the results of the end-to-end approaches with both segmentation-based
and segmentation-free algorithms. It should be mentioned that all the
works presented in Table 5 use the same testing set proposed in Ribas
et al. (2013). The training sets for both the segmentation-based and the
segmentation-free algorithms used isolated digits extracted from NIST
SD19. However, they differ in that all segmentation-based approaches
use isolated digits to train single-digit classifiers while the segmentation-
free ones use the strings of digits described in Table 3. Table 5 also il-
lustrates the performance according to the connection types depicted in
Fig. 8.

5.1.1. Discussion
Algorithms based on a single segmentation hypothesis (segmentation

cuts = 1) usually fail in more complex touching cases (e.g., type V) since
just one segmentation cut is often not enough to correctly split the digits.
On the other hand, algorithms based on multiple cuts, such as Chen and
Wang (2000) and Gattal and Chibani (2015), find the correct segmen-
tation but at a high computational cost, which makes them impractical
for real applications.

Yolo compares to Hochuli et al. (2018) in terms of classification for
most types of connections depicted in Fig. 8, except on Type V. In this
case, the task-specific classifier trained on touching pairs performs
better since it can cope with highly slanted images better. This is related
to the limitations of Yolo, as reported by Redmon et al. (2016). Yolo
imposes strong spatial constraints on bounding box predictions since
each grid cell only predicts two boxes and can only have one class. This
spatial constraint limits the number of nearby objects that the model can
predict. In our case, we observed this phenomenon in Fig. 9d.

CRNN and RetinaNet, on the other hand, performed quite poorly
with performances even worse than those of several segmentation-based
algorithms. One of the bottlenecks of the CRNN is that the local
perspective of the problem given by each receptive field, or by a sub-
sequence, may represent a digit fragment. In this case, a fragment of a
digit taken out of context can be easily misclassified with high proba-
bility when its shape is somewhat similar to that of a digit. This issue is
quite similar to the over-segmentation strategy implemented by
segmentation-based approaches. Considering that there is no lexicon or
post-processing method, the transcription layer may collapse by missed
predictions. The worst performance is seen in complex cases, i.e., type V,
where the neighborhood of digits is severely affected because it has
more overlapping than other types. In analyzing the errors, we observe
that most of these complex cases could be solved using contextual in-
formation, which, unfortunately, is not available in most applications of
HDSR. These cases are depicted in Fig. 10.

RetinaNet also fails to efficiently encode the neighborhood of digits,
which explains the model collapse on hard overlapped digits (Type V). It
should however, be noted that it performs well in easy cases, such as
Type III. Moreover, pairs featuring the digit “1” produce more missed
detections if their aspect ratio are significantly different from those of
the other classes. Fig. 11 illustrates some of these problems. Ta

bl
e

8
Co

m
pa

ri
so

n
of

 th
e

re
co

gn
iti

on
 r

at
es

 o
n

N
IS

T
SD

19
.

Le
ng

th

Sa
m

pl
es

Re

tin
aN

et

CR
N

N

Br
itt

o-
Jr

et

 a
l.

(2
00

3)

O
liv

ei
ra

 e
t a

l.
(2

00
2)

O

liv
ei

ra
 a

nd

Sa
bo

ur
in

 (
20

04
)

Sa
dr

i e
t a

l.
(2

00
7)

*S

ad
ri

 e
t a

l.
(2

00
7)

G

at
ta

l e
t a

l.
(2

01
7)

H

oc
hu

li
et

 a
l.

(2
01

8)

A
ly

 a
nd

M

oh
am

ed
 (2

01
9)

Yo

lo

Sa
m

pl
es

Li

u
et

 a
l.

(2
00

4)

Ci
re

sa
n

(2
00

8)

2
23

70

85
.3

70

.3

94
.8

96

.8

97
.6

95

.5

98
.9

99

.0

97
.6

98

.8

98
.6

3
23

85

81
.5

84

.4

91
.6

95

.3

96
.2

91

.4

97
.2

97

.3

96
.2

96

.4

97
.6

14

76

96
.8

93

.4

4
23

45

75
.7

86

.8

91
.3

93

.3

94
.2

91

.0

96
.1

96

.5

94
.6

95

.0

97
.1

5
23

16

68
.5

83

.8

88
.3

92

.4

94
.0

88

.0

95
.8

95

.9

94
.1

95

.4

96
.5

6
21

69

65
.7

76

.3

89
.0

93

.1

93
.8

88

.6

96
.1

96

.6

93
.3

95

.0

95
.8

14

71

96
.7

A
ve

ra
ge

75

.3

80
.3

91

.0

94
.2

95

.2

90
.9

96

.8

97
.1

95

.2

96
.1

97

.1

96
.7

93

.4

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

13

5.2. Touching strings dataset

This goal of this experiment is to illustrate the limits of the evaluated
approaches when dealing with a challenging task, i.e., tasks involving
strings with up to four touching digits (e.g., Fig. 12a). As pointed out
earlier, this is not very often observed in real databases, but it is useful
for assessing the limits of the proposed strategies discussed in this work.
An important point here is that, as we can observe in Fig. 12b, the shape
of the digits may be severely affected the neighbors, which is quite
different from those observed in the isolated digit datasets especially
those in the middle of the string. This is why learning from strings rather
than from isolated digits is important, particularly for approaches that
use contextual information into the learning process.

In this experiment, 570,000 images of isolated digits, 2-, 3-, and 4-
touching digits described in Hochuli et al. (2018) were used. The ac-
curacy of all the strategies employed and the average recognition time
are reported in Table 6. As stated in Section 4.4.1, a more in-depth
analysis of Aly and Mohamed (2019)’s approach is not reported as the
code was not released.

5.2.1. Discussion
As can be observed, the best overall results were achieved by Yolo

followed by the approach proposed in Hochuli et al. (2018). Yolo’s main
advantage is that it has no constraints regarding the number of touching
digits in the string.

Regarding the CRNN, the design of its architecture imposes few
constraints over its performance on digit strings. Since its input size is
fixed, a shorter string has its aspect ratio stretched, which has more
probability of suffering from over-segmentation. Fig. 13d illustrates a
missed prediction of digit ‘2’ as a fragment of digit ‘4’. In such a case,
taking the representation contained in the receptive fields, out of
context, could reasonably leads to a digit ‘2’ being composed. An
extrapolation is possible to the missed predictions of digit ‘1’ in Fig. 13c
and e. Furthermore, in Fig. 13, we can observe the impact of the aspect
ratio and aforementioned over-segmentation.

RetinaNet suffers when encoding the neighborhood of digit. In
Fig. 14a and b the aspect ratio of digits ‘1’ and ‘2’ are quite different

from that of the neighborhood, which then results in a misclassification.
In Fig. 14d, a segment touching misleads the network in the detection of
a digit ‘4’. Moreover, the multi-scale strategy can magnify a fragment
that can be confused with a digit. In such a case, the number ‘9’ was
recognized as ‘0’, which is quite similar to over-segmentation. Fig. 14c
illustrates the problem. The Yolo approach (Fig. 15) successfully over-
comes these issues.

5.3. NIST SD19 strings

Experiments using real-world strings are based on 11,585 numeral
strings extracted from the hsf_7 series and distributed into five classes:
2_digit (2,370), 3_digit (2,385) 4_digit (2,345), 5_digit (2,316), and
6_digit (2,169) strings, respectively. The strings were cropped from
original samples leaving a border of 5 pixels. These data exhibit different
problems, such as touching and fragmentation, and were also used as
test sets in Hochuli et al. (2018), Oliveira et al. (2002), Britto-Jr et al.
(2003), Liu, Sako, and Fujisawa (2004), Oliveira and Sabourin (2004),
Sadri, Suen, and Bui (2007) and Gattal et al. (2017). It is important to
mention that hsf_7 was never used for training.

5.3.1. Discussion
To better compare the approaches, we divided the errors into two

classes: misdetection and misclassification. Table 7 summarizes the re-
sults for this experiment for the approaches.

The Yolo error analysis shows that most detection problems are
related to the digit “1”. The problem occurs when (i) the height of the
image is too small (Fig. 16a), (ii) is too high (Fig. 16b) or (iii) the slant of
the image is big (Fig. 16c). In these cases, the digit “1” is not detected.
Another source of error is the digit “4” (very often related to the digit
“1”). In these cases, the model sometimes detects two objects (“4” and
“1”) in the digit “4” (Fig. 16d) and sometimes just the digit “4” is
detected, missing the digit “1’ (Fig. 16e). Finally, we observed a few
samples behaving similarly to under-segmentation (Fig. 16f) and over-
segmentation (Fig. 16g).

It is worth mentioning that the average misdetection rate was below
1%, and most of the cases featuring broken digits (Figs. 17a–c) and

Table 9
Distribution of Orand-Car and CVL datasets.

Car-A Car-B CVL

Length Train Val Test Train Val Test Train Val Test

2 17 5 36 0 0 0 0 0 0
3 176 28 387 0 0 0 0 0 0
4 633 71 1425 60 3 5 0 0 0
5 819 84 1475 1080 120 69 113 12 789
6 127 18 363 1432 167 1241 683 75 4144
7 27 2 87 127 10 1452 340 39 1765
8 1 1 11 1 0 157 0 0 0
9 0 0 0 0 0 2 0 0 0
10 0 0 0 0 0 0 0 0 0

Total 1800 209 3784 2700 300 2926 1136 126 6698

Fig. 22. Sample data of (a) Car-A, (b) and (c) are samples of Car-B and (d) and (e) are samples of CVL dataset.

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

14

densely connected strings (Fig. 17d), where other approaches show their
limitations, were successfully recognized by the Yolo.

Table 7 shows an average error rate of 2.4%, in which most mis-
classifications is related to handwriting variability. Fig. 18 shows some
common mistakes involving classes “0” and “1”. In these cases, the
handwriting styles are poorly represented in the training set (see
Fig. 19).

In the method based on dynamic selection (Hochuli et al., 2018),
misclassification is the primary source of error, with 1.0% due to length
classifier and 2.9% to digit classifiers. Since most of the connected
components in the NIST SD19 strings are composed of isolated digits, the
1-digit classifier is responsible for most of the connected components
classification.

The detection errors of the CRNN reported in Table 7 occur both in
isolated digits (Fig. 20a) and in the touching digits (Fig. 20b). As
mentioned in Section 4.3, the aspect ratios of shorter and longer strings
are deformed by a fixed input size, which explains the highest error rate
for 2- and 6-digit strings. Performance was severely impacted by
misclassification into all string sizes. Since the handwriting was highly
variable, CRNN did not generalize the representation. This issue is
depicted in Fig. 20c and d, where the digits ‘2’ and ‘5’ were missed.

Finally, Table 7 shows that the bottleneck of RetinaNet is detection,
as it either misdetects or overdetects digits. The former is related to the
shape of digit, while the latter is caused by a multi-scale technique
which allows a fragment of a digit to be magnified to a scale that

represents a digit, with high accuracy. This issue is similar to over-
segmentation. The aforementioned issues are depicted in Fig. 21.

Table 8 compares the recognition rates of several systems reported in
the literature on NIST-SD19. For completeness, we replicate the results
compiled by Hochuli et al. (2018). The works by Britto-Jr et al. (2003),
Oliveira et al. (2002) and Oliveira and Sabourin (2004) use different
segmentation (implicit and explicit) and classification strategies, such as
Hidden Markov Models, Multi-layer Perceptrons and Support Vector
Machines. Except for Liu et al. (2004) and Ciresan (2008), all the works
use the same strings for testing. Regarding the training data, all of them
used isolated digits from NIST SD19. However, the number of digits and
how they are used may vary according to the strategy used in each
system. In the case of the Yolo, RetinaNet, CRNN, and Hochuli et al.
(2018) approaches, the classifiers were trained with the synthetical
strings reported in Table 3, which were built by combining the same
isolated digits.

The work presented by Sadri et al. (2007) is reported in two columns.
The authors proposed a system based on over-segmentation, in which
they used a genetic algorithm to optimize their segmentation algorithm.
As pointed out in Hochuli et al. (2018), the second set of experiments
(marked with an * in Table 8) is somehow biased since the heuristics
were defined using a subset of the testing set. Gattal et al. (2017) also
reported good performance, but evaluating their results is ccomplicated
by the fact that several thresholds used for segmentation appear to be
adjusted on the testing set.

Finally, a straightforward comparison is possible with the
segmentation-free methods proposed in Hochuli et al. (2018) and
recently improved by Aly and Mohamed (2019), which implemented a
different fusion strategy, even while, keeping the pre-processing steps
and specific-task classifiers. As discussed in Section 4, the end-to-end
approaches cuts off all the heuristics used for pre-processing, the need
to train several deep learning models, and the parameter used in the
fusion strategy. Additionally, Yolo improves the average recognition
rate.

Fig. 23. Missed predictions of RetinaNet for ORAND/CVL dataset: (a) ‘134’ as ‘234’ , (b) ‘27477’ as ‘24477’, (c) ‘71148’ as ‘9748’, (d) ‘1800000’ as ‘800000’, (e)
‘62779’ as ‘32279’ and (f) ‘1396829’ as ‘396829’.

Table 10
Comparison of the recognition rates on Orand and CVL datasets (ICFHR 2014
Competition).

Methods CAR-A CAR-B CVL

Tebessa I★ 37.05 26.62 59.30
Tebessa II★ 39.72 27.72 61.23

Hochuli et al. (2018) 50.10 40.20 66.10
Singapore★ 52.30 59.30 50.40
RetinaNet 72.51 69.17 61.06

Pernanbuco★ 78.30 75.43 58.60
Beijing★ 80.73 70.13 85.29
CRNN* 88.01 89.79 26.01

Saabni (2016)★,† 85.80 –
Zhan et al. (2017) 89.75 91.14 2707
Xu et al. (2018) 91.89 93.79 63.03

Yolo 96.20 96.80 84.20

★ Algorithms reported in Diem et al. (2014).
† Unified CAR-A and CAR-B datasets.
* Reported by Zhan et al. (2017).

Table 11
Distribution of CVL dataset in terms of string labels variability.

of Different
Dataset Samples String Labels

Train 1136 10
Test 6698 26

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

15

5.4. ICFHR datasets

The experiment in this case performed on two real-world datasets
built for the ICFHR 2014 challenge on HDSR (Diem et al., 2014).

The ORAND-CAR-2014 consists of digit strings of the courtesy
amount recognition (CAR) field extracted from real bank checks with a
resolution of 200 dpi. Besides the traditional challenges present in
handwriting such as noise, broken digits, and touching, this dataset
presents samples with background and currency symbols such as ‘#’, ‘$’,
dots, commas, and dashes. The CVL Database was collected mostly
amongst students of the Vienna University of Technology, and contains
about 300 writers, female and male alike. The images are delivered with
RGB information and at a resolution of 300 dpi. It includes varying sizes
and writing styles. This database poses new challenges to the community
since it is harder than previously published datasets, especially in terms
of variance in writing style. Table 9 shows the amount of data used for
training and testing in both datasets. Some samples are depicted in
Fig. 22.

Whenever the handwriting styles of these datasets are different from
those of NIST SD19, models already trained using synthetic data provide
unreliable results, since the encoded information is quite different. We
thus trained all models using the data described in Table 9, since it is the
protocol suggested in the ICFHR 2014 competition. We kept the training
parameters unchanged, following that described in Section 4.4. To
provide sufficient information to the object-detection approach, we
annotated the digits bounding-boxes (ground-truths) of each training
sample.8 This laborious task was necessary since most of the samples
have a complex background, noise, and symbols, which are difficult to
reproduce synthetically.

5.4.1. Discussion
Table 10 presents the performances of end-to-end approaches on the

testing set. The performances of all methods are reported on the same
testing datasets (Table 9), which were proposed in the ICFHR 2014
challenge. Zhan et al. (2017) previously implemented the CRNN
approach to these datasets; and we therefore, we just replicated the
results. The worst results were found on the CVL dataset (26.01%).
Besides the unbalanced distribution between the training and testing
sets, a short variety of string labels in the training set (only 10) do not
provide an efficient representation of digit iterations into a sequence.
For example, the sequence pair “98”, which is not available in the
training set, is found in two different strings of the testing set (“120398”,
“662498”). Table 11 shows the poor variation of labels. Since these end-
to-end models must learn the variability introduced by the neighbor-
hood, this lack of samples strongly penalizes such models. Unlike in the
other benchmarks, in which the dynamic selection approach (Hochuli
et al., 2018) performed quite well, it struggled in these experiments,
mostly because of its heuristic-based pre-processing module. Since
ORAND-CAR provides a hard background and currency symbols, the
pre-processing module collapsed when detecting connected compo-
nents. It performed slightly better on the CVL dataset, which has no
significant challenges in background suppression. However, the poor
distribution of the training set penalized the performance of the specific-
task classifiers.

The Yolo and RetinaNet object-based models achieve a performance
close to those reported in Section 5.3, which denote that the network
could encode a hard background. A remarkable performance was ach-
ieved by the Yolo, point to the robustness of the model in encoding
context, noise, and background. The ORAND/CVL dataset also faced
challenges in the form of overlapping digits, handwriting variability,
and different aspect ratios that severely impact the models perfor-
mances. These issues are illustrated in Figs. 23 and 24.

Finally, the main drawback of object-based approaches is the labo-
rious task of data annotation when synthetic samples are not applicable.

5.5. Very large strings

The results show that approaching the HDSR as an object detection/
recognition problem is absolutely feasible. Additionally, it produced
(with Yolo) the most consistent performance for all the benchmarks used
in this study. In this final experiment, our goal is to assess the Yolo on
very large strings.

As mentioned previously, the images were resized to 128 × 256
(height × width) for training. However, since Yolo changes the input size
after every few iterations during training, this network can recognize
testing images of different sizes. The question is how to properly resize
the testing input image to maximize the network’s performance. This is
relevant since the image width may vary considerably according to the
number of digits in the string. A 20-digit string is significantly longer
than a 2-digit string, for example. Resizing both of them to 128 × 256 is

Fig. 24. Missed predictions of Yolo for ORAND/CVL dataset: (a) ‘7630500’ as ‘7030500’ , (b) ‘7204’ as ‘2204’, (c) ‘171448’ as ‘121498’, (d) ‘280634’ as ‘280034 ’
and (e) ‘7062543’ as ‘7002543’.

Table 12
Image input size that maximizes the recognition rate for each string length.

String Average Input Image Recognition
Length String Width Size (IIw) Rate (%)

(Sw) (128× w)

2 75 128 98.6
4 150 256 97.6
6 228 384 97.6
8 306 512 96.4
10 381 640 94.8
12 448 768 94.2
14 524 896 91.0
16 596 1024 90.6
18 666 1152 88.8
20 750 1280 89.6

8 The annotated dataset is available upon request for research purposes at
https://web.inf.ufpr.br/vri/databases-software/touching-digits/.

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

16

not the right choice.
To address this, we experimented on 5,000 strings ranging from 2 to

20 digits, which were synthetically created by concatenating isolated
digits from NIST SD19. For each string length, we tested the input image
width in the following range: [128, 256, 384, 512, 640, 768, 896, 1024,
1152,1280]. The image height was always 128. Table 12 summarizes the
image input size that maximizes the recognition rate for each string
length.

5.5.1. Discussion
From Table 12, we can notice that there is a quasi-linear relation

between the average string width of the testing images9 and the best
input size for the Yolo. In light of this, we propose a rule (Eq. (6)) to
compute the input size width of the Yolo based on the width of the
testing image. Such a rule is used for all experiments reported in this
paper.

IIw =

{
128 for Sw⩽75

Sw × 1.70 otherwise (6)

Fig. 25 shows some examples of 20-digit strings recognized by the
system using the rule above. These corroborate the efficiency of the
adopted resizing strategy and show that the approach can perform well
even for very long strings composed of broken, overlapping, and
different configurations of touching digits.

5.6. Summary of the experiments

Fig. 26 summarizes the performance of the assessed methods on the
different datasets used in this study. As we can see, Yolo achieved
outstanding performance in all scenarios. However, its bottleneck is the
ground-truth annotation when synthetic samples are not feasible.

Even though RetinaNet also implements an object detection
approach, it suffers from the built-in multi-scale strategy (FPN), once a
magnified fragment of digit misleads the model. A similar issue occurs
with CRNN in which the various different receptive fields fragment the
input. These issues are close to the over-segmentation problem faced by
segmentation-based algorithms.

Finally, the segmentation-free approach of Hochuli et al. (2018)
perform well in scenarios where there is no hard background, but, suffer
from handling a complex pipeline composed of heuristic process and
multiple classifiers. We did not add the Aly and Mohamed (2019)
method in this comparison because we had no access to its source code.

6. Conclusion

This paper described end-to-end solutions for HDSR in which the
string of digits is assumed to be composed of objects that can be auto-
matically detected and recognized. To this end, several strategies were
evaluated.

A robust experimental protocol based on numeral string datasets was
defined to validate the proposed methods containing several types of
noise, touching digits, fragmentation, complexes backgrounds, and long
strings. The experimental results show that the object-detection
approach is a feasible end-to-end solution that compares favorably to
the state-of-the-art in HDSR in terms of recognition rates. Also, it
considerably reduces the complexity of the string recognition task and
avoiding heuristic-based methods, special pre-processing, segmentation,
and classifiers devoted to specific-length strings, meaning, no con-
straints related to the string length exist. However, the difficulty posed
by need for data annotation when synthetic samples are not applicable is
the main drawback of this approach.

Conversely, the sequence-to-sequence strategy provides a short
pipeline. No significant efforts related to the annotation of ground-truth
is needed, as in the case with the object-detection based approach.
However, the strategy depends on contextual information, such as a
lexicon, to achieve good results. Thus, its design for handwritten digits
needed to be reviewed.

CRediT authorship contribution statement

Andre G. Hochuli: Conceptualization, Methodology, Software,

Fig. 25. 20-digit strings correctly recognized by the Yolo-based approach.

Fig. 26. Average recognition of approaches per dataset.

9 The number of pixels may vary depending on the image resolution. In this
work, all the images were acquired in 300dpi.

A.G. Hochuli et al.

Expert Systems With Applications 165 (2021) 114196

17

Validation, Investigation, Writing - original draft. Alceu S. Britto Jr:
Conceptualization, Supervision, Writing - review & editing, Funding
acquisition, Resources. David A. Saji: Software, Investigation. José M.
Saavedra: Supervision, Writing - review & editing, Funding acquisition.
Robert Sabourin: Supervision, Writing - review & editing. Luiz S.
Oliveira: Conceptualization, Supervision, Writing - review & editing,
Funding acquisition, Resources.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research was supported by The National Council for Scientific
and Technological Development (CNPq) grants 303252/2018-9 and
306684/2018-2, CAPES (PhD scholarship - Finance Code 001), Fondecyt
Chile (project number 11150945), STIC-Amsud 19-STIC-04 and Arau-
cária Foundation. In addition, we gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan XP GPU used for this
research.

References

Aly, S., & Mohamed, A. (2019). Unknown-length handwritten numeral string recognition
using cascade of pca-svmnet classifiers. IEEE Access, 7, 52024–52034. https://doi.
org/10.1109/ACCESS.2019.2911851

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35,
1798–1828.

Britto-Jr, A., Sabourin, R., Bortolozzi, F., & Suen, C. Y. (2003). The recognition of
handwritten numeral strings using a two-stage HMM-based method. International
Journal on Document Analysis and Recognition, 5, 102–117.

Britto, A. S., Sabourin, R., & Oliveira, L. S. (2014). Dynamic selection of classifiers—a
comprehensive review. Pattern Recognition, 47, 3665–3680.

Casey, R., & Lecolinet, E. (1996). A survey of methods and strategies in character
segmentation. IEEE Transactions on PAMI, 18, 690–706.

Chen, Y. K., & Wang, J. F. (2000). Segmentation of single- or multiple-touching
handwritten numeral string using background and foreground analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22, 1304–1317.

Choi, S., & Oh, I. (1999). A segmentation-free recognition of two touching numerals
using neural networks. In Proc. of 5th international conference on document analysis
and recognition, Bangalore, India (pp. 253–256).

Ciresan, D. (2008). Avoiding segmentation in multi-digit numeral string recognition by
combining single and two-digit classifiers trained without negative examples. In 10th
International symposium on symbolic and numeric algorithms for scientific computing (pp.
225–230).

Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for
image classification. In 2012 IEEE conference on computer vision and pattern
recognition (pp. 3642–3649). https://doi.org/10.1109/CVPR.2012.6248110

Congedo, G., Dimauro, G., Impedovo, S., & Pirlo, G. (1995). Segmentation of numeric
strings. In 3rd International conference on document analysis and recognition (pp.
1038–1041).

Cruz, R. M., Sabourin, R., & Cavalcanti, G. D. (2018). Dynamic classifier selection: Recent
advances and perspectives. Information Fusion, 41, 195–216.

Das, R. S. N., Saha, K. A., & Nasipuri, M. (2016). A multi-objective approach towards cost
effective isolated handwritten Bangla character and digit recognition. Pattern
Recognition, 58, 172–189.

Diem, M., Fiel, S., Kleber, F., Sablatnig, R., Saavedra, J. M., Contreras, D., Barrios, J. M.,
& Oliveira, L. S. (2014). Icfhr 2014 competition on handwritten digit string
recognition in challenging datasets (hdsrc 2014). In 2014 14th International
conference on frontiers in handwriting recognition (pp. 779–784). IEEE.

Divvala, S. K., Hoiem, D., Hays, J. H., Efros, A. A., & Hebert, M. (2009). An empirical
study of context in object detection. In IEEE conference on computer vision and pattern
recognition, 2009. CVPR 2009 (pp. 1271–1278). IEEE.

Dutta, K., Krishnan, P., Mathew, M., & Jawahar, C. V. (2018). Improving cnn-rnn hybrid
networks for handwriting recognition. In 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR) (pp. 80–85). https://doi.org/10.1109/
ICFHR-2018.2018.00023

Elms, A. J., Procter, S., & Illingworth, J. (1998). The advantage of using an hmm-based
approach for faxed word recognition. International Journal of Document Analysis and
Recognition, 18–36.

Elnagar, A., & Alhajj, R. (2003). Segmentation of connected handwritten numeral strings.
Pattern Recognition, 36, 625–634.

Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A discriminatively trained,
multiscale, deformable part model. In IEEE conference on computer vision and pattern
recognition, 2008. CVPR 2008 (pp. 1–8). IEEE.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object
detection with discriminatively trained part-based models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32, 1627–1645.

Fenrich, R., & Krishnamoorthy, S. (1990). Segmenting diverse quality handwritten digit
strings in near real-time. In 5th USPS advanced technology conference (pp. 523–537).

Fujisawa, H., Nakano, Y., & Kurino, K. (1992). Segmentation methods for character
recognition: From segmentation to document structure analysis. Proceedings of IEEE,
80, 1079–1092.

Gattal, A., & Chibani, Y. (2015). SVM-based segmentation-verification of handwritten
connected digits using the oriented sliding window. International Journal of
Computational Intelligence and Applications, 14, 1–17.

Gattal, A., Chibani, Y., & Hadjadji, B. (2017). Segmentation and recognition system for
unknown-length handwritten digit strings. Pattern Analysis and Applications, 20,
307–323.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the 2015 IEEE international conference on
computer vision (ICCV), ICCV ’15 (pp. 1440–1448). Washington, DC, USA: IEEE
Computer Society.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 580–587).

Grother, P. J. (2016). NIST Special Database 19 – Handprinted forms and characters
database. NIST.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G.,
Cai, J., & Shen, T. (2017). Recent advances in convolutional neural networks. Pattern
Recognition.

Hafemann, L. G., Sabourin, R., & Oliveira, L. S. (2017). Learning features for offline
handwritten signature verification using deep convolutional neural networks. Pattern
Recognition, 163–176.

Han, J., Zhang, D., Cheng, G., Liu, N., & Xu, D. (2018). Advanced deep-learning
techniques for salient and category-specific object detection: A survey. IEEE Signal
Processing Magazine, 35, 84–100. https://doi.org/10.1109/MSP.2017.2749125

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In 2017 IEEE
international conference on computer vision (ICCV) (pp. 2980–2988). IEEE.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep
convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 37, 1904–1916.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
770–778).

Hochuli, A. G., Oliveira, L .S., Souza Britto, A. d., & Sabourin, R. (2018). Segmentation-
free approaches for handwritten numeral string recognition. In 2018 International
joint conference on neural networks (IJCNN) (pp. 1–8).

Hochuli, A. G., Oliveira, L. S., Britto, A. S., & Sabourin, R. (2018). Handwritten digit
segmentation: Is it still necessary? Pattern Recognition, 78, 1–11.

Lacerda, E., & Mello, C. A. B. (2013). Segmentation of connected handwritten digits using
self-organizing maps. Expert Systems with Applications, 40, 5867–5877.

Lampert, C. H., Blaschko, M. B., & Hofmann, T. (2008). Beyond sliding windows: Object
localization by efficient subwindow search. In IEEE conference on computer vision and
pattern recognition, 2008. CVPR 2008 (pp. 1–8). IEEE.

Laroca, R., Barroso, V., Diniz, M. A., Gonçalves, G. R., Schwartz, W. R., & Menotti, D.
(2019). Convolutional neural networks for automatic meter reading. Journal of
Electronic Imaging, 28, 1–14. https://doi.org/10.1117/1.JEI.28.1.013023

Laroca, R., Severo, E., Zanlorensi, L. A., Oliveira, L. S., Gonçalves, G. R., Schwartz, W. R.,
& Menotti, D. (2018). A robust real-time automatic license plate recognition based
on the YOLO detector. In International Joint Conference on Neural Networks (IJCNN)
(pp. 1–10). https://doi.org/10.1109/IJCNN.2018.8489629

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of IEEE, 86, 2278–2324.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision (pp.
2980–2988).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., &
Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In D. Fleet,
T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision – ECCV 2014 (pp.
740–755). Cham: Springer International Publishing.

Liu, C.-L., Sako, H., & Fujisawa, H. (2004). Effects of classifier structures and training
regimes on integrated segmentation and recognition of handwritten numeral strings.
IEEE Transactios on Pattern Analysis and Machine Intelligence, 26, 1395–1407.

Matan, O., Burges, J. C., LeCun, Y., & Denker, J. S. (1992). Multi-digit recognition using a
space displacement neural network. In J. E. Moody, S. J. Hanson, & R. L. Lippmann
(Eds.), Advances in neural information processing systems (Vol. 4, pp. 488–495).
Morgan Kaufmann.

Oliveira, L. S., Lethelier, E., Bortolozzi, F., & Sabourin, R. (2000). A new approach to
segment handwritten digits. In Proc. of 7th international workshop on frontiers of
handwriting recognition, Amsterdam, Netherlands (pp. 577–582).

Oliveira, L. S., & Sabourin, R. (2004). Support vector machines for handwritten
numerical string recognition. In 9th International workshop on frontiers in handwriting
recognition (pp. 39–44).

Oliveira, L. S., Sabourin, R., Bortolozzi, F., & Suen, C. Y. (2002). Automatic recognition of
handwritten numerical strings: A recognition and verification strategy. IEEE
Transactions on Pattern Analysis on Machine Intelligence, 24, 1438–1454.

Pal, U., Belaid, A., & Choisy, C. (2003). Touching numeral segmentation using water
reservoir concept. Pattern Recognition Letters, 24, 261–272.

A.G. Hochuli et al.

https://doi.org/10.1109/ACCESS.2019.2911851
https://doi.org/10.1109/ACCESS.2019.2911851
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0010
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0010
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0010
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0015
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0015
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0015
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0020
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0020
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0025
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0025
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0030
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0030
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0030
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0035
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0035
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0035
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0040
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0040
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0040
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0040
https://doi.org/10.1109/CVPR.2012.6248110
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0050
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0050
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0050
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0055
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0055
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0065
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0065
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0065
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0065
https://doi.org/10.1109/ICFHR-2018.2018.00023
https://doi.org/10.1109/ICFHR-2018.2018.00023
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0080
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0080
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0080
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0085
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0085
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0095
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0095
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0095
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0105
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0105
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0105
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0110
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0110
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0110
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0115
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0115
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0115
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0120
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0120
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0120
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0125
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0125
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0125
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0135
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0135
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0135
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0140
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0140
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0140
https://doi.org/10.1109/MSP.2017.2749125
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0150
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0150
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0155
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0155
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0155
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0160
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0160
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0160
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0170
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0170
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0175
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0175
https://doi.org/10.1117/1.JEI.28.1.013023
https://doi.org/10.1109/IJCNN.2018.8489629
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0195
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0195
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0200
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0200
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0200
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0205
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0205
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0205
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0205
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0210
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0210
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0210
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0220
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0220
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0220
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0225
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0225
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0225
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0230
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0230
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0230
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0235
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0235

Expert Systems With Applications 165 (2021) 114196

18

Procter, S., Illingworth, J., & Elms, A. J. (1998). The recognition of handwritten digit
strings of unknown length using hidden Markov models. In Proc. of 14th international
conference pattern recognition (ICPR) (pp. 1515–1517).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 779–788).

Redmon, J., & Farhadi, A. (2017). Yolo9000: Better, faster, stronger. In 2017 IEEE
conference on computer vision and pattern recognition (CVPR) (pp. 6517–6525). IEEE.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. In Proceedings of the 28th international
conference on neural information processing systems – Vol. 1 NIPS’15 (pp. 91–99).
Cambridge, MA, USA: MIT Press.

Ribas, F. C., Oliveira, L. S., Britto, A. S., & Sabourin, R. (2013). Handwritten digit
segmentation: A comparative study. International Journal on Document Analysis and
Recognition, 16, 567–578.

Roy, P., Bhunia, A., Das, A., Dey, P., & Pal, U. (2016). HMM-based Indic handwritten
word recognition using zone segmentation. Pattern Recognition, 60, 1057–1075.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet
large scale visual recognition challenge. International Journal of Computer Vision
(IJCV), 115, 211–252. https://doi.org/10.1007/s11263-015-0816-y

Saabni, R. (2016). Recognizing handwritten single digits and digit strings using deep
architecture of neural networks. In 2016 Third international conference on artificial
intelligence and pattern recognition (AIPR) (pp. 1–6). https://doi.org/10.1109/
ICAIPR.2016.7585206

Sabour, S., Frosst, N., & Hinton, G. (2017). Dynamic routing between capsules. In
Advances in neural information processing systems, 30 (NIPS 2017).

Sadri, J., Suen, C. Y., & Bui, T. D. (2007). A genetic framework using contextual
knowledge for segmentation and recognition of handwritten numeral strings. Pattern
Recognition, 40, 898–919.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45, 2673–2681. https://doi.org/10.1109/
78.650093

Shi, B., Bai, X., & Yao, C. (2017). An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39, 2298–2304. https://doi.org/
10.1109/TPAMI.2016.2646371

Shi, Z., & Govindaraju, V. (1997). Segmentation and recognition of connected
handwritten numeral strings. Pattern Recognition, 30, 1501–1504.

Tamen, Z., Drias, H., & Boughaci, D. (2017). An efficient multiple classifier system for
arabic handwritten words recognition. Pattern Recognition Letters, 93.

Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., & Smeulders, A. W. M. (2013).
Selective search for object recognition. International Journal of Computer Vision, 104,
154–171. https://doi.org/10.1007/s11263-013-0620-5. URL: https://doi.org/
10.1007/s11263-013-0620-5.

Vellasques, E., Oliveira, L. S., Britto, A. S., Koerich, A., & Sabourin, R. (2008). Filtering
segmentation cuts for digit string recognition. Pattern Recognition, 41, 3044–3053.

Voigtlaender, P., Doetsch, P., & Ney, H. (2016). Handwriting recognition with large
multidimensional long short-term memory recurrent neural networks. In 2016 15th
international conference on frontiers in handwriting recognition (ICFHR) (pp. 228–233).
https://doi.org/10.1109/ICFHR.2016.0052

Wang, X., Govindaraju, V., & Srihari, S. N. (2000). Holistic recognition of handwritten
character pairs. Pattern Recognition, 33, 1967–1973.

Wua, Y., Yin, F., & Liu, C. L. (2017). Improving handwritten Chinese text recognition
using neural network language models and convolutional neural network shape
models. Pattern Recognition, 65, 251–264.

Xiao, X., Jin, L., Yang, Y., Yang, W., Sun, J., & Chang, T. (2017). Building fast and
compact convolutional neural networks for offline handwritten Chinese character
recognition. Pattern Recognition, 72–81.

Xu, X., Zhou, J., & Zhang, H. (2018). Screen-rendered text images recognition using a
deep residual network based segmentation-free method. In 2018 24th international
conference on pattern recognition (ICPR) (pp. 2741–2746). https://doi.org/10.1109/
ICPR.2018.8545678

Zhan, H., Wang, Q., & Lu, Y. (2017). Handwritten digit string recognition by combination
of residual network and rnn-ctc. In D. Liu, S. Xie, Y. Li, D. Zhao, & E.-S. M. El-Alfy
(Eds.), Neural information processing (pp. 583–591). Cham: Springer International
Publishing.

Ziyong, F., Zhaoyang, Y., Shuanping, J. L. H., & Jun, S. (2017). Robust shared feature
learning for script and handwritten/machine-printed identification. Pattern
Recognition Letters, 100.

A.G. Hochuli et al.

http://refhub.elsevier.com/S0957-4174(20)30927-1/h0240
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0240
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0240
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0245
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0245
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0245
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0250
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0250
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0255
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0255
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0255
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0255
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0260
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0260
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0260
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0265
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0265
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ICAIPR.2016.7585206
https://doi.org/10.1109/ICAIPR.2016.7585206
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0280
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0280
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0285
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0285
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0285
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/TPAMI.2016.2646371
https://doi.org/10.1109/TPAMI.2016.2646371
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0300
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0300
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0305
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0305
https://doi.org/10.1007/s11263-013-0620-5
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0315
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0315
https://doi.org/10.1109/ICFHR.2016.0052
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0325
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0325
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0335
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0335
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0335
https://doi.org/10.1109/ICPR.2018.8545678
https://doi.org/10.1109/ICPR.2018.8545678
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0345
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0345
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0345
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0345
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0350
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0350
http://refhub.elsevier.com/S0957-4174(20)30927-1/h0350

	A comprehensive comparison of end-to-end approaches for handwritten digit string recognition
	1 Introduction
	2 Related works
	3 Problem statement
	4 End-to-end strategies for HDSR
	4.1 Dynamic selection approaches
	4.2 Object detection approaches
	4.2.1 Network architectures

	4.3 Sequence-to-sequence approach
	4.3.1 Network architecture

	4.4 Training
	4.4.1 Time consuming

	5 Experiments
	5.1 TP dataset
	5.1.1 Discussion

	5.2 Touching strings dataset
	5.2.1 Discussion

	5.3 NIST SD19 strings
	5.3.1 Discussion

	5.4 ICFHR datasets
	5.4.1 Discussion

	5.5 Very large strings
	5.5.1 Discussion

	5.6 Summary of the experiments

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

