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 A B S T R A C T

Dry reforming of biogas (DR) converts methane and carbon dioxide into syngas, offering a sustainable solution 
for hydrogen production and greenhouse gas reduction. This study uses operational data from DR reactor 
sensors to predict process states: Activation, Reaction, and Irregularity. Nine reaction-specific datasets were 
analyzed via 11-fold cross-validation, ensuring test data independence. Machine learning (ML) models — k-
nearest neighbors (KNN), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), and Random 
Forest (RF) — were evaluated, with RF performing best (88.40% accuracy, 89.04% F1-score for Irregularity). 
ML enables efficient monitoring by capturing complex variable relationships and responding to operational 
changes. Explainability analysis (SHAP and PDP) identified key variables, including record count, humidity, 
and pressure. The study provides a robust dataset and methodology for predicting DR states using operational 
data, supporting future research in fault prediction and process optimization. This approach enhances DR 
reactor control, advancing reliable and sustainable hydrogen production.
1. Introduction

Research and development in the field of energy sources that utilize 
renewable fuels and reduce pollutant emissions have progressed signif-
icantly, aiming to advance sustainable energy supply [1]. The use of 
hydrogen (H2) as an energy carrier can provide diversification in the 
energy sector, particularly in the production of heat and electricity. 
It can be produced through various methods such as steam methane 
reforming, dry reforming (DR), partial oxidation, water electrolysis, 
and biomass gasification, each offering different trade-offs in terms of 
efficiency, cost, and environmental impact [2]. H2 also plays a key 
role in decarbonizing the transportation sector — through fuel cell 
vehicles or engines that burn H2 directly or blended with other fuels 
— as well as in industrial processes where it serves as a raw material
[3,4].

Among renewable feedstocks for hydrogen production, biogas stands 
out due to its favorable composition and sustainability profile. Pro-
duced via anaerobic digestion of plant and organic waste, biogas 
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typically contains 50%–75% methane (CH4), 25%–50% carbon dioxide 
(CO2), and small amounts of Nitrogen (N2) and hydrogen sulfide 
(H2S) [5,6]. This composition makes biogas particularly suitable for 
hydrogen production through dry reforming, as it naturally provides 
both CH4 and CO2.

Dry reforming is a catalytic and highly endothermic process that 
typically operates at temperatures between 600 ◦C and 900 ◦C. In this 
reaction, methane and carbon dioxide — both greenhouse gases — 
react to produce hydrogen and carbon monoxide, collectively referred 
to as synthesis gas or syngas [7–9]. This dual greenhouse gas utilization 
gives DR notable environmental relevance.

One of the primary technical challenges in DR is catalyst deacti-
vation due to coke formation, which can block the reactor bed and in-
crease pressure drop. This issue is exacerbated by the presence of excess 
water, which favors undesired side reactions such as methanation—
where CO2 or CO reacts with H2 to regenerate CH4 and H2O [10,11]. 
To minimize coke formation and optimize conversion, it is necessary to 
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 Abbreviation Description  
 ML Machine Learning  
 DR Dry Reforming  
 SVM Support Vector Machine  
 RF Random Forest  
 k-NN k-Nearest Neighbors  
 QDA Quadratic Discriminant Analysis  
 SHAP SHapley Additive exPlanations  
 PDP Partial Dependence Plot  
 ICE Individual Conditional Expectation 
 ANN Artificial Neural Network  
 MLP Multilayer Perceptron  
 RBF Radial Basis Function  
 MWR Minutes Without Records  

control key parameters such as temperature, flow rate, support mate-
rial, and catalyst activation conditions. Recent research has focused on 
developing catalysts that are more resistant to deactivation [11–13].

Given these operational challenges, recent studies have turned to 
advanced modeling techniques to optimize DR performance. Future 
prospects for hydrogen production from biogas highlight promising 
advances, particularly with the integration of artificial intelligence in 
process optimization and predictive modeling. Artificial Intelligence 
offers the potential to accelerate the identification of optimal reaction 
conditions, enable the direct conversion of methane into liquid fuels, 
and improve the efficiency of hybrid systems, such as the integration 
of reforming with Fischer–Tropsch synthesis [14].

Despite these advancements, practical challenges persist in moni-
toring DR processes, especially for small-scale laboratories with lim-
ited access to advanced characterization techniques. Fault diagnosis, 
prognostics, and maintenance of complex systems remain prominent 
research topics [15,16]. Understanding the importance of early fault de-
tection for process optimization, we classified the DR process into three 
states: (i) Catalyst Activation (Activation): Before reaction operations, 
granular catalysts are activated in situ with H2 [17]; (ii) Dry Reforming 
(Reaction): Reforming of CH4 to produce synthesis gas [7,18]; and (iii) 
Irregularity: Includes all situations deviating from the ideal, such as 
gas line clogging due to coke, furnace resistance failures, or preventive 
catalyst maintenance.

The identified states were incorporated into a database previously 
constructed by an operational data collection system of the DR equip-
ment. Part of this system was implemented in a microcontroller, which 
communicates with the meters and transducers and also sends the data 
to a server, where it is stored in a database. In recent studies, the data 
for the DR process used in ML were obtained from a compilation of 
articles containing reactional data from the process [19,20]. Unlike 
previous works that relied on reactional data extracted from published 
articles, this study presents a novel dataset built directly from real-time 
sensor and transducer measurements in a laboratory-scale reforming re-
actor. This enables a practical evaluation of operational states without 
requiring detailed chemical or structural catalyst information.

Our contribution lies not only in the release of a new dataset but 
also in the development and validation of a methodology for detecting 
reactor states based on straightforward operational variables. This ap-
proach makes intelligent monitoring feasible in environments with lim-
ited access to advanced characterization techniques. Differently from 
previous studies focused on catalyst-specific performance metrics or 
synthesis gas composition predictions, our models aim to classify the re-
actor’s operational states (Activation, Reaction, Irregularity) using vari-
ables that are not catalyst-dependent. This enables broader applicability 
across different experimental conditions and catalyst types.

The collected data were analyzed, and through this paper, we 
present a dataset produced from experiments conducted in a reforming 
2 
reactor 1. This work aims to provide a robust dataset and method-
ology to evaluate the predictive power of ML models using straight-
forward operational data, contributing to future studies and practical 
applications such as failure prediction contained in the irregularity 
state.

The application of ML techniques to the collected operational data 
stems from the growing need for more efficient and adaptive moni-
toring and control systems. Traditional approaches to managing DR 
reactors often rely on fixed models or manual oversight, which can 
struggle to address the complex relationships between the variables in-
volved. ML techniques can offer the ability to analyze operational data, 
uncovering patterns and insights that might go unnoticed with con-
ventional methods. By leveraging these capabilities, predictive models 
can improve process efficiency, reduce operational costs, and enhance 
safety by providing early warnings of potential irregularities, such as 
system blockages. Therefore, integrating ML into DR processes aligns 
with the broader goal of advancing sustainable hydrogen production 
through innovative and data-driven technologies.

Additionally, the explainability analysis using SHAP and PDP high-
lighted key variables — such as data count, humidity, and pressure — 
for distinguishing operational states. The Random Forest (RF) model 
relied heavily on these variables to accurately predict Activation, Re-
action, and Irregularity states. The Partial Dependence Plot (PDP) 
revealed a direct correlation between prolonged operation time (data 
count) and Irregularity detection. This analysis elucidated the factors 
driving both correct and misclassified predictions, thereby enhancing 
operational validation.

In summary, this work presents three main contributions: (i) a novel 
dataset collected directly from operational sensors in a laboratory-
scale DR reactor, (ii) a machine learning-based methodology capable 
of classifying operational states using simple and catalyst-independent 
variables, and (iii) a model explainability analysis that clarifies the 
relevance of key features, guiding process monitoring and optimization. 
These aspects represent a practical and accessible advancement com-
pared to existing approaches, particularly for research environments 
with limited analytical infrastructure.

The remainder of this article is organized as follows: Section 2 
provides a review of models and operational data in DR processes. 
Section 3 presents dataset characterization and analysis. Section 4 
discusses experiments and model explainability. Finally, Section 5 con-
cludes the work.

2. Models and operational data in dry reforming processes

Recent advances in modeling DR processes have demonstrated sig-
nificant progress through the integration of ML techniques and exper-
imental data analysis. Bilgiç et al. [21] conducted a comprehensive 
review of Artificial Neural Network (ANN) applications in hydrogen 
production systems, revealing that ANN models achieved superior per-
formance (𝑅2 = 0.95) compared to traditional RSM methods (𝑅2 = 0.87) 
for catalytic reforming optimization.

The kinetic model developed by Nakajima et al. [22] using Lang-
muir-Hinshelwood mechanisms [23,24] successfully simulated fixed-
bed DR reactors under specific conditions (599.85–699.85 ◦C, 0.3–
0.4 L/min flow rates, 1bar pressure, and CH4/CO2 = 1:1 ratio). This 
model accounts for reactant adsorption, syngas formation, and product 
desorption phenomena.

Complementing this approach, Hossain et al. [25], utilized ANN 
models, specifically Multilayer Perceptron (ANN-MLP) and Radial Basis 
Function (ANN-RBF), to predict the H2 yield, CO yield, CH4 conversion, 
and CO conversion in DR processes using NiCaFe2O4 catalysts. The 
input variables for these models included catalyst metal loading (5–15 
wt%), feed ratio (0.4–1.0), reaction temperature (700–800◦ C), and gas 

1 Dataset available at: https://doi.org/10.5281/zenodo.15799058
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composition data, which were obtained through gas chromatography. 
Of the 27 experiments conducted, 70% of the data were used for train-
ing, while the remaining 30% were equally divided between testing and 
validation. The models demonstrated strong predictive performance, 
with coefficients of determination (𝑅2) for the ANN-MLP model of 
0.9726, 0.8597, 0.9638, and 0.9394, and for the ANN-RBF model 
of 0.9218, 0.7759, 0.8307, and 0.7425, for H2 yield, CO yield, CH4
conversion, and CO conversion, respectively.

Recent work by Kumbhat et al. [5] introduced innovative ML ap-
plications for nickel catalyst deactivation prediction during biogas 
reforming. Their RF models achieved mean 𝑅2 = 0.979 in forecasting 
product distributions (H2, CO, CH4, CO2) and conversion rates, surpass-
ing ANN performance across all metrics. The models’ robustness was 
confirmed through validation with unseen experimental data with 𝑅2 >
0.9. Bilgiç et al. [21] noted that ANN models trained with thermody-
namic parameters (CO2/CH4 partial pressures) could indirectly detect 
coke formation — an approach previously demonstrated by Ahmed 
et al. [26] through mass spectrometry analysis of reactor outputs.

For H2/CO ratio optimization, Vellayappan et al. [19] developed a 
CatBoost model analyzing 1,637 data points from 221 studies. SHAP 
value analysis identified temperature and catalyst particle size as crit-
ical control parameters. Similarly, Roh et al. [20] created an inter-
pretable ML framework for catalyst selection, incorporating 6,067 data 
points from 132 publications to predict CH4 conversion based on 
catalyst composition and pretreatment conditions.

While these modeling approaches have advanced DR understand-
ing, Bilgiç et al. [21] identified persistent gaps in real-time catalyst 
deactivation monitoring and renewable process integration. Experi-
mental studies by Schwengber et al. [12] revealed operational chal-
lenges, showing that increased gas flow rates reduce CH4 conversion in 
Ni/Al2O3 systems, while elevated temperatures risk undesirable metha-
nation reactions. Zain and Mohamed [10] additionally demonstrated 
moisture-related catalyst degradation mechanisms in copper-based sys-
tems, emphasizing the need for comprehensive operational parameter 
monitoring.

Current research continues to address these limitations through 
embedded data acquisition systems and advanced ML architectures. 
The collected experimental data and modeling approaches presented in 
subsequent sections aim to bridge these gaps, particularly in predicting 
DR failure modes and identification operational states under variable 
conditions.

3. Dataset description

The methodological path for data collection and analysis progresses 
through the following stages:

1. Data acquisition and selection.
2. Data visualization using scatter plots.
3. Analysis of scatter plots in collaboration with an expert to label 
the operational states of the reaction process.

4. Descriptive statistics of the dataset.
5. Analysis of data dispersion using boxplot [27].
6. Shapiro–Wilk normality test [28,29].
7. Calculation of kurtosis and skewness [30].

The presented dataset consists of 9 reaction processes from DR 
equipment located in the Laboratory of Materials and Renewable En-
ergies (LABMATER). Data collection was conducted between January 
2024 and October 2024 during experiments carried out by laboratory 
researchers. These experiments utilized DR equipment comprising gas 
lines that connect the components of the synthetic biogas reforming 
process, as depicted in Fig.  1.

The dry reforming process operates continuously with the input of 
CH4 and CO2 gases in a 1:1 ratio (1). The input gas is a synthetic 
mixture of biogas, with CO2 and CH4 already in the specified propor-
tion. Initially, the gases are mixed in a gas mixer (2). Then, the gases 
3 
Table 1
Statistics for all datasets include the feature names, their mean, min-
imum, and maximum values, as well as the total number of samples: 
26066.
 Feature Mean Min. Max. 
 Pressure (bar) 0.58 0.34 2.58  
 Reactor temperature (◦C) 707.20 18 806  
 Pre-reactor temperature (◦C) 573.95 20 654  
 Humidity (%) 58.37 12.4 99.0  
 Outlet temperature (◦C) 27.93 22.4 43.4  
 Number data 2187.28 0 7032 
 Label – 0 2  

pass through two heating stages: one in the pre-heating furnace or pre-
reactor(3) at 650◦ C and another in the main furnace or main reactor(4) 
at 800◦ C. Inside the main furnace, a steel reactor (5) contains the gran-
ular catalyst where the reaction process occurs, producing syngas. After 
the reaction, the syngas passes through additional gas lines (6) and is 
monitored for humidity and outlet temperature (d). The equipment also 
includes thermocouples for temperature monitoring (b and c) and a 
pressure transducer (a). For control and safety, there is a safety control 
panel (7). Samples can be collected at the gas outlet for composition 
analysis using a gas chromatograph.

Data collected from the reactor represents operational values
recorded by sensors and transducers controlled by microcontrollers. 
Once the DR reactor is activated, approximately 3 data points per 
minute are automatically recorded, including operating line pressure, 
pre-furnace temperature, furnace temperature, humidity, outlet gas 
temperature, record number, and a label identifying the current op-
erational state of the equipment (Table  1).

During the data collection period, seven datasets were excluded 
due to a lack of main reactor bed heating, indicating equipment main-
tenance. The raw dataset initially contained 16 variables, including 
nine operational variables, three sequential identifiers related to the 
reaction, data collection, and timestamp marking, two alerts for furnace 
resistance failures (which were not triggered), and two redundant 
sensor values. Four operational variables were removed due to missing 
data. The redundant sensors showed no significant variation, and the 
unused alerts were discarded. The identifiers used solely to track or 
index reactions in sequence — functioning essentially as row IDs in 
the DataFrame — were also removed, retaining only the ‘‘number 
data’’ variable to represent the sequential order of records within each 
reaction process and also indicates the duration of the reaction process

The variable ‘‘number data’’ is a sequential numeric identifier as-
signed to each data point collected by the equipment. It represents the 
chronological order of samples recorded during the reaction process, 
effectively serving as a temporal reference. Although it does not cor-
respond to an absolute timestamp, its sequential nature allows for the 
reconstruction of the reaction’s progression over time. This makes it 
particularly useful for analyzing the evolution of operational variables 
throughout each reaction cycle.

3.1. Data per minute and missing values

To better understand the temporal aspect of the records, the number 
of records per minute in the datasets was analyzed, as shown in Table  2.

In Table  2, count represents the number of minutes of available 
data. Some datasets are smaller, while others are larger, depending on 
the duration of reactor usage. The mean column indicates the average 
number of records per minute. Intervals without records (column min) 
indicate system failures, listed as Minutes Without Records (MWR). 
These gaps are attributed to technical issues such as power surges 
or communication failures. However, the average number of records 
per minute across the datasets is approximately 2.5, with the median 
(50%) being 3 in most cases, as well as the 3rd quartile (75%) and 
the maximum, which suggests that, the system collects 3 records per 
minute in the majority of cases.
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Fig. 1. Diagram of the DR reactor system: (1) gas inlet; (2) gas mixer; (3) pre-heating furnace; (4) main furnace; (5) steel reactor; (6) gas outlet; (7) safety control panel. (a) 
pressure transducer; (b and c) thermocouples; (d) outlet humidity and temperature sensor.
Table 2
Statistics for the number of records per minute, including the total count, 
mean, minimum, maximum values, and minutes without records (MWR), 
as well as the first, second, and third most frequent values.
 Count Mean Min MWR 1◦ 2◦ 3◦ Max 
 556 2.51 0 13 2 3 3 3  
 563 2.38 0 31 2 3 3 3  
 511 2.22 0 53 2 2 3 3  
 1846 2.33 0 155 2 3 3 3  
 2223 2.54 0 5 2 3 3 3  
 2766 2.54 0 4 2 3 3 3  
 584 2.54 0 1 2 3 3 3  
 660 2.54 0 1 2 3 3 3  
 815 2.53 1 0 2 3 3 3  

3.2. Labeling of DR process states

Labeling is the process of assigning labels or categories to data 
samples, transforming raw information into structured and useful data 
4 
for building supervised learning models. In supervised learning, labels 
serve as ‘‘truths’’ that guide the model during training, allowing it to 
learn consistent patterns in the data. Each data input must be linked to 
a corresponding label, representing the expected output or behavior, 
which is essential for the model’s accuracy and reliability.

In the context of this work, the operation process was characterized 
by three possible states during a DR reaction. In the dataset, these states 
are numerically represented as 0, 1, and 2:

0. Catalyst activation (Activation): Before the reaction operations, 
the granular catalysts are activated in situ with H2.

1. Dry reforming (Reaction): The process of reforming CH4 to 
produce syngas.

2. Irregularity: Situations that deviate from the expected, such as 
gas line blockage due to coke, furnace resistance failure, or 
preventive catalyst maintenance.

To label the different operational states, scatter plots were created 
for each of the 9 datasets (Fig.  2). The data presented includes Pressure, 
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Fig. 2. Scatter plots for the 9 datasets, with vertical dashed lines separating the different labeled classes, along with the behavior of each variable during an operation.
Reactor Temperature, Pre-Reactor Temperature, Humidity, and Outlet 
Gas Temperature. The data from different datasets were jointly normal-
ized, considering variations in the variables that may occur depending 
on whether irregularities are present or not.

With the collaboration of the experts who operate the equipment, it 
was identified that the activation state is characterized by an increase in 
5 
furnace temperature, humidity, and low pressure with little variation. 
The reaction state, in turn, is marked by the stabilization of furnace 
temperatures, a gradual decrease in humidity, and a slight increase 
in pressure. Small pressure and humidity fluctuations are evident, 
identified as points where gas is collected from the line for analysis. 
Irregularities refer to situations that deviate from this pattern; reactions 
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Table 3
Statistics for the Activation class include feature names, mean, minimum, 
maximum values, and the total samples: 8546.
 Feature Mean Min Max  
 Pressure (bar) 0.39 0.34 0.74  
 Reactor Temperature (◦C) 755.66 20.00 805.00  
 Pre-Reactor Temperature (◦C) 612.51 20.00 654.00  
 Humidity (%) 86.99 16.70 99.00  
 Outlet Temperature (◦C) 27.06 22.90 34.90  
 Number Data 848.96 0.00 5069.00 

Table 4
Statistics for the Reaction class include feature names, mean, minimum, 
maximum values, and the total samples: 9642.
 Feature Mean Min Max  
 Pressure (bar) 0.56 0.34 1.56  
 Reactor Temperature (◦C) 799.15 772.00 806.00  
 Pre-Reactor Temperature (◦C) 649.89 641.00 653.00  
 Humidity (%) 40.07 18.00 91.50  
 Outlet Temperature (◦C) 28.24 24.80 43.40  
 Number Data 1974.73 696.00 5627.00 

Table 5
Statistics for the Irregularity class include feature names, mean, mini-
mum, maximum values, and the total samples: 7878.
 Feature Mean Min Max  
 Pressure (bar) 0.82 0.34 2.58  
 Reactor Temperature (◦C) 542.10 18.00 805.00  
 Pre-Reactor Temperature (◦C) 439.17 21.00 654.00  
 Humidity (%) 49.72 12.40 90.60  
 Outlet Temperature (◦C) 28.49 22.40 36.10  
 Number Data 3899.23 762.00 7032.00 

where the bed became clogged showed a gradual increase in humidity 
and pressure until the reactor was shut down.

The Tables  3, 4, and 5 present the descriptive statistics of the 
variables for the Activation, Reaction, and Irregularity classes, respec-
tively. The analysis of these tables reveals important variations in 
the operational conditions associated with each class. For example, 
in the Irregularity class (Table  5), there is a significant increase in 
the average and maximum pressure values compared to the other 
classes, suggesting that high-pressure conditions may be associated 
with failures or operational deviations, making it a relevant variable 
for system monitoring and control.

For reactor and pre-reactor temperatures, a larger range is observed 
in the Activation and Irregularity classes, with extremely low minimum 
values, indicating heating when the furnace is turned on and cooling 
when turned off. In the Reaction class, temperatures tend to be higher 
and more stable, indicating greater thermal stability during reactions.

Humidity varies significantly across the phases. In the Activation 
class, the average is higher (86.99), while in the Reaction class, the 
average drops to 40.07. This suggests that the activation process occurs 
in a more humid environment, while the reactions require a drier envi-
ronment. In the Irregularity class, the average humidity is intermediate, 
possibly contributing to irregularities or being a consequence of them.

Outlet temperature increases slightly across the phases, with more 
fluctuation in the Reaction class, indicating wider fluctuations during 
reactions and greater stability during irregularities. This highlights the 
stability of the outlet temperature as a relevant factor for avoiding 
irregularities.

The moment when the state changes was identified in the 9 datasets, 
but it is important to note that the transition between states is gradual, 
and the number of records in the transition range is variable, depending 
on the experiment being conducted. To accurately identify this transi-
tion range, new studies including reaction data beyond the scope of this 
work are needed.
6 
Table 6
Skewness and kurtosis values for each variable, combining all 
datasets.
 Feature Skewness Kurtosis 
 Pressure (bar) 2.66 7.25  
 Reactor temperature (◦C) −2.29 3.47  
 Pre-reactor temperature (◦C) −2.25 3.27  
 Humidity (%) 0.01 −1.63  
 Outlet temperature (◦C) 1.09 1.32  
 Number data 0.83 −0.38  

3.3. Analysis of data dispersion using boxplot

The boxplot analysis was conducted to examine variable distri-
butions and identify outliers. This graphical approach provides clear 
visualization of data dispersion, median values, quartiles, and extreme 
values (Fig.  3), essentials for detecting system deviations. Importantly, 
all identified outliers were preserved in our dataset as they correspond 
to genuine physical phenomena in the DR process rather than measure-
ment noise. These abrupt variations reflect critical operational events 
including catalyst activation procedures, system failures, or process 
restart conditions.

The analysis revealed distinct patterns across variables. Reactor and 
pre-reactor temperatures predominantly cluster at high values near 
upper limits, with lower-value outliers corresponding to physically 
meaningful scenarios such as furnace heating/cooling cycles or equip-
ment failures. Pressure measurements show concentration at lower 
levels but include significant high-value outliers representing important 
operational events like sudden pressure surges during coke forma-
tion. Humidity displays relatively stable variation within a 20–100 
range without extreme outliers, indicating its more consistent behavior. 
Outlet temperature primarily ranges between 25–35 with occasional 
higher values marking rare operational conditions, while data count 
distribution shows consistent sampling density between 1000–3500 
records.

This intentional preservation of outliers ensures machine learning 
models capture the complete dynamic range of authentic process be-
havior, including critical transition events between operational states. 
The robust handling of these characteristic data features enhances 
model capability to distinguish normal from atypical operation while 
maintaining the physical significance of all measured process param-
eters. The approach acknowledges that in catalytic reforming pro-
cesses, abrupt variable changes often carry more diagnostic value than 
steady-state measurements for operational state classification.

3.4. Analysis of the normality of the data

The Shapiro–Wilk normality test rejected the hypothesis of normal-
ity for all variables (𝑝 < 0.001 in all cases), even after applying the 
Box–Cox transformation. This indicates that the operational variables 
do not follow a normal distribution. Subsequently, additional analyses 
of skewness and kurtosis were performed to better understand the 
characteristics of these distributions.

Analyzing Table  6, the skewness revealed that pressure exhibits 
strong positive skewness (2.66), while the reactor and pre-reactor 
temperatures show negative skewness (−2.29 and −2.25), indicating 
long tails to the left. The kurtosis for these variables showed high values 
(7.25 for pressure), suggesting more concentrated distributions with 
higher peaks than a normal distribution. In contrast, humidity exhib-
ited a flatter and more symmetric distribution, with negative kurtosis, 
while the output temperature showed a slightly more concentrated 
distribution around the mean values.

These results reinforce the rejection of normality and help to un-
derstand the nature of the variable distributions, which has significant 
implications for the choice of ML models. Parametric models that 
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Fig. 3. Box plots of the variables combining data from all datasets, showing the distribution, median, quartiles, and potential outliers.
assume data normality, such as Linear Regression and Linear Discrimi-
nant Analysis, may be less effective due to the presence of skewed and 
heavy-tailed distributions. Conversely, non-parametric algorithms, such 
as Decision Trees, Random Forests, and Support Vector Machines, may 
be more suitable as they are more robust to non-normality.

4. Analysis of the experiments

This section presents the experimental protocol adopted for con-
ducting the initial experiments, aiming to evaluate the performance 
of various ML models. The importance assigned to the features is also 
discussed, using SHAP values for the model that demonstrated the best 
performance. Finally, an individual analysis is conducted using the 
techniques ICE (Individual Conditional Expectation) and PDP (Partial 
Dependence Plot) to explore the most complex situation identified in 
the analyzed datasets.

4.1. Protocol

To evaluate the performance of machine learning models, the nine 
available datasets were split into different training and testing com-
binations. The main criterion for the split was that a dataset used in 
training should not be used in testing, ensuring independence between 
the sets. Additionally, due to the absence of all three operational 
states (Activation, Reaction, and Irregularity) in some datasets, it was 
necessary to create specific combinations. Pairs of datasets containing 
the Activation and Reaction states or Activation and Irregularity states 
were considered, allowing for a robust analysis even with limited data. 
Table  7 presents these combinations, detailing the training and testing 
sets for each case.

Each combination was identified by a unique code 𝐶𝑛, where 𝑛 is 
a sequential number from 1 to 11, as presented in the first column 
of Table  7. This notation simplifies the reference to combinations 
throughout the study, facilitating comparative analysis between them.

For the ML tests, four different classifiers were selected to test 
the data sample: k-nearest neighbors (KNN), quadratic discriminant 
analysis (QDA), support vector machines (SVM), and random forests 
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Table 7
Different combinations of datasets for training and testing.
 Combinations Training Testing 
 𝐶1 1, 2, 3, 5, 6, 7, 8, 9 4  
 𝐶2 1, 2, 4, 3, 6, 7, 8, 9 5  
 𝐶3 1, 2, 4, 3, 5, 7, 8, 9 6  
 𝐶4 4, 3, 5, 6, 7, 8, 9 1, 2  
 𝐶5 2, 4, 5, 6, 7, 8, 9 1, 3  
 𝐶6 2, 4, 3, 5, 6, 7, 9 1, 8  
 𝐶7 2, 4, 3, 5, 6, 7, 8 1, 9  
 𝐶8 1, 4, 3, 5, 6, 8, 9 7, 2  
 𝐶9 1, 2, 4, 5, 6, 8, 9 7, 3  
 𝐶10 1, 2, 4, 3, 5, 6, 9 7, 8  
 𝐶11 1, 2, 4, 3, 5, 6, 8 7, 9  

(RF) of decision trees. KNN is an instance-based learning method that 
stores all available training data and classifies test samples based on 
a similarity measure, such as Euclidean distance. QDA was chosen 
for this study because it is a parametric model that assumes data 
measurements follow a normal distribution. This model allows for the 
verification of normality assumptions using the Shapiro–Wilk test and 
explores the relationship with other models that also assume normal 
data distribution. Due to this characteristic, QDA is expected to perform 
worse in scenarios where this assumption does not hold adequately. 
SVM, a classification algorithm, constructs a hyperplane in a high-
dimensional space, separating classes with a maximum margin. This 
approach makes SVM particularly suitable for complex classification 
problems. RF, is an ensemble approach that combines multiple decision 
tree predictors. The principle behind ensemble methods is that a group 
of weak learners (in this case, decision trees) can come together to form 
a strong learner. One of the advantages of RF is its ability to handle 
imbalanced data efficiently and its speed in training and classification 
processes.

These classifiers were chosen due to the number of samples in 
the dataset and their different approaches and characteristics, allow-
ing for a comprehensive evaluation of the data sample and a bet-
ter understanding of its behavior and performance under different 
conditions [31].
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Table 8
Default scikit-learn hyperparameters of the classifiers used for train-
ing.
 Model Hyperparameter Default value 
 RF n_estimators 100  
 criterion ‘‘gini’’  
 max_depth None  
 min_samples_split 2  
 min_samples_leaf 1  
 max_features ‘‘sqrt’’  
 bootstrap True  
 QDA reg_param 0.0  
 store_covariance False  
 tol 1e−4  
 SVM C 1.0  
 kernel ‘‘rbf’’  
 degree 3  
 gamma ‘‘scale’’  
 shrinking True  
 tol 1e−3  
 max_iter −1  
 K-NN n_neighbors 5  
 weights ‘‘uniform’’  
 algorithm ‘‘auto’’  
 leaf_size 30  
 p 2  
 metric ‘‘minkowski’’  

Table 9
Accuracy for each combination, with the best model underlined. The 
last row shows the average Accuracy per model across all combinations.
 Combination KNN RF QDA SVM 
 𝐶1 89.4 89.0 83.1 88.1 
 𝐶2 82.8 92.3 77.9 87.5 
 𝐶3 67.2 65.5 76.0 70.1 
 𝐶4 83.2 88.9 73.1 82.0 
 𝐶5 83.8 83.9 59.9 73.8 
 𝐶6 93.3 93.3 88.5 89.6 
 𝐶7 97.8 94.4 72.6 93.9 
 𝐶8 85.9 91.2 75.8 94.7 
 𝐶9 83.1 81.2 71.5 75.3 
 𝐶10 95.3 95.0 92.6 94.5 
 𝐶11 98.7 97.7 78.0 97.6 
 Average 87.3 88.4 77.2 86.1 

All classifiers were used with their default hyperparameters
(Table  8), setting only the random state to 42 to ensure the repro-
ducibility of results. The models were implemented in pipelines along 
with StandardScaler [32], to standardize the data by adjusting them to 
zero mean and unit standard deviation. The experiments and results to 
be presented were carried out using scikit-learn [33] and SHapley Addi-
tive exPlanations (SHAP) [34], open-source machine learning libraries 
in Python.

To evaluate the performance of the models, the chosen metrics are
accuracy and F1 score. While accuracy is commonly used to measure 
the overall correctness of predictions, it can be misleading in the 
presence of class imbalance, as it does not distinguish between types of 
errors. To address this, the F1 score is employed as a complementary 
metric that balances the trade-off between precision and recall.

According to Powers (2020) [35], precision measures the proportion 
of true positives among all predicted positives: 

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(1)

while recall (or sensitivity) measures the proportion of actual positives 
that were correctly identified: 

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

These two metrics often vary inversely, and optimizing one can 
reduce the other. The F1-score, defined as the harmonic mean of 
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Table 10
F1-Score for each combination, with the best model underlined. The last row shows 
the average F1-Score per model across all combinations.
 Combin. Class KNN RF QDA SVM 
 𝐶1 Activation (0) 92.7 93.1 85.2 89.6 
 Reaction (1) 87.3 86.9 83.6 86.5 
 Irregularity (2) 89.9 89.0 81.2 88.8 
 𝐶2 Activation (0) 88.7 93.2 85.9 77.5 
 Reaction (1) 76.6 88.7 77.3 94.8 
 Irregularity (2) 84.2 94.4 75.6 86.4 
 𝐶3 Activation (0) 67.4 63.5 66.2 69.0 
 Reaction (1) 69.0 62.3 85.1 64.1 
 Irregularity (2) 65.9 69.1 71.7 76.5 
 𝐶4 Activation (0) 93.7 92.4 88.2 89.8 
 Reaction (1) 43.4 73.4 38.8 39.7 
 Irregularity (2) 79.0 91.6 58.1 80.2 
 𝐶5 Activation (0) 94.2 93.8 79.6 91.8 
 Reaction (1) 52.4 60.0 23.8 3.1  
 Irregularity (2) 78.7 78.9 52.8 64.3 
 𝐶6 Activation (0) 96.7 96.7 94.6 93.9 
 Reaction (1) 91.0 91.6 87.0 88.6 
 Irregularity (2) 87.7 86.8 71.9 77.7 
 𝐶7 Activation (0) 99.4 97.1 89.5 96.9 
 Reaction (1) 97.4 94.2 64.2 95.1 
 Irregularity (2) 93.8 87.2 47.4 80.2 
 𝐶8 Activation (0) 94.3 92.8 86.5 95.7 
 Reaction (1) 46.4 77.4 43.1 89.3 
 Irregularity (2) 85.5 96.4 71.8 94.8 
 𝐶9 Activation (0) 93.3 93.7 87.1 92.2 
 Reaction (1) 50.7 35.4 32.4 2.4  
 Irregularity (2) 79.6 79.0 65.7 69.4 
 𝐶10 Activation (0) 97.3 95.1 95.2 94.9 
 Reaction (1) 92.8 94.0 94.4 94.2 
 Irregularity (2) 94.0 96.2 83.3 94.2 
 𝐶11 Activation (0) 99.2 97.7 92.2 97.4 
 Reaction (1) 99.0 98.3 70.2 99.3 
 Irregularity (2) 97.2 96.8 60.8 95.0 
 Average Activation (0) 93.0 92.2 87.6 91.7 
 Reaction (1) 77.8 83.0 67.9 79.9 
 Irregularity (2) 84.8 89.0 66.5 83.7 

precision and recall, 

𝐹1 = 2 ⋅ Precision ⋅ RecallPrecision + Recall (3)

provides a more informative evaluation in scenarios where positive 
class detection is critical. Powers (2020) [35] highlights that although 
the F1 score does not account for true negatives, it remains a ro-
bust metric, especially for imbalanced classification problems where 
accuracy alone may fail to represent the model’s effectiveness.

4.2. Results

Tables  9 and 10 presents the accuracy and F1 score of the se-
lected ML models for each of the 11 training and testing combinations 
described earlier.

The results presented in Table  9 indicate that the RF model achieved 
the highest average accuracy (88.4%), standing out as the most con-
sistent across the evaluated combinations. KNN also performed well, 
especially in combinations 𝐶7 and 𝐶11, where it achieved the best 
results, with 97.8% and 98.7%, respectively. These results suggest that 
both models have good generalization capabilities in most evaluated 
scenarios.

Table  10, which presents the F1-scores, reinforces these findings by 
detailing the balance between precision and recall. RF stands out again, 
particularly in the Irregularity class, where it achieved the highest av-
erage F1-score (89.0%), indicating effectiveness in correctly capturing 
the most critical class for the study. In contrast, KNN achieved its 
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Fig. 4. Classification error comparison showing the plots with the predictions of the RF model and the true values for the combinations 𝐶3 and 𝐶11.
best performance in the Activation class, with an average of 92.9%, 
demonstrating strength in scenarios with more well-defined patterns.

Combinations 𝐶3 and 𝐶5 highlight the greatest challenges for all 
models. In the case of 𝐶3, both accuracy and F1-score were low, 
suggesting greater complexity in class separation. In 𝐶5, the low perfor-
mance, especially in the Reaction class, reflects difficulties in capturing 
the nuances of this operational state, possibly due to class imbalance 
or high variability in the data.

Additionally, SVM’s performance in combination 𝐶8 was remarkable 
(94.6% accuracy), corroborated by a high F1-score in the Reaction 
class (89.3%). This suggests that the model can effectively capture 
decision boundaries in specific scenarios, although its overall average 
was behind RF and KNN.

As expected, QDA showed lower performance in both metrics due to 
its sensitivity to the normality assumption. However, its inclusion was 
valuable for highlighting the limitations of parametric models in this 
dataset. These results emphasize the importance of evaluating multiple 
combinations to identify not only the most consistent models but also 
scenarios requiring additional adjustments to the data or models.
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Table 11
Average confusion matrix for the Random Forest model across the 
11 combinations.
 Class 0 1 2  
 Activation (0) 88.01% 7.72% 4.27%  
 Reaction (1) 2.98% 79.42% 17.59%  
 Irregularity (2) 1.59% 5.61% 92.79% 

To better understand the classification behavior of the RF model, 
Table  11 presents the average confusion matrix in proportional terms. 
We do not present the absolute values because there is an imbalance 
between the classes.

As seen in Table  11, the Irregularity class has the highest accuracy 
rate with 92.79%, followed by the Activation class, with 88.01%, and 
finally the Reaction class with 79.42%. This data suggests that the RF 
classifier has greater accuracy in the Inconsistency class, which among 
other things represents a failure in the reforming reaction.
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Table 12
Confusion matrix from Random Forest models, showing the distribution 
of classification errors for the combinations 𝐶3 and 𝐶11 across the three 
classes.
 Combination Class 0 1 2  
 𝐶3 Activation (0) 881 496 518  
 Reaction (1) 0 1575 1411 
 Irregularity (2) 0 0 2152 
 𝐶11 Activation (0) 1586 0 0  
 Reaction (1) 35 1193 7  
 Irregularity (2) 39 0 685  

The false negatives in the Irregularity class are mostly associated 
with the Reaction class (5.61%), likely due to the transition phase from 
the Reaction state to the Irregularity state (the state transition will be 
further explored in Section 4.3). However, there are also cases where 
the transition occurs directly from the Activation state to Irregularity, 
resulting in 1.59% of false negatives. The false positives for the Irreg-
ularity class are predominantly observed during the transition to the 
Inconsistency class, accounting for 17.59% of the examples from the 
Reaction class, i.e., false negatives from Reaction. This indicates that 
during the transition from Reaction to Irregularity, the RF model tends 
to misclassify inputs as Inconsistency. Such behavior is desirable in the 
context of failure prediction, where early warnings are preferable.

Table  12 presents the confusion matrices for combinations 𝐶3 and 
𝐶11, highlighting the distribution of classification errors for the op-
erational states. These results reflect the worst (𝐶3) and best (𝐶11) 
performance scenarios of the RF model, providing a clear view of the 
differences between combinations.

In combination 𝐶3, the errors are more pronounced. In the Reaction 
class, 1411 instances were incorrectly classified as Irregularity, indi-
cating again that the false negatives of the reaction class are mostly 
for irregularity. The Activation class also shows a high number of 
errors, with 496 instances classified as Reaction and 518 as Irregularity. 
However, in this scenario, all instances of the Irregularity class were 
classified correctly, which suggests that in this scenario, the Irregularity 
class overlaps with other classes, i.e., it correctly classifies all instances 
of the irregularity class, but incorrectly indicates this class for instances 
of the reaction and activation classes.

On the other hand, combination 𝐶11 shows much more consistent re-
sults. The Activation class was correctly classified in all 1586 instances, 
while the Reaction and Irregularity classes only showed a few errors, 
with 35 instances of Reaction classified as Activation and 7 as Irregular-
ity. In addition to 39 Irregularities classified as Activation. In Fig.  4, it is 
observed that the errors in combination 𝐶11 occur primarily during the 
transitions between classes. During these transitions, there is a gradual 
variation in the features, making it challenging to differentiate between 
the classes.

These results highlight that the errors observed in combination 
𝐶3 are directly related to specific characteristics of the dataset used. 
In 𝐶3, dataset 6 was tested, characterized by a unique event: the 
regeneration of the catalyst followed by the restart of the DR process. 
This distinct situation between the datasets underscores the importance 
of a detailed analysis of the features (presented in the next section) and 
their influence on the model, as well as the need for adjustments to 
mitigate issues of imbalance in the relevance of the variables.

4.3. Interpretations of ML

To interpret in more detail the impact of predictor variables on the 
performance of the Random Forest (RF) model in the combinations with 
the best and worst performance, we present the SHAP value plots in 
Fig.  5. The SHAP-generated plot precisely displays the distribution of 
SHAP values for each predictor variable, providing an in-depth view 
of how each variable influences the model’s predictions. Each point on 
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the plot represents the impact of a specific observation on the model’s 
prediction, allowing for a granular analysis. The colors, ranging from 
blue (for lower values) to red (for higher values), indicate the magni-
tude of the variable’s value, while the position of each point on the plot 
shows the intensity and direction of the impact that this variable has on 
the model’s decision. This methodology is crucial as it allows not only 
the evaluation of the relative importance of variables, but also a clear 
and objective understanding of how these variables shape the model’s 
predictions, offering a detailed explanation of the model’s behavior in 
relation to different inputs and experimental conditions.

The variable number data stands out as the most relevant in both 
the best and worst-performing scenarios. This behavior highlights the 
hypothesis that operational time plays together with the other variables 
a key role in classifying operational states.

In the best-performing combination, we observe that secondary 
variables such as humidity and pressure also have a significant 
impact, contributing to the model’s robustness. This diversity of in-
fluences reinforces the model’s ability to capture multiple aspects of 
the experimental conditions, reflecting its capacity to consider a wider 
range of operational characteristics. The balance in the importance of 
variables, which does not overly rely on a single factor, is crucial to 
ensuring correct classification of the operational states, demonstrating 
the model’s ability to understand the complexities associated with the 
data and experimental context.

On the other hand, in the worst-performing combination, the dom-
inance of the variable number data over the others severely com-
promised the model’s performance. This excessive focus on a single 
variable seems to limit the model’s ability to generalize to more com-
plex scenarios, as observed in dataset 6 (Fig.  2), where the reaction 
process is restarted after a long operational period. This over-reliance 
may be a reflection of the model’s inability to explore other important 
variables, leading to inadequate and less accurate classifications.

To understand the poor performance in combination 𝐶3, Fig.  6 
presents the ICE and PDP graphs, addressing all features in the clas-
sification of the Irregularity class (class 2). The choice of the class 
with the highest number of false negatives is key, as it allows for a 
focused analysis of the model’s behavior and its sensitivity to varia-
tions in these features while keeping others constant. This analysis, by 
exploring interactions between variables, offers a deeper understanding 
of the reasons behind the model’s poor performance, connecting with 
previous observations and identifying potential limitations of the model 
in detecting the Irregularity class.

The variable number data, which was identified as the most 
important according to the SHAP method, shows, through the ICE plots, 
a considerable impact, especially in specific value intervals (above 
2500, as shown in Fig.  6), where the probability of classification as 
Irregularity increases drastically. This suggests a possible temporal as-
sociation with irregularities, where longer reaction times may correlate 
with operational failures or disturbances. However, the high sensitivity 
of this variable may also explain the difficulty in distinguishing Irregu-
larity from other classes. This phenomenon is reflected in the confusion 
matrix, where 1411 samples from the Reaction class were incorrectly 
classified as Irregularity. This finding raises the hypothesis that the 
model is capturing superficial patterns related to number data, but 
it fails to generalize to more complex and varied contexts.

The variable pressure, which ranks second in importance, ex-
hibits an interesting nonlinear behavior in the ICE plots. Its influence 
becomes more pronounced in intermediate value ranges, where the 
probability of Irregularity increases. This pattern can be interpreted as 
a reflection of operational instability, a characteristic of the Irregularity 
class, which may be associated with risks of clogging or failure within 
systems. In operational reality, elevated pressure is often a sign that the 
system is nearing a critical point, where increased pressure indicates an 
impending failure, often linked to material buildup or obstructions in 
the flow.
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Fig. 5. SHAP graphs showing the importance and impact of variables in the RF models with 𝐶3 and 𝐶11 combinations.
The variable humidity shows an intriguing pattern in the ICE 
plots, with a more pronounced impact at intermediate levels. This 
suggests that humidity may be associated with specific scenarios where 
irregularities are more likely to occur, indicating a correlation between 
these two factors. However, the individual variations in the ICE plots 
reveal that the model may be responding to specific sample fluctu-
ations, contributing to classification errors between Activation and 
Irregularity, both of which are often associated with high humidity 
levels.

In contrast, the variables reactor temperature and pre-
reactor temperature exhibit a more stable behavior and have 
minimal influence on the predictions for the Irregularity class. This 
stability reflects their low relative importance in the SHAP ranking 
and suggests that these variables capture more general system condi-
tions or characteristics related to other classes, rather than serving as 
distinguishing factors for identifying irregularities in Dataset 6.

As evidenced by the confusion matrix values (Table  12), along with 
the ICE and PDP plots, the model tends to associate prolonged reactions 
with Irregularity states. This results in false predictions of Irregularity 
for Activation and Reaction states during restart moments. Addition-
ally, the low relevance attributed to variables like pre-reactor 
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temperature and reactor temperature highlights the model’s 
difficulty in identifying complementary patterns that would be essential 
for correctly distinguishing operational states.

Therefore, the findings emphasize the need to explore approaches 
that promote a more balanced contribution of the features in the 
model, particularly in scenarios with unique characteristics, such as 
less frequent state transitions. This analysis also highlights the potential 
of fine-tuning input variables to minimize excessive dependencies on 
a single factor, fostering more consistent performance across different 
data combinations and operational conditions.

5. Final considerations

This study demonstrated the feasibility of using basic operational 
data to develop predictive models for biogas dry reforming processes. 
Through comparative evaluation of four machine learning algorithms 
— Random Forest, KNN, SVM, and QDA — the approach showed poten-
tial for classifying operational states (Activation, Reaction, and Irregu-
larity), with Random Forest achieving the best performance (88.40% 
accuracy). However, the analysis revealed model sensitivity to data 
variability, particularly regarding temporal dependence expressed by 
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Fig. 6. ICE and PDP representations for all features with respect to the Irregularity class using the RF model with the 𝐶3 combination.
the number data variable, identified as a predominant factor through 
SHAP and PDP techniques.

The obtained results establish foundations for predictive monitoring 
systems in laboratory settings, yet highlight the need for improvements 
in complex operational scenarios. The explainability analysis demon-
strated that strong correlation with temporal variables may compro-
mise model generalization capability, suggesting the need for strategies 
incorporating additional process features.

Looking ahead, future research will focus on:

• Reducing variable dependencies and improving model accuracy 
in extreme operating conditions through advanced feature engi-
neering and hybrid modeling approaches;

• Investigating state transition dynamics using time-series analy-
sis and unsupervised learning to enhance phase-specific perfor-
mance;

• Incorporation of reaction volumetrics (inlet/outlet molar flows of 
CH4 and CO2, where available) as additional parameters;

• Developing efficiency metrics derived from volumetric and ki-
netic data to refine real-time process optimization;

• Reproducing the state labeling approach in pilot-scale experi-
ments will be critical to validate the model’s industrial applica-
bility and robustness under scaled-up conditions.

This comprehensive approach will enable more precise monitoring 
and optimization of dry reforming processes across various operational 
conditions.
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