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 a b s t r a c t

Open set recognition addresses the problem of classifying instances where the model must not only recognize 
and classify examples from known classes, but also handle unknown classes not present in the training set. Unlike 
traditional classifiers, which assume only samples from known classes appear during testing, OSR must detect 
and manage instances beyond the scope of the training classes. In this paper, we propose a novel approach that 
combines dissimilarity-based representation with task-specific metric learning in an end-to-end framework. Dis-
similarity representation is an alternative to the traditional feature space representation that represents samples 
based on their differences. By adaptively learning a dissimilarity function specific to the task, our method im-
proves the ability to distinguish between known and unknown classes. We evaluate the proposed method using 
two popular representation learning techniques, triplet loss and contrastive loss, across multiple experiments: 
standard OSR benchmarks (CIFAR-10 and SVHN), class-scaling scenarios (DTD and FMD), and the Semantic Shift 
Benchmark; our proposal consistently outperforms baseline models in both closed-set accuracy and open-set de-
tection.

1.  Introduction

Open-set Recognition (OSR) addresses a significant challenge in ma-
chine learning: the ability to correctly classify instances from known cat-
egories while also identifying instances from unknown classes that were 
not present during training [1]. Conventional closed-set models assume 
the label set is complete, which is unrealistic in dynamic, real-world 
environments. OSR introduces the concept of open-space risk, which is 
the risk of assigning a confident but incorrect known label to a sample 
that lies far from every known class. The objective is twofold: maximize 
accuracy on the known classes while minimizing false positives in this 
unbounded open region.

Early OSR work attacked the problem from several angles: OpenMax 
replaced the softmax layer with extreme-value-theory calibration [2]; 
class-conditional generative models and adversarial generation sought 
to cover the complement region explicitly [3,4]; flow-based hybrids 
tried to pair likelihoods with distance cues [5]. Despite this diver-
sity, careful ablations have shown that a vanilla convolutional network, 
trained with strong augmentation, a cosine learning-rate schedule, and 
scored by simple maximum logits (MLS), can match or surpass many of 
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these sophisticated proposals [6,7]. The fact that such a tuned baseline 
closes most of the gap underscores that OSR remains unresolved and 
motivates the development of fresh strategies that improve rejection ac-
curacy.

In this paper, we propose a novel approach for OSR based on dis-
similarity [8,9]. The core idea is straightforward: a dissimilarity score 
measures the degree of difference between two samples, and for each 
test image, we first check whether it resembles any of the stored images. 
If all scores are high, the image differs from every known class, and we 
mark it as unknown. If at least one score is low, the image is close to a 
known sample, and we assign the matching class. Our key innovation, 
and the point that distinguishes this work from earlier metric-learning 
systems, is that the dissimilarity function itself is learned end-to-end 
with explicit open-set constraints. Standard deep metric learning op-
timizes an embedding, then relies on a post-hoc threshold or softmax 
head; we instead keep the raw dissimilarities as the test-time statistic 
and shape it during training so that a single, tunable threshold sepa-
rates known and unknown regions.

Dissimilarity can be used in two primary ways for classification [10]: 
dissimilarity space represents each sample by its differences from a set of 
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prototypes, and the dissimilarity vector (dichotomization) creates posi-
tive and negative feature vectors, depending on whether they are from 
the same class or not, by directly computing pairwise differences be-
tween samples and prototypes. In this way, the problem is transformed 
into a binary classification task, which can be a good strategy for prob-
lems with a large number of classes.

Dissimilarity-based models offer several properties that map natu-
rally onto the open-set problem. Because every test sample is repre-
sented by its distances to a fixed set of prototypes, a single threshold on 
the nearest-prototype score yields an immediate decision, giving con-
trol over open-space risk. The same machinery is data-type agnostic; as 
long as a meaningful dissimilarity can be computed, it can accommodate 
graphs, strings, or multimodal descriptors without relying on a feature 
extractor. In addition, adding a new class is trivial; one merely appends 
a few of its samples to the prototype bank and, if desired, trains a new 
detector, making it well-suited to open-world scenarios where the label 
set evolves [1,11].

These advantages come with corresponding challenges. The quality 
of the prototype set is decisive; if prototypes do not adequately cover 
the class manifold, an unknown sample might, by chance, fall closer 
to one of the sparsely placed prototypes than an actual in-class point 
does, resulting in a false acceptance of the unknown sample as a known 
class. Moreover, the dimensionality equals the number of prototypes, 
an overly large bank inflates estimation variance and enlarges the open 
space.

Traditionally, dissimilarity-based classifiers have relied on fixed, 
hand-chosen distance metrics, such as Euclidean distance or cosine sim-
ilarity, to measure the distance between two samples. While simple 
to implement, these static measures cannot always capture complex, 
nonlinear relationships in real data, which can limit their discrimina-
tory power. To overcome this specific shortcoming, we propose a task-
specific metric learning strategy that adaptively learns a dissimilarity 
function tailored to the task at hand. We integrate representation learn-
ing into an end-to-end joint training framework, combining key compo-
nents to enhance feature representation. This approach aims to create a 
feature space where dissimilarities between samples accurately reflect 
their class relationships.

Building upon our previous work, where we explored triplet and 
contrastive dissimilarity in a multiclass scenario [12,13], we now ex-
tend these techniques to open-set recognition. Triplet learning [14] in-
volves minimizing the distance between an anchor and a positive sam-
ple while maximizing the distance to a negative sample. Contrastive 
learning [15,16] focuses on pulling similar pairs together and pushing 
dissimilar pairs apart in the embedding space.

In our experiments, we conducted a comprehensive evaluation of 
our dissimilarity-based approach across three distinct scenarios: i) stan-
dard OSR benchmark datasets, ii) class scaling, where the number of 
unseen classes varies, and iii) the Semantic Shift Benchmark (SSB) [6]. 
First, using the standard benchmark datasets, CIFAR-10 and SVHN, we 
achieved superior performance in both closed-set accuracy and open-set 
recognition compared to baseline models. Second, in the class scaling 
scenario with the DTD and FMD datasets, we achieved similar results, 
consistently outperforming the baseline across different proportions of 
unseen classes; despite not being standard datasets in OSR, they are 
general, challenging, and have been evaluated in many other papers. 
Finally, on the SSB, our approach outperformed the baseline on the Air-
craft dataset, achieved better results in the most challenging settings of 
the Cars dataset, and was less effective on the CUB dataset.

The primary contributions of this paper are as follows:

1. We propose a novel dissimilarity-based representation for open-set 
recognition, incorporating task-specific metric learning to learn dis-
similarity functions that are specifically adapted to the problem do-
main.

2. We develop an end-to-end training framework that integrates rep-
resentation learning and metric learning, enabling the model to op-

timize both feature embeddings and dissimilarity values jointly for 
improved performance.

3. We conduct comprehensive experiments on standard OSR bench-
marks, class scaling scenarios, and the Semantic Shift Benchmark 
to validate the effectiveness of our proposed approach.
The remainder of this paper is organized as follows. Section 2 brings 

the literature review. Section 3 details our proposed method, includ-
ing the representation and metric learning components, dissimilarity 
representation, and open-set recognition strategy. Section 4 describes 
the experimental setup, including datasets, benchmarks, and evaluation 
metrics. Section 5 presents the experimental results and analysis. Fi-
nally, Section 6 concludes the paper and outlines potential directions 
for future research.

2.  Literature review

This section presents a concise review of representation and metric 
learning, dissimilarity-based methods, and open set recognition, which 
lays the foundation for this work.

2.1.  Representation and metric learning

Representation learning and metric learning are closely intertwined 
in modern machine learning, particularly with the advent of deep neural 
networks that can extract meaningful features from raw data [17]. While 
representation learning focuses on capturing the underlying structure 
of data to facilitate tasks such as classification and clustering, metric 
learning enhances this by constructing task-specific distance functions 
that better reflect the relationships within the data [18].

Representation learning and metric learning complement each other 
in modern deep learning. The first turns raw data into informative fea-
tures; the second shapes a task-specific distance so that similar examples 
lie close together while dissimilar ones stay apart [17,18].

Before the deep learning era, traditional distance metrics like Eu-
clidean or cosine similarity were commonly used; however, they may 
not adequately capture complex, non-linear relationships in high-
dimensional spaces. Existing methods on this topic can be broadly classi-
fied into discriminative and generative models. Discriminative methods, 
such as triplet loss [14] and contrastive loss [15], structures the em-
bedding space in a way that similar samples are closer together while 
dissimilar ones are pushed apart. The idea is to estimate features to bet-
ter reflect the inherent similarities and differences among data points, 
which is crucial for tasks like face recognition, person re-identification, 
and image retrieval.

Triplet learning is a prevalent representation learning technique that 
assesses three instances at a time: an anchor, a positive sample (same 
class as the anchor), and a negative sample (from a different class than 
the anchor) [14]. The core idea is to reduce the distance between the 
feature representation of the anchor-positive pair while simultaneously 
increasing the distance for the anchor-negative pair by at least a mar-
gin, typically referred to as alpha. The margin acts as a penalization 
mechanism where the negative sample is closer to the anchor than the 
positive sample, enforcing a separation that ensures the negative sample 
is at least the margin distance further away from the anchor.

Contrastive learning is another popular technique for representation 
learning that has gained significant attention in recent years. Similar 
to triplet learning, its goal is to minimize the distance between similar 
pairs while maximizing the distance between dissimilar pairs. However, 
contrastive learning focuses specifically on pairs of positive and negative 
examples [15,19].

In recent years, contrastive learning has been particularly successful 
in self-supervised learning contexts [16], especially with the introduc-
tion of the SimCLR framework [20]. In these scenarios, there is no need 
to explicitly select negative pairs, as label availability is scarce or even 
non-existent. To address this, novel loss functions, such as the Normal-
ized Temperature-scaled Cross Entropy Loss (NT-Xent loss) [21], have 
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been adapted from the original contrastive loss and have proven highly 
effective.

Generative methods create synthetic samples that are used to esti-
mate the decision boundary between known and unknown classes [22]. 
GAN-based methods have shown promising results, however they often 
have complex architectures and demand high computational resources.

2.2.  Dissimilarity

Dissimilarity-based representations focus on the differences between 
samples rather than their absolute features, offering an alternative per-
spective in feature representation [9]. This approach is particularly ef-
fective when structural differences are highly discriminative, as seen in 
tasks like texture classification and handwriting recognition.

Two main techniques are commonly used in dissimilarity represen-
tation: dissimilarity space and dissimilarity vector [10]. In the dissimi-
larity space method, each sample is represented by its dissimilarities to 
a set of prototypes, embedding the data into a new feature space where 
traditional classifiers can be applied. The dissimilarity vector approach 
constructs feature vectors by directly computing pairwise differences 
between features taken from samples and prototypes, transforming the 
problem into a binary classification task based on whether pairs belong 
to the same class.

Applications of dissimilarity representations span various domains, 
including handwritten digit recognition [8], content-based image re-
trieval [23], bird species identification [24], human pose estimation 
[25], and many more. The integration of deep learning has further ad-
vanced these methods, Nanni et al. [26] combined Siamese networks 
with metric learning to construct a dissimilarity space, achieving state-
of-the-art results across multiple image datasets. In a subsequent study, 
Nanni et al. [27] explored the use of triplet loss and different techniques 
for generating the dissimilarity space, demonstrating improved perfor-
mance over previous approaches. Building upon these advancements, 
our previous works investigated triplet and contrastive dissimilarity in 
multiclass scenarios [12,13].

2.3.  Open set recognition

OSR addresses the challenge of accurately classifying samples from 
known classes while also identifying instances that belong to unknown 
classes. [1]. In many real-world applications, models are likely to en-
counter data that do not fit into any of the trained classes; traditional 
closed-set classifiers, which assume that all possible classes are known 
in advance, misclassify these samples into one of the known classes. Un-
der the open-world assumption, a common categorization of classes is 
[28]:

1. Known known classes (KKC): classes with clearly labeled samples, 
available features, and, possibly, metadata.

2. Known unknown classes (KUC): samples labeled as negative, not nec-
essarily organized into useful classes.

3. Unknown known classes (UKC): classes with no available samples 
for training but available metadata.

4. Unknown unknown classes (UUC): classes with no available samples 
and metadata during training.

Most research in OSR focuses on KKCs and UUCs, with some excep-
tions also incorporating KUCs to train detectors for negative samples. 
UKCs, however, are rarely addressed due to their limited practical oc-
currence and the often marginal utility of metadata distinguishing them 
from UUCs. Following the literature, in this paper, we also restrict our 
scope to classifying KKCs and rejecting UUCs.

Here, current methods are can also be divided into discriminative 
and generative models. Discriminative methods adapt existing classifica-
tion approaches to account for unknown classes. Bendale and Boult [2] 
introduced OpenMax, which extends the SoftMax layer to estimate the 

likelihood of a sample belonging to an unknown class by analyzing the 
activation patterns of known classes. Dhamija et al. [29] developed two 
loss functions to improve handling of unknown classes: the Entropic 
Open-Set loss, which reduces overconfidence by encouraging uniform 
probability distributions for unknown samples, and the Objectosphere 
loss, which restructures the feature space to push known class features 
away from the origin while pulling unknown class features toward it.

Generative approaches estimate the decision boundary between 
known and unknown samples, Neal et al. [3] used generative adver-
sarial network (GAN) to create counterfactual images representing un-
known classes, named Counterfactual Image Generation (OSRCI). Chen 
et al. [4] expanded the previous approach by using Adversarial Recipro-
cal Points Learning, which improves open-set detection by learning re-
ciprocal points that capture the data distribution more effectively. Zhang 
et al. [5] combined flow-based models with discriminative classifiers to 
detect deviations from known data patterns.

However, these methods often involve complex architectures and 
substantial computational resources, which can limit their practicality 
in certain applications. Recently, the need for such complex methods has 
been questioned: Vaze et al. [6] conducted a critical evaluation of exist-
ing OSR techniques and found that a well-trained baseline model, with 
appropriate data augmentation, learning rate schedules, and the use of 
maximum logit scores, can achieve performance comparable to or even 
surpassing that of more complex methods. This finding emphasizes the 
importance of strong baselines and suggests that the OSR challenge re-
mains open, highlighting the need for further research to develop meth-
ods that consistently outperform these baselines across diverse settings.

Evaluating OSR methods requires metrics that capture both the abil-
ity to classify known classes accurately and the detection of unknown 
classes. The Area Under the Receiver Operating Characteristic curve 
(AUROC) is commonly used to measure the capacity to distinguish be-
tween known and unknown classes without relying on a specific decision 
threshold [1]; however, it does not account for closed-set classification 
performance. To fill this gap, Dhamija et al. [29] introduced the Open 
Set Classification Rate (OSCR) by combining the true positive rate for 
known classes with the false positive rate for unknown classes across 
varying thresholds. Recently, Wang et al. [30] proposed OpenAUC, a 
metric that integrates both closed-set accuracy and open-set detection 
into a single measure, providing a more comprehensive evaluation of 
OSR methods.

In response to deployment constraints, several studies have proposed 
solutions to reduce computational footprint. He et al. [31] present De-
coupled OSOD (DOSOD), a YOLO-based detector that replaces heavy-
weight cross-modal attention with a single MLP adaptor, enabling real-
time open-set object detection on embedded computing boards. Feng 
et al. [32] demonstrated that even classical Random Forests can be en-
hanced for OSR by coupling learned distance metrics with extreme-value 
modeling, providing an interpretable and lightweight baseline. Bahavan 
et al. [33] propose SphOR, which models the feature space as a mix-
ture of von Mises-Fisher distributions; this spherical representation is 
both memory-efficient and achieves competitive state-of-the-art perfor-
mance.

3.  Proposed method

We propose a novel approach for open-set recognition based on 
dissimilarity and metric learning. Dissimilarity is defined as the dif-
ferences between samples and can be very useful as an alternative to 
the regular feature space, especially when the structural differences 
are highly discriminative [34]. The concept can be applied at multi-
ple levels; for instance, one could calculate the raw difference between 
the pixels of two images, use a texture descriptor (like Local Binary 
Pattern, LBP) to extract features, and compute the difference between 
the two feature vectors and use it to train a machine-learning model
[24,35].
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Fig. 1. Proposed method overview.

While that approach may suffice for simpler problems, tackling more 
complex imaging challenges may demand a more advanced solution. 
Deep learning offers such a solution by facilitating the extraction and 
learning of more complex features directly from raw data, enabling the 
mapping of raw input images to a feature space where semantically sim-
ilar instances are clustered together while distinct instances are sepa-
rated, named representation learning [17].

We can further extend this approach by combining it with a met-
ric learning strategy that uses the derived representations to estimate 
a task-specific dissimilarity function in an end-to-end manner, training 
all components jointly. We have previously explored and evaluated this 
idea in our earlier works in a multiclass scenario [12,13]; now, we have 
expanded this approach into open-set recognition.

The rationale for our proposal is based on the fact that the dissimilar-
ity approach classifies samples by focusing on their differences, and we 
hypothesize that this characteristic makes it particularly well-suited for 
open set recognition, improving the distinction between known and un-
known classes. Further, by adopting representation and metric learning 
to improve the representation and dissimilarity estimation, we expect 
a much better model that can generalize better, even when facing the 
unknown.

The proposed method comprises three main phases: i) representa-
tion and metric learning, ii) dissimilarity representation, and iii) open 
set recognition. Fig. 1 provides a visual overview of our proposal. Phase 
1 trains two separate deep learning models using triplet and contrastive 
learning to extract useful feature representations (embeddings) while 
simultaneously estimating a dissimilarity function. Phase 2 maps the 
embeddings into a dissimilarity space or vector representation based on 
a selected set of prototypes, forming multiple intermediate representa-
tions that can be used for classification. Each deep model and dissim-
ilarity mapping combination forms a representation, resulting in four 
variants: Triplet Dissimilarity Space (TDS), Triplet Dissimilarity Vector 
(TDV), Contrastive Dissimilarity Space (CDS), and Contrastive Dissim-
ilarity Vector (CDV). Phase 3 trains a standard classifier using the dis-
similarity representation and evaluates both closed- and open-set per-
formance.

3.1.  Representation and metric learning (phase 1)

In this work, we employ two well-known metric learning methods, 
namely triplet and contrastive learning, in separate experiments. The 
model features a CNN backbone, followed by a projection head com-
prising fully connected layers. The projection head takes the element-
wise absolute difference between two embeddings and outputs a learned 
dissimilarity score for the pair. The backbone and projection head are 
trained jointly, so the embeddings and the dissimilarity function are op-
timized together. This differs from classic Siamese or proxy-based metric 
learning, which optimizes an embedding but relies on a fixed norm (e.g., 
Euclidean or cosine) at test time; here, the distance itself is parameter-
ized and becomes the decision used for open-set rejection.

Fig. 2 shows the training workflow for triplet learning, where dis-
similarity scores are computed for anchor-positive and anchor-negative 
pairs, and Fig. 3 shows the workflow for contrastive learning, where all 
pairs in the batch are compared to learn positive-negative dissimilari-
ties.

3.2.  Dissimilarity representation (phase 2)

Dissimilarity representation offers an alternative way to representing 
sample features in a machine learning problem by focusing on the dif-
ferences between samples. There are two main approaches for doing so: 
dissimilarity space and vector [10]. In the dissimilarity space, each sam-
ple is represented by its dissimilarities to a predefined set of prototypes, 
resulting in a matrix where each dimension corresponds to the dissim-
ilarity to a specific prototype. In the dissimilarity vector, each input is 
represented by its differences from a set of prototypes; every combina-
tion of an input and a prototype generates a new sample, which can 
be labeled as either positive or negative depending on their respective 
classes.

The dissimilarity space is the natural choice for closed-set, multi-
class problems in which the label set will not grow: by encoding each 
object as the vector of its distances to a fixed prototype set, it pre-
serves a favorable parameter-to-observation ratio and allowing any off-

Knowledge-Based Systems 327 (2025) 114108 

4 



L. O. Teixeira et al.

Fig. 2. Triplet dissimilarity training schema.

Fig. 3. Contrastive dissimilarity training schema.

the-shelf classifier, provided the prototypes adequately cover the class 
manifold [34]. The dissimilarity vector instead converts every sample-
prototype pair into a same vs. different example, inflating the data set 
and thus compensating for class scarcity; more importantly, produces 
a binary model that generalizes to identities unseen during training, 
a property widely exploited in writer-independent, face- and speaker-
verification, and person-re-identification systems [10,36,37]. Conceptu-
ally, the dissimilarity space captures global geometry, each coordinate 
represents how far apart the sample is from a given prototype, whereas 
the dissimilarity vector learns local margins around each prototype, 
making it more tolerant of overlapping classes but potentially sensitive 
to an excess of negative pairs [38]. Our experiments, therefore, concen-
trate on the dissimilarity vector formulation for its open-set flexibility 
while also reporting the dissimilarity space results for comparison and
completeness.

3.2.1.  Prototype selection
Prototypes are a compact representation of the training data, aim-

ing to reduce dimensionality and decrease memory and computation 
requirements. They can either be selected directly from the training set 
or generated as artificial samples that capture key patterns in the train-
ing data.

Consider 𝑇  as the training set and 𝑅 as the prototype set, there are 
two main strategies to populate 𝑅: selecting actual training samples or 
generating artificial samples. The first chooses actual samples from the 
training set, making the prototypes a subset of the training set (𝑅 ⊆ 𝑇 ), 
ensuring that the prototypes are inherently consistent with the training 
data. The second strategy generates artificial yet representative sam-
ples, potentially making the prototype set disjoint from the training set 
(𝑅 ∩ 𝑇 = ∅), allowing for the creation of more diverse prototypes and 
is particularly advantageous in unbalanced scenarios, as it enables the 
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generation of a balanced prototype set, which would otherwise be con-
strained by the number of samples in the less frequent class.

In this work, we generated the prototypes by applying an unsuper-
vised clustering algorithm to group similar samples into 𝑘 clusters for 
each class, deriving 𝑘 centroids to serve as prototypes. The number of 
prototypes is the number of clusters per class times the number of classes 
in the dataset.

3.2.2.  Dissimilarity space
Assuming the training set 𝑇  with 𝑛 samples and the prototype set 𝑅

with 𝑚 samples. The dissimilarity matrix 𝐷(𝑇 ,𝑅) can be defined as:

𝐷(𝑇 ,𝑅) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜈(𝑥1, 𝑝1) 𝜈(𝑥1, 𝑝2) … 𝜈(𝑥1, 𝑝𝑚)
𝜈(𝑥2, 𝑝1) 𝜈(𝑥2, 𝑝2) … 𝜈(𝑥2, 𝑝𝑚)

⋮ ⋮ ⋱ ⋮
𝜈(𝑥𝑛, 𝑝1) 𝜈(𝑥𝑛, 𝑝2) … 𝜈(𝑥𝑛, 𝑝𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

𝑥𝑖 represents the 𝑖-th training instance, 𝑝𝑗 the 𝑗-th prototype, and 𝜈 the 
estimated dissimilarity function. The resulting matrix 𝐷(𝑇 ,𝑅) can then 
be used to train a standard classification model.

The testing sample can be formulated as follows:
𝐷′(𝑡𝑘, 𝑅) =

[

𝜈(𝑡𝑘, 𝑝1) 𝜈(𝑡𝑘, 𝑝2) … 𝜈(𝑡𝑘, 𝑝𝑚)
]

𝑡𝑘 and 𝑝𝑗 represent the 𝑘-th test instance and the 𝑗-th prototype, respec-
tively. The resulting 𝐷′(𝑡𝑘, 𝑅) vector has the same number of columns as 
𝐷(𝑇 ,𝑅), allowing the use of the previously trained classification model.

3.2.3.  Dissimilarity vector
The dissimilarity vector representation generates samples by taking 

the differences between input features and prototypes, treating each 
input-prototype pair as an independent example. Rather than first ex-
tracting embeddings and then applying a fixed norm, we propose to 
preserve the end-to-end metric-learning pipeline. The main challenge is 
that our proposed dissimilarity function is designed to produce a single 
scalar per input-prototype pair. To improve robustness, we propose gen-
erating 𝑤 small variations of each input, where 𝑤 denotes the number of 
stochastic augmentations drawn per sample, allowing the computation 
of multiple dissimilarity values between the input and a given prototype.

Classical augmentation techniques, such as random crops, flips, color 
jitter, and others, supply the required variants. This multi-view augmen-
tation scheme not only preserves our end-to-end learning, but also im-
proves robustness by capturing local variation around each point, sum-
marizing both geometric and augmentation-induced variability.

Given 𝑥𝑖𝑗 representing the 𝑖-th class and 𝑗-th training sample, 𝑝𝑖𝑘 the 
𝑖-th class and 𝑘-th prototype, and 𝜈 the dissimilarity function. Instead 
of producing a single scalar, we draw 𝑤 stochastic variants of 𝑥𝑖𝑗 us-
ing random augmentations, then for each, pair with the corresponding 
prototype and compute their dissimilarity, forming a vector of 𝑤 dissim-
ilarity values that captures how consistently the sample diverges from 
prototype 𝑝𝑗 under plausible perturbations. The resulting concatenated 
vector 𝜈′(𝑥𝑖𝑗 , 𝑝𝑖𝑘) can be expressed as

𝜈′(𝑥𝑖𝑗 , 𝑝𝑖𝑘) =
[

𝜈(𝑥1𝑖𝑗 , 𝑝𝑖𝑘) 𝜈(𝑥2𝑖𝑗 , 𝑝𝑖𝑘) … 𝜈(𝑥𝑤𝑖𝑗 , 𝑝𝑖𝑘)
]

Each concatenated vector 𝜈′(𝑥𝑖𝑗 , 𝑝𝑖𝑘) is then assigned a binary label: ⊕
if the image and prototype belong to the same class and ⊖ if they come 
from different classes. Considering a task with 𝑛 classes, 𝑚 images per 
class, and 𝑚′ prototypes per class, the positive set is defined as
𝑇⊕ = 𝜈′(𝑥𝑖𝑗 , 𝑝𝑖𝑘) where 𝑖 = 1 to 𝑛, 𝑗 = 1 to 𝑚, 𝑘 = 1 to 𝑚′

and the negative set as
𝑇⊖ = 𝜈′(𝑥𝑖𝑗 , 𝑝𝑘𝑙) where 𝑖, 𝑘 = 1 to 𝑛, 𝑖 ≠ 𝑘, 𝑗 = 1 to 𝑚, 𝑙 = 1 to 𝑚′

A conventional classifier can then be trained on 𝑇 = 𝑇⊕ ∪ 𝑇⊖.
During testing, each input is again augmented 𝑤 times and paired 

with every prototype, generating 𝑖 𝑘 vectors (where 𝑖 denotes the num-
ber of classes and 𝑘 the number of prototypes per class). The classifier 

outputs one probability per vector, representing the likelihood that the 
test image belongs to the prototype’s class. These prototype-level prob-
abilities are consolidated into a single score per class through an aggre-
gation step. Two straightforward options are (i) computing the mean of 
the probabilities for all prototypes in the class or (ii) selecting the maxi-
mum probability among the prototypes of the class. Other pooling rules, 
such as the geometric mean, the median, or a weighted sum, can also 
be applied. After aggregation, the sample is assigned to the class with 
the highest pooled score.

3.3.  Open set recognition (phase 3)

Closed-set recognition is a scenario where a machine learning model 
is trained and tested on a fixed set of classes, with every test sample be-
longing to one of these known classes. Let  denote the input space, and 
 = {𝑦1, 𝑦2,… , 𝑦𝐶} represent the set of 𝐶 known classes. We can formally 
define the training set as train = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊆  ×  and the test set as 
test-closed = {(𝑥𝑖, 𝑦𝑖)}𝑀𝑖=1 ⊆  × . For each test sample 𝑡 ∈ test-closed, the 
model outputs a probability distribution 𝑝(𝑦|𝑡) over the known classes.

The open-set recognition problem is very similar, but it introduces 
the possibility of encountering samples during testing that do not be-
long to any of the known classes. The test set can be defined as 
test-open = {(𝑥𝑖, 𝑦𝑖)}𝑀𝑖=1 ⊆  × ( ∪ ). In this setting, for each test sam-
ple 𝑡 ∈ test-open, the model returns a probability distribution over the 
known classes 𝑝(𝑦|𝑡, 𝑦 ∈ ) and a score (𝑦 ∈ |𝑡) that indicates whether 
the sample belongs to one of the known class, usually referred as open-
set score.

As previously mentioned, many complex methods have been devel-
oped to tackle open-set recognition and estimate the open-set score, 
and it has been shown that a well-trained closed-set classifier can per-
form on par with many of the recent proposals [6]. Thus, we adopted 
a closed-set classifier as our baseline using a traditional training strat-
egy using cross-entropy loss between a one-hot target vector and the 
softmax output 𝑝(𝑦|𝑡). In this way, the probability distribution over the 
known classes is straightforward, and the open-set score can be calcu-
lated using two approaches: i) maximum softmax probability (MSP): 
(𝑦 ∈ |𝑡) = 𝑚𝑎𝑥𝑦∈ 𝑝(𝑦|𝑡); ii) maximum logit score (MLS): (𝑦 ∈ |𝑡) =
𝑚𝑎𝑥𝑦∈ 𝑧(𝑦|𝑡), where 𝑧(𝑦|𝑡) represents the logit output for a known class 
given sample 𝑡 [6]. The logits are the values output by the final layer of a 
deep classifier before softmax, and as such, they are capable of retaining 
more feature magnitude information.

In this work, we also propose the use of dissimilarity values as the 
open-set score. The idea is that the dissimilarity represents the differ-
ence between samples and serves as a reliable indicator of whether a 
sample belongs to a known class. Specifically, we propose the minimum 
dissimilarity score (MDS): (𝑦 ∈ |𝑡) = min𝑧∈{1,…,𝑚} 𝜈(𝑡, 𝑝𝑧) where 𝜈(𝑡, 𝑝𝑧)
represents the dissimilarity between the sample 𝑡 and prototype 𝑝𝑧, and 
𝑚 is the total number of prototypes. This score reflects the smallest dis-
similarity value among all prototypes, indicating the closest match, and 
serves as an excellent proxy for the likelihood of 𝑡 belonging to the 
known class .

Given that we are proposing a metric learning approach to estimate 
a task-specific dissimilarity function, the effectiveness is highly depen-
dent on the loss function used. The triplet dissimilarity loss functions 
as expected, generating smaller values for similar samples while never 
producing negative values. In contrast, our proposed contrastive loss 
skips the cosine similarity, which makes it generate higher values for 
similar samples while also allowing negative values, to ensure proper 
dissimilarity values for the minimum dissimilarity score, we invert the 
contrastive loss.

4.  Experimental setup

In our experiments, following prior research [12,13], we employ a 
standard deep model as a baseline and compare it with our proposed 
methods: triplet and contrastive dissimilarity. The model is trained on 
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a subset of classes, with the remaining classes reserved for evaluation 
as unseen classes. We evaluate performance under three distinct sce-
narios: i) standard OSR benchmark datasets, ii) class scaling, where 
the number of unseen classes varies, and iii) Semantic Shift Benchmark
(SSB).

CIFAR-10 and SVHN serve as the standard object- and digit-
recognition benchmarks. They test whether the model can draw a clear 
boundary between known and unknown classes in small natural im-
ages. DTD and FMD address texture and material recognition under class 
scaling. By withholding varying fractions of classes at evaluation, they 
show how performance changes as the unseen set grows. CUB, Aircraft, 
and Cars form the Semantic-Shift Benchmark (SSB). These fine-grained 
datasets contain many classes that differ only in subtle visual details, 
challenging the model to reject unseen classes whose appearance is close 
to that of known classes. The SSB further divides the unseen classes into 
easy and hard groups, providing a controlled range of semantic distance. 
Together, the three scenarios cover the key challenges in open-set recog-
nition.

All experiments intentionally fix the representational capacity of 
the backbone to isolate algorithmic effects. We train a VGG-32 from 
scratch for the standard benchmarks (CIFAR-10, SVHN) and fine-tune 
ImageNet-1K pre-trained EfficientNet-V2 and ResNet-50 for the class 
scaling and SSB (DTD, FMD, CUB, Cars, Aircraft). Embedding size, in-
put resolution, optimizer, and training recipes are kept constant across 
baselines and proposed methods. Under this controlled setting, the MLS 
baseline computed on the same network is the most informative baseline 
for our context.

Additionally, we provide details on our proposed method, its com-
ponents, and the training and evaluation protocols standard across all 
benchmarks.

4.1.  Standard benchmarks

In the first set of benchmarks, we use popular datasets for OSR: 
CIFAR-10 [39] and SVHN [40]. CIFAR-10 contains a diverse collec-
tion of real-world images representing various animals and vehicles, 
with a total of 60,000 images - 50,000 for training and 10,000 for test-
ing. SVHN contains individual digits extracted from street-view house 
numbers, with a total of 73,257 images for training and 26,032 im-
ages for testing. Both datasets contain ten classes, with images sized at
32×32 pixels.

Training is conducted using six classes, with the remaining four 
classes serving as unseen classes (|𝐶| = 6, |𝑈 | = 4), following a 5-fold 
cross-validation evaluation varying the selection of seen and unseen 
classes.

4.2.  Class scaling benchmark

For the class scaling benchmark, we use two popular texture datasets: 
Describable Textures Dataset (DTD) [41] and Flickr Material Database 
(FMD) [42]. The DTD dataset includes 47 classes of textures based on 
their perceptual properties, containing a diverse range of patterns such 
as striped, dotted, and chequered, with a total of 5640 images. The 
FMD dataset is a collection of various real-world materials, including 
ten classes, such as fabric, glass, metal, wood, and plastic, containing 
1000 images. In both cases, the image sizes are variable, and we stan-
dardize them to 224×224 pixels prior to training.

In this setup, we vary the proportion of classes reserved as unseen 
classes from 10% (|𝐶| = 90%, |𝑈 | = 10%) to 50% (|𝐶| = 50%, |𝑈 | =
50%), for each, we apply a 5-fold cross-validation evaluation varying the 
selection of seen and unseen classes. In the case of DTD, we gradually 
increase the number of unseen classes from approximately 5 (∼ 10%) 
to 23 (∼ 50%) classes; similarly, for FMD, the number of unseen classes 
varies from 1 to 5.

4.3.  Semantic shift benchmark

The last and most crucial experiment leverages the Semantic Shift 
Benchmark (SSB) [6], which is designed explicitly for open-set recogni-
tion and related tasks, focusing on isolating semantic novelty from other 
types of distributional shifts. The SSB suite comprises three fine-grained 
datasets: Caltech: UCSD Birds (CUB) [43], FGVC-Aircraft [44], and Stan-
ford Cars [45]; as well as a large-scale ImageNet benchmark. In all cases, 
we standardize the training and testing samples to 224×224 pixels prior 
to training.

The SSB suite provides specific splits for seen and unseen classes for 
each dataset. Unseen classes are further categorized into three levels of 
difficulty: easy, medium, and hard. The harder the category, the more 
visually and semantically similar it is to a known class. We evaluate our 
methods on both the easy and hard splits across all datasets, merging 
the medium and hard into a single group. The training/testing split used 
is the standard for each dataset, and training samples belonging to an 
unseen class are disregarded; thus, the number of images used in our 
experiments does not match the total number of available images per 
dataset.

In our experiments, we concentrated on the three fine-grained 
datasets: CUB, Aircraft, and Cars. The CUB dataset comprises 11,788 
images spread across 200 bird species classes, of which 100 are known 
classes (with 2997 training images and 2884 test images), and the re-
maining unknown classes are divided into 32 easy classes (915 test im-
ages), 34 medium classes (1,004 test images), and 34 hard classes (991 
test images). The Aircraft dataset consists of 10,200 images across 100 
classes of aircraft variants, of which 50 classes are known (3,332 train-
ing images and 1668 test images), and the unknown classes are further 
split into 20 easy classes (667 test images), 17 medium classes (565 test 
images), and 13 hard classes (433 test images). The Cars dataset includes 
16,185 images spanning 196 car models categorized by make, model, 
and year; 98 are known classes (4,020 training images and 3948 test 
images), with the remaining classified into 76 easy classes (3,170 test 
images) and 22 hard classes (923 test images).

4.4.  Representation and metric learning

The representation component uses a convolutional neural network 
to map raw images to representative embeddings. For the standard 
benchmark, we trained a VGG32 network from scratch. For the class 
scaling and SSB benchmarks, we used EfficientNetV2 with pre-trained 
ImageNet-1K weights. For the SSB benchmark, we also evaluated a pre-
trained ResNet50 to analyze the effect of different network architectures 
on performance.

Since EfficientNetV2 and ResNet50 were pre-trained on ImageNet-
1K, we modified their top layers to suit our tasks. The original classifi-
cation head is replaced by a three-layer fully connected network whose 
widths scale with the target embedding dimension 𝑒: [4𝑒, 2𝑒, 𝑒].

To ensure consistency and facilitate comparison across methods, we 
standardized the embedding size to 128 across all experiments. This 
size matches the dimensionality of the final layer in VGG32. Although 
VGG32 was specifically used only in the standard benchmark, we main-
tained the 128-dimensional embedding size for the class scaling and SSB 
benchmarks as well. The reason for this choice is twofold: i) we aimed 
to keep as many parameters as possible consistent across methods to en-
able a fair comparison; ii) fine-tuning these parameters for each dataset 
would require substantial computational resources due to the large num-
ber of hyperparameters involved.

The projection head, which estimates the task-specific dissimilarity 
function, is another three-layer fully connected block sized [𝑒, 𝑒∕2, 𝑒∕4]. 
The architecture is intentionally kept simple to balance computational 
efficiency while still providing sufficient capacity to model non-linear 
relationships.
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4.5.  Dissimilarity

The first step in the dissimilarity representation is prototype selec-
tion, where prototypes are obtained as the centroids produced by greedy 
K-means++ clustering [46], whose improved initialization typically 
yields higher quality clusters than standard K-means. For the standard 
and class-scaling benchmarks, the number of prototypes was set to 5, 
whereas for SSB, it was set to 20 due to its greater complexity. The op-
timal number of prototypes was determined by holding out 20% of the 
training data as a validation set and selecting the number that maxi-
mized classification accuracy. In one of our previous works, we eval-
uated multiple clustering algorithms and found minimal differences in 
performance, leading us to choose K-means++ for its popularity and 
efficiency [13].

The dissimilarity between samples and prototypes is computed in an 
end-to-end manner through the projection head. For the dissimilarity 
space approach, as previously described, it is straightforward to create 
a matrix representation and apply a standard classifier. In the dissimilar-
ity vector approach, the projection head still outputs a single score for 
every sample-prototype pair, but instead of stochastic augmentations, 
we kept the procedure deliberately simple. For each image, we system-
atically extracted regular patches, consisting of 25 fixed 28 × 28 crops 
on the standard benchmarks and 100 fixed 200 × 200 crops on the class-
scaling and SSB suites, without applying any geometric or photometric 
transformations. To reduce local noise and improve numerical stability, 
we averaged the scores every five crops, reducing the resulting multi-
view dimensionality to 5 for the standard benchmarks and 20 for class-
scaling and SSB.

4.6.  Open set recognition

As previously mentioned, following the standard method in other 
OSR studies, we restrict our scope to classifying known known classes 
(KKCs) and rejecting unknown unknown classes (UUCs).

In the baseline models, we evaluated two strategies for the open-set 
score: Maximum Softmax Probability (MSP) and Maximum Logit Score 
(MLS). In our proposed method, we introduce the Minimum Dissimilar-
ity Score (MDS) as the primary open-set recognition strategy. Addition-
ally, since our dissimilarity-based approaches employ a standard clas-
sifier, we can also estimate the probability of each class and apply the 
MSP strategy.

We report three evaluation metrics: closed-set accuracy, the 
threshold-free Area Under the Receiver Operating Characteristic curve 
(AUROC) for open-set scenarios, and OpenAUC [30]. The AUROC is 
standard practise in the OSR literature, however it has an important 
limitation: it does not take into account the closed-set performance, thus 
the overall performance needs to be evaluated in a separate manner.

OpenAUC is defined as the area under the Open-Set False Positive 
Rate (OFPR) and Conditional True Positive Rate (COTPR) curve. OFPR 
represents the probability that a model misclassifies an open-set sample 
as belonging to one of the known classes, while COTPR denotes the 
probability that a model correctly classifies a known-class sample given 
that it outputs a high confidence score for the correct class. OpenAUC 
thus integrates both closed-set and open-set performance by evaluating 
how well the model ranks open-set samples lower than close-set ones.

4.7.  Training and evaluation protocol

The training protocol for the baseline models follows the protocol 
proposed by Vaze et al. [6] and PyTorch training primitives.1 Training 
was conducted for 600 training epochs, cosine-annealed learning rate 
with warm restarts at epochs 200 and 400, a 20-epoch linear warmup, 

1 https://pytorch.org/blog/how-to-train-state-of-the-art-models-using\
-torchvision-latest-primitives/

SGD with momentum, batch size of 128 for the standard benchmarks 
and 32 for the larger fine-grained sets, and five known/unknown class 
splits.

Key deviations from Vaze et al. [6] are as follows: (i) we omit Ran-
dAugment and rely exclusively on the Albumentations transforms listed 
below; (ii) following the torchvision recipe, we adopt patch training, and 
for the class-scaling and SSB suites initialize from ImageNet-1K weights 
instead of the MoCoV2-Places checkpoint; (iii) all images are resized to 
224 × 224 (rather than 448 × 448) due to hardware constraints. Consid-
ering these departures, especially the lower resolution, we were unable 
to reproduce the exact accuracies reported in the literature and from 
reaching state-of-the-art performance on some datasets. Thus, our anal-
ysis focuses on the relative improvements over a consistently trained 
baseline, which was trained and evaluated under identical conditions as 
our proposal.

Table 1 presents the set of hyperparameters used in our experiments 
for each method. One of our primary concerns was to ensure a fair com-
parison between our proposed methods and the baseline; to do so, we 
maintained consistent hyperparameters whenever possible across dif-
ferent methods. For instance, the VGG32 model employs a single fully 
connected layer with 128 neurons; consequently, we maintained an em-
bedding size of 128 across all benchmarks. The number of iterations 
was set according to the dataset size, ensuring that larger datasets re-
ceived a comparable number of iterations to match the 600 epochs used 
for the baseline model. The hyperparameters were fine-tuned by creat-
ing a validation set from 20% of the training data selected at random. 
The standard benchmark models were trained from scratch, while the 
models for the class scaling and SSB benchmarks were initialized with 
pre-trained weights from ImageNet-1K.

A brief note on optimization difficulties: while SVHN ultimately 
reached competitive accuracy, achieving stable convergence with the 
triplet dissimilarity was particularly troublesome. To mitigate this, we 
first trained for 50 epochs using cross-entropy loss before reverting to 
triplet loss, a warm-start strategy consistent with reports that triplet 
loss is hard to optimize from scratch [14,47,48]. By contrast, CIFAR-
10 trained smoothly with triplet loss alone.

Table 1 
Training and evaluation hyperparameters.
 Method  Parameter  Standard  Class scaling  SSB

Common
 Batch size  128  32  32
 Patch size  28×28  200×200  200×200
 Optimizer  SGD  SGD  SGD

Proposal

 Embedding size  128  128  128
 Temperature 𝜏  0.5  0.5  0.005
 Margin 𝛼  1.0  1.0  2.0
 Iterations  250,000  30,000  40,000
 Top layers warmup iters.  -  1000  1000
 Top layers warmup LR  -  0.01  0.01
 Learning rate  0.01  0.001  0.001

Baseline

 Epochs  600  600  600
 Top layers warmup epochs  -  20  20
 Top layers warmup LR  -  0.1  0.01
 Learning rate  0.1  0.01  0.001

Table 2 
Data augmentation parameters.
 Transformation  Parameters
 Flip  –
 Rotate  Limit = 90
 Random brightness  Limit = 20
 Random contrast  Limit = 20
 Gaussian blur  Limit = (3, 7)
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We used data augmentation techniques during training using the Al-
bumentations library [49], which are listed in Table 2 along with their 
parameters. For SVHN, we turn off flips and restrict rotations to ±30◦
to avoid ambiguities between six and nine. Each transformation was 
applied with a default probability of 50%.

To maintain fairness, we avoided using advanced data augmentation 
techniques, such as RandAugment [50] or ensembling methods, which 
could introduce additional variability and bias in performance evalua-
tion. Instead, our approach focused on standard, well-established aug-
mentation methods and training strategies to provide a consistent basis 
for comparing the proposed methods with the baseline models.

The dissimilarity-based approaches produce a feature representation 
that can be used to train a standard classifier. We chose logistic regres-
sion from the scikit-learn library [46] for its simplicity and effectiveness, 
avoiding more complex classifiers to ensure that the performance gains 
are attributed to our proposed method rather than the complexity of the 
downstream classifier.

5.  Results and discussion

This section presents an extensive empirical analysis of our proposed 
dissimilarity-based approaches on standard OSR benchmarks, class scal-
ing scenarios, and the Semantic Shift Benchmark (SSB). We compare our 
methods: Triplet Dissimilarity Space (TDS), Triplet Dissimilarity Vector 
(TDV), Contrastive Dissimilarity Space (CDS), and Contrastive Dissimi-
larity Vector (CDV); against a baseline model using Maximum Softmax 
Probability (MSP) and Maximum Logit Score (MLS) as open-set scoring 
strategies. The evaluation metrics include closed-set accuracy (Acc𝑘), 
AUROC for open-set detection, and OpenAUC, providing a holistic view 
of both classification performance and open-set recognition capabilities.

Table 3 summarizes the results on the CIFAR-10 and SVHN datasets. 
Our proposed methods consistently outperform the baseline in both 
closed-set accuracy and AUROC for open-set detection; thus, we decided 
to omit OpenAUC in this scenario due to its redundancy.

On the CIFAR-10 dataset, the contrastive dissimilarity methods (CDS 
and CDV) achieved the highest closed-set accuracies, with CDV reaching 
91.4%, surpassing the baseline by 2 percentage points. The AUROC val-
ues for open-set detection also improved significantly, with CDS attain-
ing 78.3% compared to 72.2% for the baseline. For the SVHN dataset, 
CDV achieved the highest closed-set accuracy of 97.3%, outperforming 
the baseline by 3.3 percentage points. The AUROC increased substan-
tially as well, with CDS reaching 94.1%, an improvement of 4.8 per-
centage points over the baseline.

Table 4 presents the results for the class scaling benchmark on the 
DTD and FMD datasets. Our methods consistently outperformed the 
baseline across different proportions of unseen classes. The contrastive 
dissimilarity methods (CDS and CDV) particularly demonstrated supe-
rior performance in both closed-set accuracy and AUROC.

As we increased the proportion of unseen classes in the class scal-
ing benchmarks, our proposed methods maintained robust performance 

Table 3 
Standard benchmark results.

Method
 CIFAR-10  SVHN
 Acc𝑘  AUROC  Acc𝑘  AUROC

Baseline
 MSP

89.4 (2.5)  72.2 (3.6)
94.0 (0.7)  88.1 (1.6)

 MLS  71.2 (3.6)  89.3 (1.6)

TDS
 MSP

89.4 (2.2)  73.8 (2.4)
96.7 (0.6)  91.7 (1.3)

 MDS  69.6 (2.6)  82.5 (7.3)
TDV

 MSP
88.9 (2.5)  75.7 (3.8)

96.1 (0.9)  88.8 (2.8)
 MDS  65.1 (3.4)  80.1 (7.7)

CDS
 MSP

91.3 (1.9)  78.3 (2.4)
97.1 (0.3)  94.1 (0.8)

 MDS  76.4 (2.6)  93.2 (0.8)
CDV

 MSP 91.4 (1.8)  77.4 (2.8) 97.3 (0.3)  93.3 (0.9)
 MDS  76.7 (2.7)  93.0 (0.9)

improvements over the baseline on both datasets. The CDV maintained 
high closed-set accuracy across the splits, starting from 75% accuracy at 
10% unseen classes and progressively increasing to 82% at 50% unseen 
classes. In comparison, the baseline accuracy improved from 69.3% to 
80% over the same range. The AUROC for the contrastive dissimilar-
ity methods consistently surpassed the baseline; at 10% unseen classes, 
CDS and CDV achieved an AUROC of 74.7% and 74.9% compared to 
66.8%, marking an 8.1 percentage points improvement. At 50% unseen 
classes, both CDS and CDV attained an AUROC of approximately 80%, 
11.9 percentage points higher than the baseline.

Similarly, on the FMD dataset, our methods maintained high closed-
set accuracy across all proportions of unseen classes. The TDS method 
achieved accuracies ranging from 86.8% at 10% unseen classes to 
90.1% at 50% unseen classes, consistently outperforming the baseline, 
which ranged from 71.9% to 89.4%. In terms of AUROC, the CDV 
method showed consistent improvements over the baseline. At 10% 

Table 4 
Class scaling benchmark results.

Split Method
 DTD  FMD
 Acc𝑘  AUROC  Acc𝑘  AUROC

10%

Baseline
 MSP

69.3 (1.6)  66.8 (3.6)
71.9 (2.7)  60.2 (3.9)

 MLS  66.5 (3.8)  60.8 (3.4)
TDS

 MSP
69.6 (0.8)  64.5 (2.3) 86.8 (0.7)  70.6 (9.9)

 MDS  73.6 (3.7)  73.1 (8.9)
TDV

 MSP
69.0 (1.4)  70.9 (5)

86.6 (1.1)  71.3 (4.9)
 MDS  73.7 (3.7)  71.9 (8.5)

CDS
 MSP

75.0 (2)  73.5 (4.2)
86.0 (1.7)  72.7 (9.6)

 MDS  74.7 (4.2)  73.8 (11)
CDV

 MSP 75.0 (1.7)  73.7 (4.5)
86.3 (0.9)  72.3 (14.2)

 MDS  74.9 (4)  73.9 (11.8)

20%

Baseline
 MSP

73.6 (0.9)  67.5 (2.4)
86.0 (2.4)  73.9 (2)

 MLS  67.3 (2.4)  73.7 (2.4)
TDS

 MSP
71.8 (1.6)  66.8 (0.9)

88.6 (2.2)  79.7 (1.1)
 MDS  74.7 (3.5)  81.1 (1.3)

TDV
 MSP

71.2 (1.9)  73.6 (3.6) 89.1 (1.9)  78.5 (2.4)
 MDS  74.8 (3.4)  81.4 (1.7)

CDS
 MSP

76.8 (1.4)  74.9 (3.9)
88.0 (1.6)  79.3 (3)

 MDS  76.1 (4)  80.1 (2.7)
CDV

 MSP 77.0 (1.5)  75.0 (4.5)
88.3 (2)  80.1 (2.3)

 MDS  76.3 (4)  80.5 (2.5)

30%

Baseline
 MSP

73.8 (1.8)  68.5 (2.7)
86.9 (1.9)  75 (3.5)

 MLS  68.2 (2.8)  75.2 (3.3)
TDS

 MSP
73.0 (2.2)  68 (1.1)

89.3 (1.8)  79.3 (2.6)
 MDS  75.7 (1)  79.4 (4.5)

TDV
 MSP

72.8 (2.4)  73.3 (1.7) 90.2 (1.2)  78.9 (2.9)
 MDS  75.7 (0.9)  79.7 (4.7)

CDS
 MSP

77.2 (1.6)  75.3 (2.3)
89.7 (3.4)  78 (2.8)

 MDS  77.6 (2.3)  79.1 (2.9)
CDV

 MSP 77.3 (1.7)  75.2 (2.7)
89.4 (3)  79.0 (2.2)

 MDS  77.8 (2.4)  79.4 (3)

40%

Baseline
 MSP

75.1 (1.6)  66.9 (2.7)
75.2 (2.4)  64.4 (2)

 MLS  66.6 (2.9)  64.6 (2.4)
TDS

 MSP
75.5 (2.2)  71.2 (2) 90.3 (1.9)  77.8 (2.3)

 MDS  76.0 (0.8)  79.0 (2.3)
TDV

 MSP
75.1 (2.4)  74 (1.2)

90.1 (2)  77.6 (2.2)
 MDS  76.1 (0.9)  79.6 (2.7)

CDS
 MSP

78.3 (1.8)  74.4 (2)
87.6 (3.4)  76.8 (1)

 MDS  76.3 (1.8)  77.8 (1.1)
CDV

 MSP 79.0 (1.4)  75.0 (1.4)
87.9 (3.2)  76.9 (1)

 MDS  76.2 (2)  78.0 (1.4)

50%

Baseline
 MSP

80.0 (3.6)  68.1 (1.6)
89.4 (4.2)  76.7 (4.1)

 MLS  68.1 (1.7)  76.7 (4.1)
TDS

 MSP
80.0 (2.2)  75.3 (2.6)

90.1 (3.5)  78.9 (5.4)
 MDS  79.1 (1.9)  79.7 (5.6)

TDV
 MSP

80.5 (2.5)  76.5 (2.4) 90.1 (3.8)  77.1 (4)
 MDS  79.2 (2)  80.0 (5.1)

CDS
 MSP

81.8 (2.1)  78.5 (2.7)
88.8 (3)  78.6 (4)

 MDS  80.0 (2.6)  79.6 (4.3)
CDV

 MSP 82.0 (1.9)  78.9 (3.1)
89.1 (3.4)  76.4 (7.2)

 MDS  79.9 (2.6)  79.3 (4.5)
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Table 5 
Semantic shift benchmark results.

Dataset Method
 EffNetV2S  ResNet50
 Acc𝑘  AUROC  OpenAUC  Acc𝑘  AUROC  OpenAUC

CUB

Baseline
 MSP 90.4  88.9/82.1  83.5/78.2

86.9
 86.9/79.1  79.5/73.5

 MLS  89.6/82.2  84.0/78.0  86.8/78.8  79.4/73.0
TDS

 MSP
80.8

 71.3/67.1  62.8/59.4
76.6

 70.9/65.9  60.0/56.2
 MDS  86.2/70.8  73.0/61.7  84.4/70.0  68.8/58.7

TDV
 MSP

81.9
 86.4/71.5  73.5/62.3

78.1
 85.1/71.1  69.6/59.7

 MDS  86.5/70.6  73.4/61.4  83.9/70.0  68.8/58.8
CDS

 MSP
87.7

 86.5/78.9  79.8/74.0
83.3

 78.2/75.5  70.2/68.4
 MDS  87.8/77.5  80.5/72.5  85.1/76.4  75.9/69.9

CDV
 MSP

88.4
 88.0/78.0  81.1/73.2

85.8
 85.5/77.0  77.5/71.3

 MDS  88.1/77.4  81.0/72.5  85.4/76.3  77.4/70.7

Aircraft

Baseline
 MSP

85.9
 86.9/76.9  79.1/71.0

82.7
 81.6/74.8  72.4/67.2

 MLS  88.0/77.3  79.7/71.0  82.4/75.1  72.8/67.1
TDS

 MSP
77.3

 55.5/54.9  49.1/48.4
75.2

 53.7/53.9  46.2/46.2
 MDS  84.9/72.3  69.5/59.8  80.5/73.4  64.6/59.1

TDV
 MSP

75.8
 84.5/71.8  67.5/57.9

73.3
 79.9/73.6  62.1/57.4

 MDS  84.4/71.6  67.3/57.5  80.5/73.8  62.3/57.4
CDS

 MSP
86.3

 84.7/75.0  77.6/69.6
82.0

 70.6/69.7  62.9/62.2
 MDS  86.2/76.3  78.9/70.5  80.8/74.5  71.9/67.3

CDV
 MSP 86.7  86.9/76.9  79.9/71.4

84.2
 80.6/74.4  72.8/68.1

 MDS  87.4/77.4  80.4/71.8  80.5/74.6  72.8/68.1

Cars

Baseline
 MSP

93.6
 90.7/81.8  87.1/78.9

90.4
 89.1/81.1  83.5/76.7

 MLS  90.8/81.6  87.1/78.6  89.3/81.1  83.4/76.5
TDS

 MSP
82.6

 68.7/67.2  61.5/60.1
78.2

 64.5/63.0  55.8/54.6
 MDS  84.0/78.9  73.1/69.2  79.2/74.5  66.4/62.8

TDV
 MSP

82.8
 84.9/80.0  73.5/69.8

78.6
 80.2/75.4  66.6/63.0

 MDS  83.6/78.8  72.4/68.7  79.3/75.2  65.9/62.8
CDS

 MSP
92.5

 87.1/82.2  83.3/79.0
91.6

 88.8/81.2  84.5/77.9
 MDS  89.8/83.7  86.0/80.4  88.6/81.5  84.2/78.1

CDV
 MSP 93.7  90.3/84.4  87.0/81.6

92.2
 88.9/82.1  84.7/78.8

 MDS  90.1/84.2  86.8/81.4  88.5/81.8  84.4/78.6

unseen classes, it achieved an AUROC of 73.9%, compared to 60.8%. 
This performance was sustained as the proportion of unseen classes in-
creased, at 50%, TDS achieved an AUROC of 79.7%, surpassing the 
baseline by approximately 3 percentage points.

On the Semantic Shift Benchmark (SSB), we evaluated our methods 
on three fine-grained datasets: CUB, Aircraft, and Cars, using both Effi-
cientNetV2S and ResNet50 architectures. Table 5 shows our results with 
closed-set accuracy (Acc𝑘), as well as AUROC and OpenAUC metrics for 
open-set detection, reported separately for the easy and hard unknown 
classes (reported as easy/hard).

On the CUB dataset, CDV achieved closed-set accuracies close to the 
baseline: 88.4% with EfficientNetV2S and 85.8% with ResNet50, com-
pared to the baseline of 90.4% and 86.9%, respectively. In open-set 
recognition, CDV demonstrated competitive performance with Efficient-
NetV2S, CDV attained AUROC scores of 88.1% (easy) and 78% (hard), 
compared to the baseline of 89.6% and 82.2%. OpenAUC scores for CDV 
were 81.1% (easy) and 73.2% (hard), again lower than the baseline.

For the Aircraft dataset, CDV surpassed the baseline in both archi-
tectures; using EfficientNetV2S, CDV achieved a closed-set accuracy of 
86.7%, exceeding the baseline of 85.9%; on ResNet50, CDV reached 
84.2% versus the baseline of 82.7%. In open-set, CDV with Efficient-
NetV2S attained AUROC scores of 87.4% (easy) and 77.4% (hard), 
slightly higher than the baseline. OpenAUC scores for CDV were also 
improved, reaching 80.4% (easy) and 71.8% (hard).

In the Cars dataset, CDV achieved closed-set accuracies of 93.7% 
with EfficientNetV2S and 92.2% with ResNet50, closely surpassing the 
baseline of 93.6% and 90.4%. Notably, CDV improved AUROC and Ope-
nAUC scores for hard unknown classes; with EfficientNetV2S, CDV at-
tained AUROC scores of 90.3% (easy) and 84.4% (hard), compared to 
the baseline of 90.8% and 81.8%. OpenAUC scores for CDV were 87% 
(easy) and 81.6% (hard), exceeding the baseline in the hard set.

In all cases, similar trends to EfficientNetV2S were observed with 
ResNet50, indicating consistent performance across different network 
architectures.

5.1.  Closed- and open-set correlation

We evaluated the correlation between closed-set classification ac-
curacy and open-set performance (measured using AUROC), Fig. 4, by 
focusing exclusively on the best-performing open-set scoring methods: 
MLS and MDS. To keep the results clear, we used only the 60/40 in-class 
scaling benchmark and limited the scope to the EfficientNet architec-
ture. This yielded a Pearson correlation of 𝑟 = 0.51 (p < 0.001, 95% CI 
[.37, 0.63]), indicating a moderate positive relationship between closed-
set accuracy and open-set performance. These results suggest that, al-
though improvements in closed-set accuracy generally correlate with 
better open-set performance, the strength of this relationship is moder-
ate within the scope of our work.

5.2.  Baseline versus dissimilarity

Across all experiments, the proposed methods demonstrated notable 
improvements over the baseline. First, the baseline method achieved 
a mean closed-set accuracy of 81.1%. In comparison, TDS achieved a 
mean accuracy of 83%, an absolute increase of 1.9 percentage points 
(t(65) = 2.21, p = 0.031); similarly, TDV attained a mean accuracy of 
82.9%, an increase of 1.8 percentage points (t(65) = 2.07, p = 0.042); 
CDS achieved a mean accuracy of 85%, an absolute improvement of 3.9 
percentage points over the baseline (t(65) = 6.39, p = < 0.001); CDV 
further improved the mean accuracy to 85.3%, surpassing the baseline 
by 4.2 percentage points (t(65) = 6.94, p = < 0.001).

Analyzing open-set performance, the MLS baseline achieves a mean 
AUROC of 72.8%. In comparison, TDS attains a mean AUROC of 77.2%, 
representing an absolute increase of 4.4 percentage points (t(71) = 
4.55, p < 0.001); TDV achieves a mean AUROC of 76.7%, an increase 
of 3.9 percentage points over MLS (t(71) = 3.79, p < 0.001). CDS has 
a mean AUROC of 79.3%, an absolute improvement of 6.5 percentage 
points over MLS (t(71) = 8.95, p < 0.001); and, CDV attains the highest 
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Fig. 4. Correlation between closed-set accuracy and AUROC.

mean AUROC of 79.5%, surpassing MLS by 6.7 percentage points (t(71) 
= 9, p < 0.001). In both cases, the results are statistically significant, 
with CDS and CDV achieving the largest performance gains.

5.3.  Triplet versus contrastive objectives

We compared the performance of the triplet and contrastive learn-
ing methods across all experiments. In terms of closed-set classification 
accuracy, triplet learning achieved a mean Acc𝑘 of 82.9%, while con-
trastive learning attained a higher mean Acc𝑘 of 85.2%, representing an 
absolute increase of 2.3 percentage points (t(131) = 6.74, p < 0.001). 
For open-set recognition performance, triplet learning achieved a mean 
AUROC of 75.9%, and contrastive learning improved upon this with 
a mean AUROC of 78.9%, an absolute increase of 3 percentage points 
(t(287) = 9.09, p < 0.001). In both cases, contrastive learning achieves 
a higher and statistically significant score.

5.4.  Effect of embedding dimensionality

To isolate the influence of embedding size, we retrained models with 
different embedding dimensions while keeping every other hyperparam-
eter fixed, limiting the analysis to the two best-performing contrastive 
variants (CDS and CDV) and evaluating them on the standard bench-
marks and on SSB; for the former we used only the first cross-validation 
fold, and for the latter we considered only the EfficientNet-V2 backbone. 
Open-set performance was measured with AUROC computed from the 
proposed MDS score, and statistical significance was assessed with linear 
regression. Complete results are reported in Table 6.

For closed-set accuracy, Acc𝑘, a linear model with embedding dimen-
sionality as a continuous predictor, controlling for dataset and method, 
found no significant effect (𝑏 = 5.74 × 10−6, 𝑝 = 0.162). The changes 
were minor: CIFAR-10 varied by 0.2 percentage points (CDS 89.2 to 
89.4%; CDV 89.3 to 89.5%), and SVHN by 0.1 percentage points; CUB, 
Aircraft and Cars by 1.1 percentage points.

Table 6 
Effect of embedding dimensionality on CDS and CDV.

Dataset Emb.
 CDS  CDV
 Acc𝑘  AUROC  Acc𝑘  AUROC

CIFAR-10
 32-D  89.2  79.3  89.3  80.0
 64-D  89.2  77.6  89.5  79.2
 128-D  89.4  78.5  89.3  79.7

SVHN
 32-D  97.5  94.8  97.6  94.7
 64-D  97.4  94.3  97.5  94.2
 128-D  97.4  94.7  97.6  94.5

CUB

 64-D  87.9  86.6/78.0  87.9  86.4/77.4
 128-D  87.7  87.8/77.5  88.4  88.1/77.4
 256-D  88.2  87.8/79.5  88.6  87.5/79.4
 512-D  87.6  88.7/79.2  89.0  88.4/79.1

Aircraft

 64-D  86.8  83.6/72.4  87.4  84.6/72.7
 128-D  86.3  86.2/76.3  86.7  87.4/77.4
 256-D  85.7  83.4/74.7  86.6  84.4/75.5
 512-D  86.3  84.1/75.7  86.6  85.1/76.7

Cars

 64-D  92.4  89.4/84.1  93.3  89.5/84.6
 128-D  92.5  89.8/83.7  93.7  90.1/84.2
 256-D  93.2  89.8/83.9  93.4  89.8/84.6
 512-D  93.5  90.8/83.9  94.0  90.9/84.6

The same strategy applied to open-set AUROC with MDS scoring on 
the standard benchmarks (CIFAR-10 and SVHN) again showed no ef-
fect of embedding dimensionality; in fact, larger embeddings slightly 
reduced open-set performance (𝑏 = −2.24 × 10−5, 𝑝 = 0.643). CIFAR-10 
ranged from 77.6 to 79.3% for CDS, a difference of 1.7 percentage 
points, and from 79.2 to 80.0% for CDV; SVHN spanned 94.3–94.8% 
(CDS) and 94.2–94.7% (CDV), only 0.5 percentage points in both cases.

For the fine-grained SSB suite (CUB, Aircraft, Cars), the lin-
ear model likewise yielded a non-significant coefficient (𝑏 = 2.26 ×
10−5, 𝑝 = 0.558). In this benchmark, the improvements were larger over-
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all, with the single most significant jump of 4.7 percentage points on 
Aircraft-Hard (CDV increased from 72.7 to 77.4%). However, they did 
not translate into a consistent upward trend; some datasets peaked at 
128-D, others at 512-D, and a few even dipped.

In summary, after adjustments, increasing the embedding from 
32/64-D to 512-D yields, at best, marginal improvements that are rarely 
statistically reliable. Any AUROC gain must be weighed against the ad-
ditional compute and storage, so optimal dimensionality is best selected 
on a case-by-case basis.

5.5.  Impact of prototype count

Following the same experimental strategy as for embedding dimen-
sionality, we assessed the impact of prototype count by building dissim-
ilarity representations with 1, 3, 5, 10, 15, and 20 prototypes per class 
while keeping every other hyperparameter fixed. We again focused on 
the two best-performing contrastive variants (CDS and CDV) and eval-
uated them on the standard benchmarks and on SSB: for the standard 
benchmarks we considered only the first cross-validation fold, and for 
SSB we used the EfficientNet-V2 backbone exclusively. Open-set perfor-
mance was measured with AUROC computed from the proposed MDS 
score, and statistical significance was assessed with linear regression. 
The detailed results are provided in Table 7.

For closed-set accuracy, Acc𝑘, we fitted a linear model with pro-
totype count as a continuous predictor, adjusting for the dataset and 
method. The prototype count did not significantly predict accuracy 
(𝑏 = 6.16 × 10−5, 𝑝 = 0.259). Across all five datasets, closed-set accuracy 
changed by less than one percentage point for either contrastive variant. 
The largest shift was observed in Cars, where CDS rose from 91.7% us-
ing one prototype to 92.5% using ten prototypes, a gain of 0.8 percent-
age points; the corresponding CDV scores moved only 0.2 percentage 
points (93.5 to 93.7%). On the classic benchmarks, the changes were 

Table 7 
Impact of prototype count on CDS and CDV.

Dataset
 Prot.  CDS  CDV
 count  Acc𝑘  AUROC  Acc𝑘  AUROC

CIFAR-10

 1  89.1  77.4  89.2  79.3
 3  89.3  78.3  89.4  79.8
 5  89.4  78.5  89.3  79.7
 10  89.5  78.9  89.3  79.9
 15  89.4  78.8  89.3  79.8
 20  89.2  79.1  89.3  79.9

SVHN

 1  97.4  94.8  97.5  94.6
 3  97.4  94.5  97.6  94.3
 5  97.4  94.7  97.6  94.5
 10  97.4  94.7  97.6  94.4
 15  97.4  94.6  97.6  94.2
 20  97.4  94.2  97.5  93.8

CUB

 1  87.5  87.5/77.6  88.3  87.9/77.5
 3  87.7  87.6/77.8  88.4  87.7/77.5
 5  87.7  87.7/77.8  88.4  87.9/77.6
 10  87.6  87.8/77.6  88.5  87.9/77.4
 15  87.7  87.9/77.6  88.4  87.9/77.4
 20  87.7  87.8/77.5  88.4  88.1/77.4

Aircraft

 1  86.2  85.2/75.5  86.6  86.0/76.1
 3  86.4  85.4/75.2  86.5  86.8/76.7
 5  86.3  85.8/75.7  86.8  86.8/76.9
 10  86.3  85.5/75.7  86.8  87.4/77.1
 15  86.3  86.1/76.1  86.6  87.5/77.2
 20  86.3  86.2/76.3  86.7  87.4/77.4

Cars

 1  91.7  89.4/83.3  93.5  89.6/83.8
 3  92.1  89.7/83.4  93.6  89.8/84.0
 5  92.2  89.7/83.9  93.6  89.9/84.2
 10  92.5  89.8/83.6  93.5  90.1/84.2
 15  92.4  89.8/83.7  93.7  90.1/84.2
 20  92.5  89.8/83.7  93.7  90.1/84.2

even smaller; for example, on CIFAR-10, CDS varied by just 0.4 percent-
age points (89.1 to 89.5%), while CDV varied by only 0.2 percentage 
points. In short, adding prototypes produced no practically meaningful 
accuracy gains for either CDS or CDV.

The effect of prototype count on open-set AUROC with MDS scor-
ing on CIFAR-10 and SVHN was likewise negligible (𝑏 = 1.04 × 10−4, 𝑝 =
0.545). On CIFAR-10, CDS AUROC ranged from 77.4% with one proto-
type to 79.1% with 20 prototypes, a difference of 1.7 percentage points, 
whereas CDV varied by 0.6 percentage points (79.9 to 79.3%). On 
SVHN, CDS fluctuated by only 0.6 percentage points (94.2 to 94.8%), 
and CDV by 0.8 percentage points (93.8 to 94.6%).

For the fine-grained SSB suite (CUB, Aircraft, Cars), we extended the 
model to include the difficulty subset (Easy vs. Hard) as an additional co-
variate. Prototype count remained non-significant (𝑏 = 2.54 × 10−4, 𝑝 =
0.185). Dataset- and subset-specific AUROC ranges were all smaller than 
1.3 percentage points; the largest change was observed in the Aircraft-
Hard subset, which increased from 76.1 (1 prototype) to 77.4% (20 pro-
totypes). In many cases, the peak AUROC was achieved with just 3–5 
prototypes, underscoring that adding more prototypes offers no practi-
cal benefit and can occasionally hurt performance.

Overall, adding more prototypes yields only marginal, usually non-
significant, gains in both closed-set accuracy and open-set AUROC. In 
summary, increasing the count from 1 to 20 yields no statistically sig-
nificant improvement in either metric. While a larger bank of prototypes 
can modestly enlarge the coverage of the open space, our results show 
that a small number of well-positioned prototypes per class is typically 
sufficient under the conditions we evaluated.

5.6.  Clustering algorithm

To determine whether the clustering algorithm used for prototype se-
lection matters, we evaluated four approaches: K-means, K-means++, 
spectral, and agglomerative clustering while leaving every other hyper-
parameter untouched. As this design choice is only relevant once proto-
types are in place, we restricted the evaluation to the three fine-grained 
SSB datasets (CUB, Aircraft, Cars), used the EfficientNet-V2 backbone 
throughout, and reported results for the two best contrastive variants 
(CDS and CDV) again. Open-set performance was measured with AU-
ROC computed from the proposed MDS score, and statistical significance 
was assessed with linear regression. Complete results appear in Table 8.

For closed-set accuracy, Acc𝑘, a linear model with clustering algo-
rithm as a categorical predictor, controlling for dataset and method, 
yielded no significant effect for any of the three comparisons. Across all 
datasets, accuracy varied by at most 0.6 percentage points; the largest 
change occurred on Cars, where CDS rose from 92.4% with vanilla K-
means to 93.0% with agglomerative clustering; on CUB and Aircraft, 
both variants fluctuated by ≤ 0.2 percentage points.

Table 8 
Comparison of clustering algorithms for prototype selection on CDS 
and CDV.

Dataset Clustering
 CDS  CDV
 Acc𝑘  AUROC  Acc𝑘  AUROC

CUB

 K-means  87.6  87.8/77.5  88.3  88.1/77.4
 K-means++  87.7  87.8/77.5  88.4  88.1/77.4
 Spectral  87.6  87.7/77.8  88.2  88.0/77.4
 Hierarchical  87.7  87.9/77.6  88.3  88.0/77.4

Aircraft

 K-means  86.3  86.3/76.2  86.8  87.3/77.3
 K-means++  86.3  86.2/76.3  86.7  87.4/77.4
 Spectral  86.3  86.4/76.1  86.9  87.3/77.2
 Hierarchical  86.4  86.6/76.2  86.8  87.4/77.3

Cars

 K-means  92.4  89.9/83.7  93.6  90.0/84.2
 K-means++  92.5  89.8/83.7  93.7  90.1/84.2
 Spectral  92.9  89.9/83.9  93.6  90.0/84.2
 Hierarchical  93.0  89.9/83.6  93.6  90.1/84.3
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The same strategy applied to open-set AUROC on SSB, now in-
cluding the difficulty subset as an additional covariate, again found 
no significant effect of clustering choice. Dataset- and subset-specific 
AUROC ranges were similarly small: on Aircraft-Hard, CDS spanned 
75.5–76.3%, while CDV varied by just 0.3 percentage points; on Cars-
Hard, the spread was 0.7 percentage points (83.6–84.3%) for CDS and 
0.1 percentage points for CDV.

Overall, changing the clustering algorithm produced no measurable 
effect on either closed-set accuracy or open-set AUROC under our ex-
perimental conditions.

5.7.  Multi-view augmentation

Following the same evaluation protocol used in the previous abla-
tions, to evaluate the robustness of the trained models and the effect of 
multi-view dimensionality, we varied the number of aggregated views 
presented at inference time. Keeping the backbone, prototypes, and all 
other hyperparameters fixed, we tested {1, 5, 10, 20, 50, 100} views with 
the CDV variant on the three SSB datasets. Detailed results are provided 
in Table 9.

For closed-set accuracy, a linear model with aggregated-view count 
as a continuous predictor ,controlling for dataset, found no signifi-
cant effect (𝑏 = 9.4 × 10−6, 𝑝 = 0.469). Across all datasets the maximum 
change was 0.6 percentage points: CUB rose from 88.3 to 88.6%, Air-
craft from 86.5 to 87.1%, and Cars from 93.4 to 93.7%.

The same model fitted to open-set AUROC, including subset difficulty 
as an additional covariate, likewise yielded a non-significant coefficient 
(𝑏 = 2.2 × 10−5, 𝑝 = 0.695). AUROC spreads never exceeded 0.4 percent-
age points on any dataset-subset combination.

In summary, increasing the number of aggregated views beyond five 
does not improve either closed- or open-set performance under the con-
ditions we evaluated.

5.8.  Limited training data

Next, to understand how the methods behave when training data 
are scarce, we randomly sampled {5, 10, 20, 50}% of the original training 
images for each dataset and retrained all models from scratch. Because 
tiny splits leave too few examples to place many reliable prototypes, 
at the 5% budget, the majority of classes contain only a single labeled 
image. We proportionally reduced the number of prototypes per class 
to 1, 2, 5, 10, respectively, while keeping all other hyperparameters un-

Table 9 
Effect of multi-view dimensionality on CDV 
performance.

Dataset Multi-view
 CDV
 Acc𝑘  AUROC

CUB

 1  88.3  87.5/77.4
 5  88.6  88.1/77.5
 10  88.5  88.1/77.4
 20  88.4  88.1/77.4
 50  88.2  88.1/77.3
 100  88.4  88.0/77.2

Aircraft

 1  86.5  86.4/76.5
 5  87.0  87.1/77.3
 10  86.8  87.3/77.4
 20  86.7  87.4/77.4
 50  86.4  87.7/77.5
 100  87.1  87.9/77.6

Cars

 1  93.4  90.0/84.2
 5  93.6  90.2/84.3
 10  93.5  90.0/84.4
 20  93.7  90.1/84.2
 50  93.6  90.0/84.2
 100  93.6  90.0/84.1

Table 10 
Performance when training data are limited on Baseline, CDS and CDV.

Dataset
 Training  Baseline  CDS  CDV
 data  Acc𝑘  AUROC  Acc𝑘  AUROC  Acc𝑘  AUROC

CUB

 5%  39.0  66.5/57.6  27.9  60.3/56.5  41.9  61.0/56.2
 10%  53.5  67.4/57.1  53.0  68.1/62.1  56.9  68.3/62.6
 20%  71.0  75.1/60.6  70.0  75.1/68.8  70.9  75.2/69.1
 50%  84.2  85.5/65.2  82.4  82.5/75.7  83.0  82.7/75.9
 100%  90.4  89.6/82.2  87.7  87.8/77.5  88.4  88.1/77.4

Aircraft

 5%  27.1  58.2/58.2  11.6  55.8/58.4  26.9  53.5/57.8
 10%  44.3  58.5/59.4  36.8  58.5/59.3  41.9  58.6/59.5
 20%  56.1  70.3/61.6  56.2  66.0/65.7  58.6  64.6/64.9
 50%  75.4  80.3/71.8  77.2  76.8/73.2  78.4  76.0/73.2
 100%  85.7  88.0/77.3  86.3  86.2/76.3  86.7  87.4/77.4

Cars

 5%  20.4  53.4/56.3  4.5  54.1/54.0  23.7  54.0/54.1
 10%  35.0  55.6/61.1  29.6  59.5/60.0  38.7  59.3/60.5
 20%  58.7  68.3/66.8  60.5  70.3/67.5  63.5  71.1/68.0
 50%  84.6  80.5/76.3  85.8  83.6/78.4  86.5  84.0/78.7
 100%  93.6  90.8/81.6  82.5  89.8/83.7  93.7  90.1/84.2

changed. Fig. 5 displays the closed-set accuracy and AUROC learning 
curves for the Hard split of the SSB suite only, whereas Table 10 reports 
the complete results.

For closed-set accuracy (Acc𝑘), performance declines steeply when 
only 5% of the labels are available; CDV already surpasses the baseline 
on two of the three datasets: it scores 41.9% on CUB versus 39.0% for 
the baseline and 23.7% versus 20.4% on Cars, while trailing the base-
line by just 0.2 percentage points on Aircraft (26.9 vs 27.1%). As the 
budget rises to 10%, CDV extends its lead on CUB (+3.4 percentage 
points) and Cars (+3.7 percentage points). At 20%, the three methods 
roughly converge on CUB, but CDV pulls ahead on Aircraft (+2.5 per-
centage points over the baseline) and Cars (+4.8 percentage points). 
With 50% of the data, CDV is now best on both Aircraft (78.4% vs. 
75.4%) and Cars (86.5% vs. 84.6%) while sitting only 1.2 percentage 
points below the baseline on CUB. In contrast, CDS lags markedly at the 
smallest budgets but closes the gap once five or more prototypes per 
class are available, even overtaking the baseline on Cars at medium and 
high budgets.

On the hard subset, AUROC rises smoothly as more labels enter the 
training pool, but the gains materialize sooner for the dissimilarity-
based methods. With only 5% of the data, the baseline posts the highest 
AUROC on all three datasets by a small margin; as soon as the budget 
doubles to 10%, both CDS and CDV jump ahead on CUB (+5.0 per-
centage points and +5.5 percentage points, respectively) and pull even 
with the baseline on Aircraft and Cars. At 20%, they are clearly superior 
across the board, leading by up to 8.5 percentage points on CUB and by 
3–4 percentage points on Aircraft and Cars. The gap widens further at 
50%, where dissimilarity boosts CUB-Hard AUROC by +10.7 percent-
age points (75.9 vs. 65.2) and adds roughly +1.4-2.4 percentage points 
on the other two datasets.

CDV, and to a slightly lesser extent CDS, surpass the baseline and 
hold that advantage across almost every data budget, still matching or 
surpassing it on two of the three datasets even under full supervision. 
Although the baseline maintains a slight edge in the most extreme low-
data setting, a small bank of well-chosen prototypes quickly proves to 
be the more reliable choice for open-set detection, with CDV delivering 
the most consistent gains overall.

5.9.  Limitations and future work

This study is confined to medium-scale image datasets and CNN 
backbones. Although transformer architectures and large-scale open-
world benchmarks may raise the absolute performance ceiling, evalu-
ating these settings lies outside the scope of the present work.

Furthermore, our method has several limitations: i) it depends on 
many hyper-parameters, including projection-head depth, temperature, 
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Fig. 5. Learning curves for Acc𝑘 and AUROC vs. data budget.

learning rate, batch size, and prototype selection, that must be tuned 
for each task; ii) because every prediction is driven by the dissim-
ilarity between learned embeddings, any weakness in those embed-
dings directly degrades performance; iii) the curse of dimensional-
ity persists, as redundant features inflate the dissimilarity vector, add 
noise, and lower accuracy, though feature selection or pooling can 
curb this effect; and iv) the MDS is only as reliable as its prototypes, 
so a poor or imbalanced prototype set weakens open-set rejection, al-
though automated pruning or periodic re-clustering could reduce that
sensitivity.

As future work, methodologically, we see two main avenues for 
improvement: first, the method could leverage KUCs in two comple-
mentary ways: during training, KUC images can be used as hard neg-
atives to increase the margin around each known class, and at infer-
ence, prototypes drawn from the same KUC pool can serve as hard neg-
atives when computing the minimum dissimilarity score. Second, ar-
chitectural enhancements could be explored: more metric learning ob-
jectives (e.g., proxy-based, angular-margin, adaptive-radius), stronger 
representation learners (e.g., generative models, masked-image pre-
training, self-distillation), and more sophisticated prototype selection 
strategies beyond unsupervised clustering (e.g., diversity-aware sam-
pling, supervised pruning, or adversarially synthesized examples) to 
further broaden coverage. Empirically, a comprehensive cross-domain 
evaluation spanning vision, text, and audio benchmarks under vary-
ing noise and imbalance levels remains an important next step for rig-
orously stress-testing the framework in realistic, continually evolving
scenarios.

6.  Conclusion

In this paper, we proposed a novel dissimilarity-based framework 
for open-set recognition that unifies representation and metric learning 
to derive a task-specific dissimilarity function; by mapping data into 
a space of pairwise differences, the method more effectively separates 
known from unknown classes, and our experiments confirm that the 
contrastive dissimilarity variants (CDS and CDV) consistently surpass 
strong baselines across diverse datasets and openness levels. Building 
on previous research, we also observed a clear positive correlation be-
tween closed-set accuracy and open-set performance, suggesting that 
advances in standard classification accuracy directly translate into im-
proved rejection of unseen categories. Finally, we note an important 
open challenge: metrics optimized only on seen classes do not always 
extrapolate gracefully to unseen semantics, and this shortcoming grows 
with semantic shift; developing approaches that mitigate this limitation 
remains a promising direction for future research.
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Appendix A.  Toy example of dissimilarity-based open-set 
recognition

Fig. A.6 shows a synthetic two-dimensional data set with two known 
Gaussian clusters, drawn as green and blue circles, and one unknown 
cluster, drawn as red triangles. Each column corresponds to a different 
number of prototypes per known class: one, two, and three, represented 
as black crosses. 

In the first row, samples appear in their original coordinates. The 
color of each point is the decision of a nearest-prototype classifier with-
out any rejection rule, so every sample receives the class of the closest 
prototype, even when that prototype is far away.

In the second row, every sample is embedded in a dissimilarity space 
whose coordinates are Euclidean distances to the prototype set. For dis-
play, these vectors are reduced to two principal components. The shad-
ing encodes the open-set decision: a point is colored green or blue if it 
is within a threshold of a prototype and light gray if it lies outside, in 
which case the model outputs it as unknown. Increasing the number of 
prototypes tightens the coverage of the known space and reduces the 
gray area to some extent.

The third row represents the dissimilarity vector. In this view, each 
original sample is transformed into multiple points, one for each proto-
type, by taking the absolute difference between their feature values. As 
a result, class labels are reduced to a binary tag indicating whether the 
sample and prototype come from the same class (orange) or different 
classes (purple). The open-set decision then combines the outcomes of 
all related pairs; however, the plot still shows a clear separation between 
same-class and different-class pairs.

The number and placement of prototypes strongly affect the deci-
sion boundary. Fewer prototypes create a more simplistic boundary and 
a larger rejected region, reducing the risk of false accepts but potentially 
under-fitting known classes. More prototypes provide greater coverage 
of the known samples but increase the probability of accepting unknown 
points as known, and they can introduce more noise, especially in the 
dissimilarity vector representation where each sample generates multi-
ple pairwise points. 

Fig. A.6. Toy example of open-set boundaries with one, two, and three prototypes per class.
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[34] E. Pękalska, R.P.W. Duin, The Dissimilarity Representation for Pattern Recognition: 
Foundations and Applications, WORLD SCIENTIFIC, 2005.

[35] D. Bertolini, L.S. Oliveira, R. Sabourin,  Multi-script writer identification using dis-
similarity,  in: 2016 23rd International Conference on Pattern Recognition (ICPR), 
2016, pp. 3025–3030.

[36] T.B. Viana, V.L. Souza, A.L. Oliveira, R.M. Cruz, R. Sabourin,  A multi-task approach 
for contrastive learning of handwritten signature feature representations,  Expert 
Syst. Appl. 217 (2023) 119589.

[37] V.L. Souza, A.L. Oliveira, R.M. Cruz, R. Sabourin,  A white-box analysis on the writer-
independent dichotomy transformation applied to offline handwritten signature ver-
ification,  Expert. Syst. Appl. 154 (2020) 113397.
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