
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Improving open set recognition with dissimilarity-based metric learning

Lucas O. Teixeira a,∗, Diego Bertolini b, Luiz S. Oliveira c, George D.C. Cavalcanti d,
Yandre M.G. Costa a

aUniversidade Estadual de Maringá (UEM), Maringá, PR, Brazil
bUniversidade Tecnológica Federal do Paraná (UTFPR), Campo Mourão, PR, Brazil
cUniversidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
dUniversidade Federal de Pernambuco (UFPE), Recife, PE, Brazil

a r t i c l e i n f o

Keywords:
Open set recognition
Dissimilarity
Metric learning
Representation learning

 a b s t r a c t

Open set recognition addresses the problem of classifying instances where the model must not only recognize
and classify examples from known classes, but also handle unknown classes not present in the training set. Unlike
traditional classifiers, which assume only samples from known classes appear during testing, OSR must detect
and manage instances beyond the scope of the training classes. In this paper, we propose a novel approach that
combines dissimilarity-based representation with task-specific metric learning in an end-to-end framework. Dis-
similarity representation is an alternative to the traditional feature space representation that represents samples
based on their differences. By adaptively learning a dissimilarity function specific to the task, our method im-
proves the ability to distinguish between known and unknown classes. We evaluate the proposed method using
two popular representation learning techniques, triplet loss and contrastive loss, across multiple experiments:
standard OSR benchmarks (CIFAR-10 and SVHN), class-scaling scenarios (DTD and FMD), and the Semantic Shift
Benchmark; our proposal consistently outperforms baseline models in both closed-set accuracy and open-set de-
tection.

1. Introduction

Open-set Recognition (OSR) addresses a significant challenge in ma-
chine learning: the ability to correctly classify instances from known cat-
egories while also identifying instances from unknown classes that were
not present during training [1]. Conventional closed-set models assume
the label set is complete, which is unrealistic in dynamic, real-world
environments. OSR introduces the concept of open-space risk, which is
the risk of assigning a confident but incorrect known label to a sample
that lies far from every known class. The objective is twofold: maximize
accuracy on the known classes while minimizing false positives in this
unbounded open region.

Early OSR work attacked the problem from several angles: OpenMax
replaced the softmax layer with extreme-value-theory calibration [2];
class-conditional generative models and adversarial generation sought
to cover the complement region explicitly [3,4]; flow-based hybrids
tried to pair likelihoods with distance cues [5]. Despite this diver-
sity, careful ablations have shown that a vanilla convolutional network,
trained with strong augmentation, a cosine learning-rate schedule, and
scored by simple maximum logits (MLS), can match or surpass many of

∗ Corresponding author.
 E-mail addresses: pg54804@uem.br (L.O. Teixeira), diegobertolini@utfpr.edu.br (D. Bertolini), luiz.oliveira@ufpr.br (L.S. Oliveira), gdcc@cin.ufpe.br
(G.D.C. Cavalcanti), yandre@din.uem.br (Y.M.G. Costa).

these sophisticated proposals [6,7]. The fact that such a tuned baseline
closes most of the gap underscores that OSR remains unresolved and
motivates the development of fresh strategies that improve rejection ac-
curacy.

In this paper, we propose a novel approach for OSR based on dis-
similarity [8,9]. The core idea is straightforward: a dissimilarity score
measures the degree of difference between two samples, and for each
test image, we first check whether it resembles any of the stored images.
If all scores are high, the image differs from every known class, and we
mark it as unknown. If at least one score is low, the image is close to a
known sample, and we assign the matching class. Our key innovation,
and the point that distinguishes this work from earlier metric-learning
systems, is that the dissimilarity function itself is learned end-to-end
with explicit open-set constraints. Standard deep metric learning op-
timizes an embedding, then relies on a post-hoc threshold or softmax
head; we instead keep the raw dissimilarities as the test-time statistic
and shape it during training so that a single, tunable threshold sepa-
rates known and unknown regions.

Dissimilarity can be used in two primary ways for classification [10]:
dissimilarity space represents each sample by its differences from a set of

https://doi.org/10.1016/j.knosys.2025.114108
Received 6 February 2025; Received in revised form 30 June 2025; Accepted 13 July 2025

Knowledge-Based Systems 327 (2025) 114108

Available online 17 July 2025
0950-7051/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
https://orcid.org/0000-0003-3615-1567

T

R

R

$R \subseteq T$

$R \cap T = \emptyset $

k

k

T

n

R

m

$D(T, R)$

\begin {equation*}D(T, R) = \begin {bmatrix} \nu (x_1, p_1) & \nu (x_1, p_2) & \dots & \nu (x_1, p_m) \\ \nu (x_2, p_1) & \nu (x_2, p_2) & \dots & \nu (x_2, p_m) \\ \vdots & \vdots & \ddots & \vdots \\ \nu (x_n, p_1) & \nu (x_n, p_2) & \dots & \nu (x_n, p_m) \end {bmatrix}\end {equation*}

x_i

i

p_j

j

$\nu $

$D(T, R)$

\begin {equation*}D'(t_k, R) = \begin {bmatrix} \nu (t_k, p_1) & \nu (t_k, p_2) & \dots & \nu (t_k, p_m) \end {bmatrix}\end {equation*}

t_k

p_j

k

j

$D'(t_k, R)$

$D(T, R)$

w

w

x_{ij}

i

j

p_{ik}

i

k

$\nu $

w

x_{ij}

w

p_j

$\nu '(x_{ij}, p_{ik})$

\begin {equation*}\nu '(x_{ij}, p_{ik}) = \begin {bmatrix} \nu (x_{ij}^1, p_{ik}) & \nu (x_{ij}^2, p_{ik}) & \dots & \nu (x_{ij}^w, p_{ik}) \end {bmatrix}\end {equation*}

$\nu '(x_{ij},p_{ik})$

$\oplus $

$\ominus $

n

m

m'

\begin {equation*}T_{\oplus } = \nu '(x_{ij}, p_{ik}) \text { where } i = 1 \text { to } n, \; j = 1 \text { to } m,\; k = 1 \text { to } m'\end {equation*}

\begin {equation*}T_{\ominus } = \nu '(x_{ij}, p_{kl}) \text { where } i, k = 1 \text { to } n, \; i \neq k, \; j = 1 \text { to } m,\; l = 1 \text { to } m'\end {equation*}

$T = T_{\oplus }\cup T_{\ominus }$

w

$i\,k$

i

k

$\mathcal {X}$

$\mathcal {C} = \{y_1, y_2, \ldots , y_C\}$

C

$\mathcal {D}_{\text {train}} = \{(x_i, y_i)\}_{i=1}^{N} \subseteq \mathcal {X} \times \mathcal {C}$

$\mathcal {D}_{\text {test-closed}} = \{(x_i, y_i)\}_{i=1}^{M} \subseteq \mathcal {X} \times \mathcal {C}$

$t \in \mathcal {D}_{\text {test-closed}}$

$p(y|t)$

$\mathcal {D}_{\text {test-open}} = \{(x_i, y_i)\}_{i=1}^{M} \subseteq \mathcal {X} \times (\mathcal {C} \cup \mathcal {U})$

$t \in \mathcal {D}_{\text {test-open}}$

$p(y | t, y \in \mathcal {C})$

$\mathcal {S}(y \in \mathcal {C} | t)$

$p(y|t)$

$\mathcal {S}(y \in \mathcal {C} | t) = max_{y \in \mathcal {C}} \; p(y|t)$

$\mathcal {S}(y \in \mathcal {C} | t) = max_{y \in \mathcal {C}} \; z(y|t)$

$z(y|t)$

t

$\mathcal {S}(y \in \mathcal {C} | t) = \min _{z \in \{1, \ldots , m\}} \nu (t, p_z)$

$\nu (t, p_z)$

t

p_z

m

t

$\mathcal {C}$

$\times $

$|C| = 6, |U| = 4$

$\times $

$|C| = 90\,\%, |U| = 10\,\%$

$|C| = 50\,\%, |U| = 50\,\%$

$\sim 10\,\%$

$\sim 50\,\%$

$\times $

e

$[4e,\,2e,\,e]$

$[e,\,e/2,\,e/4]$

28×28

200×200

224×224

448×448

$\pm 30^{\circ }$

$\text {Acc}_k$

$\text {Acc}_k$

r

$<$

$<$

$<$

$<$

$<$

$<$

$<$

$_k$

$_k$

$<$

$<$

$\text {Acc}_k$

$b = 5.74 \times 10^{-6},\; p = 0.162$

$b = -2.24 \times 10^{-5},\; p = 0.643$

$b = 2.26 \times 10^{-5},\; p = 0.558$

$_k$

$b = 6.16\times 10^{-5},\; p = 0.259$

$b = 1.04\times 10^{-4},\; p = 0.545$

$b = 2.54\times 10^{-4},\; p = 0.185$

$\text {Acc}_k$

$\le $

$\{1,5,10,20,50,100\}$

$b = 9.4\times 10^{-6},\; p = 0.469$

$b = 2.2\times 10^{-5},\; p = 0.695$

$\{5,10,20,50\}\%$

$1,2,5,10$

$_k$

$_k$

https://orcid.org/0000-0002-6196-4538
https://orcid.org/0000-0002-0595-5370
https://orcid.org/0000-0001-7714-2283
https://orcid.org/0000-0002-0630-3171
mailto:pg54804@uem.br
mailto:diegobertolini@utfpr.edu.br
mailto:luiz.oliveira@ufpr.br
mailto:gdcc@cin.ufpe.br
mailto:yandre@din.uem.br
https://doi.org/10.1016/j.knosys.2025.114108
https://doi.org/10.1016/j.knosys.2025.114108

L. O. Teixeira et al.

prototypes, and the dissimilarity vector (dichotomization) creates posi-
tive and negative feature vectors, depending on whether they are from
the same class or not, by directly computing pairwise differences be-
tween samples and prototypes. In this way, the problem is transformed
into a binary classification task, which can be a good strategy for prob-
lems with a large number of classes.

Dissimilarity-based models offer several properties that map natu-
rally onto the open-set problem. Because every test sample is repre-
sented by its distances to a fixed set of prototypes, a single threshold on
the nearest-prototype score yields an immediate decision, giving con-
trol over open-space risk. The same machinery is data-type agnostic; as
long as a meaningful dissimilarity can be computed, it can accommodate
graphs, strings, or multimodal descriptors without relying on a feature
extractor. In addition, adding a new class is trivial; one merely appends
a few of its samples to the prototype bank and, if desired, trains a new
detector, making it well-suited to open-world scenarios where the label
set evolves [1,11].

These advantages come with corresponding challenges. The quality
of the prototype set is decisive; if prototypes do not adequately cover
the class manifold, an unknown sample might, by chance, fall closer
to one of the sparsely placed prototypes than an actual in-class point
does, resulting in a false acceptance of the unknown sample as a known
class. Moreover, the dimensionality equals the number of prototypes,
an overly large bank inflates estimation variance and enlarges the open
space.

Traditionally, dissimilarity-based classifiers have relied on fixed,
hand-chosen distance metrics, such as Euclidean distance or cosine sim-
ilarity, to measure the distance between two samples. While simple
to implement, these static measures cannot always capture complex,
nonlinear relationships in real data, which can limit their discrimina-
tory power. To overcome this specific shortcoming, we propose a task-
specific metric learning strategy that adaptively learns a dissimilarity
function tailored to the task at hand. We integrate representation learn-
ing into an end-to-end joint training framework, combining key compo-
nents to enhance feature representation. This approach aims to create a
feature space where dissimilarities between samples accurately reflect
their class relationships.

Building upon our previous work, where we explored triplet and
contrastive dissimilarity in a multiclass scenario [12,13], we now ex-
tend these techniques to open-set recognition. Triplet learning [14] in-
volves minimizing the distance between an anchor and a positive sam-
ple while maximizing the distance to a negative sample. Contrastive
learning [15,16] focuses on pulling similar pairs together and pushing
dissimilar pairs apart in the embedding space.

In our experiments, we conducted a comprehensive evaluation of
our dissimilarity-based approach across three distinct scenarios: i) stan-
dard OSR benchmark datasets, ii) class scaling, where the number of
unseen classes varies, and iii) the Semantic Shift Benchmark (SSB) [6].
First, using the standard benchmark datasets, CIFAR-10 and SVHN, we
achieved superior performance in both closed-set accuracy and open-set
recognition compared to baseline models. Second, in the class scaling
scenario with the DTD and FMD datasets, we achieved similar results,
consistently outperforming the baseline across different proportions of
unseen classes; despite not being standard datasets in OSR, they are
general, challenging, and have been evaluated in many other papers.
Finally, on the SSB, our approach outperformed the baseline on the Air-
craft dataset, achieved better results in the most challenging settings of
the Cars dataset, and was less effective on the CUB dataset.

The primary contributions of this paper are as follows:

1. We propose a novel dissimilarity-based representation for open-set
recognition, incorporating task-specific metric learning to learn dis-
similarity functions that are specifically adapted to the problem do-
main.

2. We develop an end-to-end training framework that integrates rep-
resentation learning and metric learning, enabling the model to op-

timize both feature embeddings and dissimilarity values jointly for
improved performance.

3. We conduct comprehensive experiments on standard OSR bench-
marks, class scaling scenarios, and the Semantic Shift Benchmark
to validate the effectiveness of our proposed approach.
The remainder of this paper is organized as follows. Section 2 brings

the literature review. Section 3 details our proposed method, includ-
ing the representation and metric learning components, dissimilarity
representation, and open-set recognition strategy. Section 4 describes
the experimental setup, including datasets, benchmarks, and evaluation
metrics. Section 5 presents the experimental results and analysis. Fi-
nally, Section 6 concludes the paper and outlines potential directions
for future research.

2. Literature review

This section presents a concise review of representation and metric
learning, dissimilarity-based methods, and open set recognition, which
lays the foundation for this work.

2.1. Representation and metric learning

Representation learning and metric learning are closely intertwined
in modern machine learning, particularly with the advent of deep neural
networks that can extract meaningful features from raw data [17]. While
representation learning focuses on capturing the underlying structure
of data to facilitate tasks such as classification and clustering, metric
learning enhances this by constructing task-specific distance functions
that better reflect the relationships within the data [18].

Representation learning and metric learning complement each other
in modern deep learning. The first turns raw data into informative fea-
tures; the second shapes a task-specific distance so that similar examples
lie close together while dissimilar ones stay apart [17,18].

Before the deep learning era, traditional distance metrics like Eu-
clidean or cosine similarity were commonly used; however, they may
not adequately capture complex, non-linear relationships in high-
dimensional spaces. Existing methods on this topic can be broadly classi-
fied into discriminative and generative models. Discriminative methods,
such as triplet loss [14] and contrastive loss [15], structures the em-
bedding space in a way that similar samples are closer together while
dissimilar ones are pushed apart. The idea is to estimate features to bet-
ter reflect the inherent similarities and differences among data points,
which is crucial for tasks like face recognition, person re-identification,
and image retrieval.

Triplet learning is a prevalent representation learning technique that
assesses three instances at a time: an anchor, a positive sample (same
class as the anchor), and a negative sample (from a different class than
the anchor) [14]. The core idea is to reduce the distance between the
feature representation of the anchor-positive pair while simultaneously
increasing the distance for the anchor-negative pair by at least a mar-
gin, typically referred to as alpha. The margin acts as a penalization
mechanism where the negative sample is closer to the anchor than the
positive sample, enforcing a separation that ensures the negative sample
is at least the margin distance further away from the anchor.

Contrastive learning is another popular technique for representation
learning that has gained significant attention in recent years. Similar
to triplet learning, its goal is to minimize the distance between similar
pairs while maximizing the distance between dissimilar pairs. However,
contrastive learning focuses specifically on pairs of positive and negative
examples [15,19].

In recent years, contrastive learning has been particularly successful
in self-supervised learning contexts [16], especially with the introduc-
tion of the SimCLR framework [20]. In these scenarios, there is no need
to explicitly select negative pairs, as label availability is scarce or even
non-existent. To address this, novel loss functions, such as the Normal-
ized Temperature-scaled Cross Entropy Loss (NT-Xent loss) [21], have

Knowledge-Based Systems 327 (2025) 114108

2

L. O. Teixeira et al.

been adapted from the original contrastive loss and have proven highly
effective.

Generative methods create synthetic samples that are used to esti-
mate the decision boundary between known and unknown classes [22].
GAN-based methods have shown promising results, however they often
have complex architectures and demand high computational resources.

2.2. Dissimilarity

Dissimilarity-based representations focus on the differences between
samples rather than their absolute features, offering an alternative per-
spective in feature representation [9]. This approach is particularly ef-
fective when structural differences are highly discriminative, as seen in
tasks like texture classification and handwriting recognition.

Two main techniques are commonly used in dissimilarity represen-
tation: dissimilarity space and dissimilarity vector [10]. In the dissimi-
larity space method, each sample is represented by its dissimilarities to
a set of prototypes, embedding the data into a new feature space where
traditional classifiers can be applied. The dissimilarity vector approach
constructs feature vectors by directly computing pairwise differences
between features taken from samples and prototypes, transforming the
problem into a binary classification task based on whether pairs belong
to the same class.

Applications of dissimilarity representations span various domains,
including handwritten digit recognition [8], content-based image re-
trieval [23], bird species identification [24], human pose estimation
[25], and many more. The integration of deep learning has further ad-
vanced these methods, Nanni et al. [26] combined Siamese networks
with metric learning to construct a dissimilarity space, achieving state-
of-the-art results across multiple image datasets. In a subsequent study,
Nanni et al. [27] explored the use of triplet loss and different techniques
for generating the dissimilarity space, demonstrating improved perfor-
mance over previous approaches. Building upon these advancements,
our previous works investigated triplet and contrastive dissimilarity in
multiclass scenarios [12,13].

2.3. Open set recognition

OSR addresses the challenge of accurately classifying samples from
known classes while also identifying instances that belong to unknown
classes. [1]. In many real-world applications, models are likely to en-
counter data that do not fit into any of the trained classes; traditional
closed-set classifiers, which assume that all possible classes are known
in advance, misclassify these samples into one of the known classes. Un-
der the open-world assumption, a common categorization of classes is
[28]:

1. Known known classes (KKC): classes with clearly labeled samples,
available features, and, possibly, metadata.

2. Known unknown classes (KUC): samples labeled as negative, not nec-
essarily organized into useful classes.

3. Unknown known classes (UKC): classes with no available samples
for training but available metadata.

4. Unknown unknown classes (UUC): classes with no available samples
and metadata during training.

Most research in OSR focuses on KKCs and UUCs, with some excep-
tions also incorporating KUCs to train detectors for negative samples.
UKCs, however, are rarely addressed due to their limited practical oc-
currence and the often marginal utility of metadata distinguishing them
from UUCs. Following the literature, in this paper, we also restrict our
scope to classifying KKCs and rejecting UUCs.

Here, current methods are can also be divided into discriminative
and generative models. Discriminative methods adapt existing classifica-
tion approaches to account for unknown classes. Bendale and Boult [2]
introduced OpenMax, which extends the SoftMax layer to estimate the

likelihood of a sample belonging to an unknown class by analyzing the
activation patterns of known classes. Dhamija et al. [29] developed two
loss functions to improve handling of unknown classes: the Entropic
Open-Set loss, which reduces overconfidence by encouraging uniform
probability distributions for unknown samples, and the Objectosphere
loss, which restructures the feature space to push known class features
away from the origin while pulling unknown class features toward it.

Generative approaches estimate the decision boundary between
known and unknown samples, Neal et al. [3] used generative adver-
sarial network (GAN) to create counterfactual images representing un-
known classes, named Counterfactual Image Generation (OSRCI). Chen
et al. [4] expanded the previous approach by using Adversarial Recipro-
cal Points Learning, which improves open-set detection by learning re-
ciprocal points that capture the data distribution more effectively. Zhang
et al. [5] combined flow-based models with discriminative classifiers to
detect deviations from known data patterns.

However, these methods often involve complex architectures and
substantial computational resources, which can limit their practicality
in certain applications. Recently, the need for such complex methods has
been questioned: Vaze et al. [6] conducted a critical evaluation of exist-
ing OSR techniques and found that a well-trained baseline model, with
appropriate data augmentation, learning rate schedules, and the use of
maximum logit scores, can achieve performance comparable to or even
surpassing that of more complex methods. This finding emphasizes the
importance of strong baselines and suggests that the OSR challenge re-
mains open, highlighting the need for further research to develop meth-
ods that consistently outperform these baselines across diverse settings.

Evaluating OSR methods requires metrics that capture both the abil-
ity to classify known classes accurately and the detection of unknown
classes. The Area Under the Receiver Operating Characteristic curve
(AUROC) is commonly used to measure the capacity to distinguish be-
tween known and unknown classes without relying on a specific decision
threshold [1]; however, it does not account for closed-set classification
performance. To fill this gap, Dhamija et al. [29] introduced the Open
Set Classification Rate (OSCR) by combining the true positive rate for
known classes with the false positive rate for unknown classes across
varying thresholds. Recently, Wang et al. [30] proposed OpenAUC, a
metric that integrates both closed-set accuracy and open-set detection
into a single measure, providing a more comprehensive evaluation of
OSR methods.

In response to deployment constraints, several studies have proposed
solutions to reduce computational footprint. He et al. [31] present De-
coupled OSOD (DOSOD), a YOLO-based detector that replaces heavy-
weight cross-modal attention with a single MLP adaptor, enabling real-
time open-set object detection on embedded computing boards. Feng
et al. [32] demonstrated that even classical Random Forests can be en-
hanced for OSR by coupling learned distance metrics with extreme-value
modeling, providing an interpretable and lightweight baseline. Bahavan
et al. [33] propose SphOR, which models the feature space as a mix-
ture of von Mises-Fisher distributions; this spherical representation is
both memory-efficient and achieves competitive state-of-the-art perfor-
mance.

3. Proposed method

We propose a novel approach for open-set recognition based on
dissimilarity and metric learning. Dissimilarity is defined as the dif-
ferences between samples and can be very useful as an alternative to
the regular feature space, especially when the structural differences
are highly discriminative [34]. The concept can be applied at multi-
ple levels; for instance, one could calculate the raw difference between
the pixels of two images, use a texture descriptor (like Local Binary
Pattern, LBP) to extract features, and compute the difference between
the two feature vectors and use it to train a machine-learning model
[24,35].

Knowledge-Based Systems 327 (2025) 114108

3

L. O. Teixeira et al.

Fig. 1. Proposed method overview.

While that approach may suffice for simpler problems, tackling more
complex imaging challenges may demand a more advanced solution.
Deep learning offers such a solution by facilitating the extraction and
learning of more complex features directly from raw data, enabling the
mapping of raw input images to a feature space where semantically sim-
ilar instances are clustered together while distinct instances are sepa-
rated, named representation learning [17].

We can further extend this approach by combining it with a met-
ric learning strategy that uses the derived representations to estimate
a task-specific dissimilarity function in an end-to-end manner, training
all components jointly. We have previously explored and evaluated this
idea in our earlier works in a multiclass scenario [12,13]; now, we have
expanded this approach into open-set recognition.

The rationale for our proposal is based on the fact that the dissimilar-
ity approach classifies samples by focusing on their differences, and we
hypothesize that this characteristic makes it particularly well-suited for
open set recognition, improving the distinction between known and un-
known classes. Further, by adopting representation and metric learning
to improve the representation and dissimilarity estimation, we expect
a much better model that can generalize better, even when facing the
unknown.

The proposed method comprises three main phases: i) representa-
tion and metric learning, ii) dissimilarity representation, and iii) open
set recognition. Fig. 1 provides a visual overview of our proposal. Phase
1 trains two separate deep learning models using triplet and contrastive
learning to extract useful feature representations (embeddings) while
simultaneously estimating a dissimilarity function. Phase 2 maps the
embeddings into a dissimilarity space or vector representation based on
a selected set of prototypes, forming multiple intermediate representa-
tions that can be used for classification. Each deep model and dissim-
ilarity mapping combination forms a representation, resulting in four
variants: Triplet Dissimilarity Space (TDS), Triplet Dissimilarity Vector
(TDV), Contrastive Dissimilarity Space (CDS), and Contrastive Dissim-
ilarity Vector (CDV). Phase 3 trains a standard classifier using the dis-
similarity representation and evaluates both closed- and open-set per-
formance.

3.1. Representation and metric learning (phase 1)

In this work, we employ two well-known metric learning methods,
namely triplet and contrastive learning, in separate experiments. The
model features a CNN backbone, followed by a projection head com-
prising fully connected layers. The projection head takes the element-
wise absolute difference between two embeddings and outputs a learned
dissimilarity score for the pair. The backbone and projection head are
trained jointly, so the embeddings and the dissimilarity function are op-
timized together. This differs from classic Siamese or proxy-based metric
learning, which optimizes an embedding but relies on a fixed norm (e.g.,
Euclidean or cosine) at test time; here, the distance itself is parameter-
ized and becomes the decision used for open-set rejection.

Fig. 2 shows the training workflow for triplet learning, where dis-
similarity scores are computed for anchor-positive and anchor-negative
pairs, and Fig. 3 shows the workflow for contrastive learning, where all
pairs in the batch are compared to learn positive-negative dissimilari-
ties.

3.2. Dissimilarity representation (phase 2)

Dissimilarity representation offers an alternative way to representing
sample features in a machine learning problem by focusing on the dif-
ferences between samples. There are two main approaches for doing so:
dissimilarity space and vector [10]. In the dissimilarity space, each sam-
ple is represented by its dissimilarities to a predefined set of prototypes,
resulting in a matrix where each dimension corresponds to the dissim-
ilarity to a specific prototype. In the dissimilarity vector, each input is
represented by its differences from a set of prototypes; every combina-
tion of an input and a prototype generates a new sample, which can
be labeled as either positive or negative depending on their respective
classes.

The dissimilarity space is the natural choice for closed-set, multi-
class problems in which the label set will not grow: by encoding each
object as the vector of its distances to a fixed prototype set, it pre-
serves a favorable parameter-to-observation ratio and allowing any off-

Knowledge-Based Systems 327 (2025) 114108

4

L. O. Teixeira et al.

Fig. 2. Triplet dissimilarity training schema.

Fig. 3. Contrastive dissimilarity training schema.

the-shelf classifier, provided the prototypes adequately cover the class
manifold [34]. The dissimilarity vector instead converts every sample-
prototype pair into a same vs. different example, inflating the data set
and thus compensating for class scarcity; more importantly, produces
a binary model that generalizes to identities unseen during training,
a property widely exploited in writer-independent, face- and speaker-
verification, and person-re-identification systems [10,36,37]. Conceptu-
ally, the dissimilarity space captures global geometry, each coordinate
represents how far apart the sample is from a given prototype, whereas
the dissimilarity vector learns local margins around each prototype,
making it more tolerant of overlapping classes but potentially sensitive
to an excess of negative pairs [38]. Our experiments, therefore, concen-
trate on the dissimilarity vector formulation for its open-set flexibility
while also reporting the dissimilarity space results for comparison and
completeness.

3.2.1. Prototype selection
Prototypes are a compact representation of the training data, aim-

ing to reduce dimensionality and decrease memory and computation
requirements. They can either be selected directly from the training set
or generated as artificial samples that capture key patterns in the train-
ing data.

Consider 𝑇 as the training set and 𝑅 as the prototype set, there are
two main strategies to populate 𝑅: selecting actual training samples or
generating artificial samples. The first chooses actual samples from the
training set, making the prototypes a subset of the training set (𝑅 ⊆ 𝑇),
ensuring that the prototypes are inherently consistent with the training
data. The second strategy generates artificial yet representative sam-
ples, potentially making the prototype set disjoint from the training set
(𝑅 ∩ 𝑇 = ∅), allowing for the creation of more diverse prototypes and
is particularly advantageous in unbalanced scenarios, as it enables the

Knowledge-Based Systems 327 (2025) 114108

5

L. O. Teixeira et al.

generation of a balanced prototype set, which would otherwise be con-
strained by the number of samples in the less frequent class.

In this work, we generated the prototypes by applying an unsuper-
vised clustering algorithm to group similar samples into 𝑘 clusters for
each class, deriving 𝑘 centroids to serve as prototypes. The number of
prototypes is the number of clusters per class times the number of classes
in the dataset.

3.2.2. Dissimilarity space
Assuming the training set 𝑇 with 𝑛 samples and the prototype set 𝑅

with 𝑚 samples. The dissimilarity matrix 𝐷(𝑇 ,𝑅) can be defined as:

𝐷(𝑇 ,𝑅) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜈(𝑥1, 𝑝1) 𝜈(𝑥1, 𝑝2) … 𝜈(𝑥1, 𝑝𝑚)
𝜈(𝑥2, 𝑝1) 𝜈(𝑥2, 𝑝2) … 𝜈(𝑥2, 𝑝𝑚)

⋮ ⋮ ⋱ ⋮
𝜈(𝑥𝑛, 𝑝1) 𝜈(𝑥𝑛, 𝑝2) … 𝜈(𝑥𝑛, 𝑝𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

𝑥𝑖 represents the 𝑖-th training instance, 𝑝𝑗 the 𝑗-th prototype, and 𝜈 the
estimated dissimilarity function. The resulting matrix 𝐷(𝑇 ,𝑅) can then
be used to train a standard classification model.

The testing sample can be formulated as follows:
𝐷′(𝑡𝑘, 𝑅) =

[

𝜈(𝑡𝑘, 𝑝1) 𝜈(𝑡𝑘, 𝑝2) … 𝜈(𝑡𝑘, 𝑝𝑚)
]

𝑡𝑘 and 𝑝𝑗 represent the 𝑘-th test instance and the 𝑗-th prototype, respec-
tively. The resulting 𝐷′(𝑡𝑘, 𝑅) vector has the same number of columns as
𝐷(𝑇 ,𝑅), allowing the use of the previously trained classification model.

3.2.3. Dissimilarity vector
The dissimilarity vector representation generates samples by taking

the differences between input features and prototypes, treating each
input-prototype pair as an independent example. Rather than first ex-
tracting embeddings and then applying a fixed norm, we propose to
preserve the end-to-end metric-learning pipeline. The main challenge is
that our proposed dissimilarity function is designed to produce a single
scalar per input-prototype pair. To improve robustness, we propose gen-
erating 𝑤 small variations of each input, where 𝑤 denotes the number of
stochastic augmentations drawn per sample, allowing the computation
of multiple dissimilarity values between the input and a given prototype.

Classical augmentation techniques, such as random crops, flips, color
jitter, and others, supply the required variants. This multi-view augmen-
tation scheme not only preserves our end-to-end learning, but also im-
proves robustness by capturing local variation around each point, sum-
marizing both geometric and augmentation-induced variability.

Given 𝑥𝑖𝑗 representing the 𝑖-th class and 𝑗-th training sample, 𝑝𝑖𝑘 the
𝑖-th class and 𝑘-th prototype, and 𝜈 the dissimilarity function. Instead
of producing a single scalar, we draw 𝑤 stochastic variants of 𝑥𝑖𝑗 us-
ing random augmentations, then for each, pair with the corresponding
prototype and compute their dissimilarity, forming a vector of 𝑤 dissim-
ilarity values that captures how consistently the sample diverges from
prototype 𝑝𝑗 under plausible perturbations. The resulting concatenated
vector 𝜈′(𝑥𝑖𝑗 , 𝑝𝑖𝑘) can be expressed as

𝜈′(𝑥𝑖𝑗 , 𝑝𝑖𝑘) =
[

𝜈(𝑥1𝑖𝑗 , 𝑝𝑖𝑘) 𝜈(𝑥2𝑖𝑗 , 𝑝𝑖𝑘) … 𝜈(𝑥𝑤𝑖𝑗 , 𝑝𝑖𝑘)
]

Each concatenated vector 𝜈′(𝑥𝑖𝑗 , 𝑝𝑖𝑘) is then assigned a binary label: ⊕
if the image and prototype belong to the same class and ⊖ if they come
from different classes. Considering a task with 𝑛 classes, 𝑚 images per
class, and 𝑚′ prototypes per class, the positive set is defined as
𝑇⊕ = 𝜈′(𝑥𝑖𝑗 , 𝑝𝑖𝑘) where 𝑖 = 1 to 𝑛, 𝑗 = 1 to 𝑚, 𝑘 = 1 to 𝑚′

and the negative set as
𝑇⊖ = 𝜈′(𝑥𝑖𝑗 , 𝑝𝑘𝑙) where 𝑖, 𝑘 = 1 to 𝑛, 𝑖 ≠ 𝑘, 𝑗 = 1 to 𝑚, 𝑙 = 1 to 𝑚′

A conventional classifier can then be trained on 𝑇 = 𝑇⊕ ∪ 𝑇⊖.
During testing, each input is again augmented 𝑤 times and paired

with every prototype, generating 𝑖 𝑘 vectors (where 𝑖 denotes the num-
ber of classes and 𝑘 the number of prototypes per class). The classifier

outputs one probability per vector, representing the likelihood that the
test image belongs to the prototype’s class. These prototype-level prob-
abilities are consolidated into a single score per class through an aggre-
gation step. Two straightforward options are (i) computing the mean of
the probabilities for all prototypes in the class or (ii) selecting the maxi-
mum probability among the prototypes of the class. Other pooling rules,
such as the geometric mean, the median, or a weighted sum, can also
be applied. After aggregation, the sample is assigned to the class with
the highest pooled score.

3.3. Open set recognition (phase 3)

Closed-set recognition is a scenario where a machine learning model
is trained and tested on a fixed set of classes, with every test sample be-
longing to one of these known classes. Let  denote the input space, and
 = {𝑦1, 𝑦2,… , 𝑦𝐶} represent the set of 𝐶 known classes. We can formally
define the training set as train = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊆  ×  and the test set as
test-closed = {(𝑥𝑖, 𝑦𝑖)}𝑀𝑖=1 ⊆  × . For each test sample 𝑡 ∈ test-closed, the
model outputs a probability distribution 𝑝(𝑦|𝑡) over the known classes.

The open-set recognition problem is very similar, but it introduces
the possibility of encountering samples during testing that do not be-
long to any of the known classes. The test set can be defined as
test-open = {(𝑥𝑖, 𝑦𝑖)}𝑀𝑖=1 ⊆  × ( ∪). In this setting, for each test sam-
ple 𝑡 ∈ test-open, the model returns a probability distribution over the
known classes 𝑝(𝑦|𝑡, 𝑦 ∈ ) and a score (𝑦 ∈ |𝑡) that indicates whether
the sample belongs to one of the known class, usually referred as open-
set score.

As previously mentioned, many complex methods have been devel-
oped to tackle open-set recognition and estimate the open-set score,
and it has been shown that a well-trained closed-set classifier can per-
form on par with many of the recent proposals [6]. Thus, we adopted
a closed-set classifier as our baseline using a traditional training strat-
egy using cross-entropy loss between a one-hot target vector and the
softmax output 𝑝(𝑦|𝑡). In this way, the probability distribution over the
known classes is straightforward, and the open-set score can be calcu-
lated using two approaches: i) maximum softmax probability (MSP):
(𝑦 ∈ |𝑡) = 𝑚𝑎𝑥𝑦∈ 𝑝(𝑦|𝑡); ii) maximum logit score (MLS): (𝑦 ∈ |𝑡) =
𝑚𝑎𝑥𝑦∈ 𝑧(𝑦|𝑡), where 𝑧(𝑦|𝑡) represents the logit output for a known class
given sample 𝑡 [6]. The logits are the values output by the final layer of a
deep classifier before softmax, and as such, they are capable of retaining
more feature magnitude information.

In this work, we also propose the use of dissimilarity values as the
open-set score. The idea is that the dissimilarity represents the differ-
ence between samples and serves as a reliable indicator of whether a
sample belongs to a known class. Specifically, we propose the minimum
dissimilarity score (MDS): (𝑦 ∈ |𝑡) = min𝑧∈{1,…,𝑚} 𝜈(𝑡, 𝑝𝑧) where 𝜈(𝑡, 𝑝𝑧)
represents the dissimilarity between the sample 𝑡 and prototype 𝑝𝑧, and
𝑚 is the total number of prototypes. This score reflects the smallest dis-
similarity value among all prototypes, indicating the closest match, and
serves as an excellent proxy for the likelihood of 𝑡 belonging to the
known class .

Given that we are proposing a metric learning approach to estimate
a task-specific dissimilarity function, the effectiveness is highly depen-
dent on the loss function used. The triplet dissimilarity loss functions
as expected, generating smaller values for similar samples while never
producing negative values. In contrast, our proposed contrastive loss
skips the cosine similarity, which makes it generate higher values for
similar samples while also allowing negative values, to ensure proper
dissimilarity values for the minimum dissimilarity score, we invert the
contrastive loss.

4. Experimental setup

In our experiments, following prior research [12,13], we employ a
standard deep model as a baseline and compare it with our proposed
methods: triplet and contrastive dissimilarity. The model is trained on

Knowledge-Based Systems 327 (2025) 114108

6

L. O. Teixeira et al.

a subset of classes, with the remaining classes reserved for evaluation
as unseen classes. We evaluate performance under three distinct sce-
narios: i) standard OSR benchmark datasets, ii) class scaling, where
the number of unseen classes varies, and iii) Semantic Shift Benchmark
(SSB).

CIFAR-10 and SVHN serve as the standard object- and digit-
recognition benchmarks. They test whether the model can draw a clear
boundary between known and unknown classes in small natural im-
ages. DTD and FMD address texture and material recognition under class
scaling. By withholding varying fractions of classes at evaluation, they
show how performance changes as the unseen set grows. CUB, Aircraft,
and Cars form the Semantic-Shift Benchmark (SSB). These fine-grained
datasets contain many classes that differ only in subtle visual details,
challenging the model to reject unseen classes whose appearance is close
to that of known classes. The SSB further divides the unseen classes into
easy and hard groups, providing a controlled range of semantic distance.
Together, the three scenarios cover the key challenges in open-set recog-
nition.

All experiments intentionally fix the representational capacity of
the backbone to isolate algorithmic effects. We train a VGG-32 from
scratch for the standard benchmarks (CIFAR-10, SVHN) and fine-tune
ImageNet-1K pre-trained EfficientNet-V2 and ResNet-50 for the class
scaling and SSB (DTD, FMD, CUB, Cars, Aircraft). Embedding size, in-
put resolution, optimizer, and training recipes are kept constant across
baselines and proposed methods. Under this controlled setting, the MLS
baseline computed on the same network is the most informative baseline
for our context.

Additionally, we provide details on our proposed method, its com-
ponents, and the training and evaluation protocols standard across all
benchmarks.

4.1. Standard benchmarks

In the first set of benchmarks, we use popular datasets for OSR:
CIFAR-10 [39] and SVHN [40]. CIFAR-10 contains a diverse collec-
tion of real-world images representing various animals and vehicles,
with a total of 60,000 images - 50,000 for training and 10,000 for test-
ing. SVHN contains individual digits extracted from street-view house
numbers, with a total of 73,257 images for training and 26,032 im-
ages for testing. Both datasets contain ten classes, with images sized at
32×32 pixels.

Training is conducted using six classes, with the remaining four
classes serving as unseen classes (|𝐶| = 6, |𝑈 | = 4), following a 5-fold
cross-validation evaluation varying the selection of seen and unseen
classes.

4.2. Class scaling benchmark

For the class scaling benchmark, we use two popular texture datasets:
Describable Textures Dataset (DTD) [41] and Flickr Material Database
(FMD) [42]. The DTD dataset includes 47 classes of textures based on
their perceptual properties, containing a diverse range of patterns such
as striped, dotted, and chequered, with a total of 5640 images. The
FMD dataset is a collection of various real-world materials, including
ten classes, such as fabric, glass, metal, wood, and plastic, containing
1000 images. In both cases, the image sizes are variable, and we stan-
dardize them to 224×224 pixels prior to training.

In this setup, we vary the proportion of classes reserved as unseen
classes from 10% (|𝐶| = 90%, |𝑈 | = 10%) to 50% (|𝐶| = 50%, |𝑈 | =
50%), for each, we apply a 5-fold cross-validation evaluation varying the
selection of seen and unseen classes. In the case of DTD, we gradually
increase the number of unseen classes from approximately 5 (∼ 10%)
to 23 (∼ 50%) classes; similarly, for FMD, the number of unseen classes
varies from 1 to 5.

4.3. Semantic shift benchmark

The last and most crucial experiment leverages the Semantic Shift
Benchmark (SSB) [6], which is designed explicitly for open-set recogni-
tion and related tasks, focusing on isolating semantic novelty from other
types of distributional shifts. The SSB suite comprises three fine-grained
datasets: Caltech: UCSD Birds (CUB) [43], FGVC-Aircraft [44], and Stan-
ford Cars [45]; as well as a large-scale ImageNet benchmark. In all cases,
we standardize the training and testing samples to 224×224 pixels prior
to training.

The SSB suite provides specific splits for seen and unseen classes for
each dataset. Unseen classes are further categorized into three levels of
difficulty: easy, medium, and hard. The harder the category, the more
visually and semantically similar it is to a known class. We evaluate our
methods on both the easy and hard splits across all datasets, merging
the medium and hard into a single group. The training/testing split used
is the standard for each dataset, and training samples belonging to an
unseen class are disregarded; thus, the number of images used in our
experiments does not match the total number of available images per
dataset.

In our experiments, we concentrated on the three fine-grained
datasets: CUB, Aircraft, and Cars. The CUB dataset comprises 11,788
images spread across 200 bird species classes, of which 100 are known
classes (with 2997 training images and 2884 test images), and the re-
maining unknown classes are divided into 32 easy classes (915 test im-
ages), 34 medium classes (1,004 test images), and 34 hard classes (991
test images). The Aircraft dataset consists of 10,200 images across 100
classes of aircraft variants, of which 50 classes are known (3,332 train-
ing images and 1668 test images), and the unknown classes are further
split into 20 easy classes (667 test images), 17 medium classes (565 test
images), and 13 hard classes (433 test images). The Cars dataset includes
16,185 images spanning 196 car models categorized by make, model,
and year; 98 are known classes (4,020 training images and 3948 test
images), with the remaining classified into 76 easy classes (3,170 test
images) and 22 hard classes (923 test images).

4.4. Representation and metric learning

The representation component uses a convolutional neural network
to map raw images to representative embeddings. For the standard
benchmark, we trained a VGG32 network from scratch. For the class
scaling and SSB benchmarks, we used EfficientNetV2 with pre-trained
ImageNet-1K weights. For the SSB benchmark, we also evaluated a pre-
trained ResNet50 to analyze the effect of different network architectures
on performance.

Since EfficientNetV2 and ResNet50 were pre-trained on ImageNet-
1K, we modified their top layers to suit our tasks. The original classifi-
cation head is replaced by a three-layer fully connected network whose
widths scale with the target embedding dimension 𝑒: [4𝑒, 2𝑒, 𝑒].

To ensure consistency and facilitate comparison across methods, we
standardized the embedding size to 128 across all experiments. This
size matches the dimensionality of the final layer in VGG32. Although
VGG32 was specifically used only in the standard benchmark, we main-
tained the 128-dimensional embedding size for the class scaling and SSB
benchmarks as well. The reason for this choice is twofold: i) we aimed
to keep as many parameters as possible consistent across methods to en-
able a fair comparison; ii) fine-tuning these parameters for each dataset
would require substantial computational resources due to the large num-
ber of hyperparameters involved.

The projection head, which estimates the task-specific dissimilarity
function, is another three-layer fully connected block sized [𝑒, 𝑒∕2, 𝑒∕4].
The architecture is intentionally kept simple to balance computational
efficiency while still providing sufficient capacity to model non-linear
relationships.

Knowledge-Based Systems 327 (2025) 114108

7

L. O. Teixeira et al.

4.5. Dissimilarity

The first step in the dissimilarity representation is prototype selec-
tion, where prototypes are obtained as the centroids produced by greedy
K-means++ clustering [46], whose improved initialization typically
yields higher quality clusters than standard K-means. For the standard
and class-scaling benchmarks, the number of prototypes was set to 5,
whereas for SSB, it was set to 20 due to its greater complexity. The op-
timal number of prototypes was determined by holding out 20% of the
training data as a validation set and selecting the number that maxi-
mized classification accuracy. In one of our previous works, we eval-
uated multiple clustering algorithms and found minimal differences in
performance, leading us to choose K-means++ for its popularity and
efficiency [13].

The dissimilarity between samples and prototypes is computed in an
end-to-end manner through the projection head. For the dissimilarity
space approach, as previously described, it is straightforward to create
a matrix representation and apply a standard classifier. In the dissimilar-
ity vector approach, the projection head still outputs a single score for
every sample-prototype pair, but instead of stochastic augmentations,
we kept the procedure deliberately simple. For each image, we system-
atically extracted regular patches, consisting of 25 fixed 28 × 28 crops
on the standard benchmarks and 100 fixed 200 × 200 crops on the class-
scaling and SSB suites, without applying any geometric or photometric
transformations. To reduce local noise and improve numerical stability,
we averaged the scores every five crops, reducing the resulting multi-
view dimensionality to 5 for the standard benchmarks and 20 for class-
scaling and SSB.

4.6. Open set recognition

As previously mentioned, following the standard method in other
OSR studies, we restrict our scope to classifying known known classes
(KKCs) and rejecting unknown unknown classes (UUCs).

In the baseline models, we evaluated two strategies for the open-set
score: Maximum Softmax Probability (MSP) and Maximum Logit Score
(MLS). In our proposed method, we introduce the Minimum Dissimilar-
ity Score (MDS) as the primary open-set recognition strategy. Addition-
ally, since our dissimilarity-based approaches employ a standard clas-
sifier, we can also estimate the probability of each class and apply the
MSP strategy.

We report three evaluation metrics: closed-set accuracy, the
threshold-free Area Under the Receiver Operating Characteristic curve
(AUROC) for open-set scenarios, and OpenAUC [30]. The AUROC is
standard practise in the OSR literature, however it has an important
limitation: it does not take into account the closed-set performance, thus
the overall performance needs to be evaluated in a separate manner.

OpenAUC is defined as the area under the Open-Set False Positive
Rate (OFPR) and Conditional True Positive Rate (COTPR) curve. OFPR
represents the probability that a model misclassifies an open-set sample
as belonging to one of the known classes, while COTPR denotes the
probability that a model correctly classifies a known-class sample given
that it outputs a high confidence score for the correct class. OpenAUC
thus integrates both closed-set and open-set performance by evaluating
how well the model ranks open-set samples lower than close-set ones.

4.7. Training and evaluation protocol

The training protocol for the baseline models follows the protocol
proposed by Vaze et al. [6] and PyTorch training primitives.1 Training
was conducted for 600 training epochs, cosine-annealed learning rate
with warm restarts at epochs 200 and 400, a 20-epoch linear warmup,

1 https://pytorch.org/blog/how-to-train-state-of-the-art-models-using\
-torchvision-latest-primitives/

SGD with momentum, batch size of 128 for the standard benchmarks
and 32 for the larger fine-grained sets, and five known/unknown class
splits.

Key deviations from Vaze et al. [6] are as follows: (i) we omit Ran-
dAugment and rely exclusively on the Albumentations transforms listed
below; (ii) following the torchvision recipe, we adopt patch training, and
for the class-scaling and SSB suites initialize from ImageNet-1K weights
instead of the MoCoV2-Places checkpoint; (iii) all images are resized to
224 × 224 (rather than 448 × 448) due to hardware constraints. Consid-
ering these departures, especially the lower resolution, we were unable
to reproduce the exact accuracies reported in the literature and from
reaching state-of-the-art performance on some datasets. Thus, our anal-
ysis focuses on the relative improvements over a consistently trained
baseline, which was trained and evaluated under identical conditions as
our proposal.

Table 1 presents the set of hyperparameters used in our experiments
for each method. One of our primary concerns was to ensure a fair com-
parison between our proposed methods and the baseline; to do so, we
maintained consistent hyperparameters whenever possible across dif-
ferent methods. For instance, the VGG32 model employs a single fully
connected layer with 128 neurons; consequently, we maintained an em-
bedding size of 128 across all benchmarks. The number of iterations
was set according to the dataset size, ensuring that larger datasets re-
ceived a comparable number of iterations to match the 600 epochs used
for the baseline model. The hyperparameters were fine-tuned by creat-
ing a validation set from 20% of the training data selected at random.
The standard benchmark models were trained from scratch, while the
models for the class scaling and SSB benchmarks were initialized with
pre-trained weights from ImageNet-1K.

A brief note on optimization difficulties: while SVHN ultimately
reached competitive accuracy, achieving stable convergence with the
triplet dissimilarity was particularly troublesome. To mitigate this, we
first trained for 50 epochs using cross-entropy loss before reverting to
triplet loss, a warm-start strategy consistent with reports that triplet
loss is hard to optimize from scratch [14,47,48]. By contrast, CIFAR-
10 trained smoothly with triplet loss alone.

Table 1
Training and evaluation hyperparameters.
 Method Parameter Standard Class scaling SSB

Common
 Batch size 128 32 32
 Patch size 28×28 200×200 200×200
 Optimizer SGD SGD SGD

Proposal

 Embedding size 128 128 128
 Temperature 𝜏 0.5 0.5 0.005
 Margin 𝛼 1.0 1.0 2.0
 Iterations 250,000 30,000 40,000
 Top layers warmup iters. - 1000 1000
 Top layers warmup LR - 0.01 0.01
 Learning rate 0.01 0.001 0.001

Baseline

 Epochs 600 600 600
 Top layers warmup epochs - 20 20
 Top layers warmup LR - 0.1 0.01
 Learning rate 0.1 0.01 0.001

Table 2
Data augmentation parameters.
 Transformation Parameters
 Flip –
 Rotate Limit = 90
 Random brightness Limit = 20
 Random contrast Limit = 20
 Gaussian blur Limit = (3, 7)

Knowledge-Based Systems 327 (2025) 114108

8

https://pytorch.org/blog/how-to-train-state-of-the-art-models-using\-torchvision-latest-primitives/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using\-torchvision-latest-primitives/

L. O. Teixeira et al.

We used data augmentation techniques during training using the Al-
bumentations library [49], which are listed in Table 2 along with their
parameters. For SVHN, we turn off flips and restrict rotations to ±30◦
to avoid ambiguities between six and nine. Each transformation was
applied with a default probability of 50%.

To maintain fairness, we avoided using advanced data augmentation
techniques, such as RandAugment [50] or ensembling methods, which
could introduce additional variability and bias in performance evalua-
tion. Instead, our approach focused on standard, well-established aug-
mentation methods and training strategies to provide a consistent basis
for comparing the proposed methods with the baseline models.

The dissimilarity-based approaches produce a feature representation
that can be used to train a standard classifier. We chose logistic regres-
sion from the scikit-learn library [46] for its simplicity and effectiveness,
avoiding more complex classifiers to ensure that the performance gains
are attributed to our proposed method rather than the complexity of the
downstream classifier.

5. Results and discussion

This section presents an extensive empirical analysis of our proposed
dissimilarity-based approaches on standard OSR benchmarks, class scal-
ing scenarios, and the Semantic Shift Benchmark (SSB). We compare our
methods: Triplet Dissimilarity Space (TDS), Triplet Dissimilarity Vector
(TDV), Contrastive Dissimilarity Space (CDS), and Contrastive Dissimi-
larity Vector (CDV); against a baseline model using Maximum Softmax
Probability (MSP) and Maximum Logit Score (MLS) as open-set scoring
strategies. The evaluation metrics include closed-set accuracy (Acc𝑘),
AUROC for open-set detection, and OpenAUC, providing a holistic view
of both classification performance and open-set recognition capabilities.

Table 3 summarizes the results on the CIFAR-10 and SVHN datasets.
Our proposed methods consistently outperform the baseline in both
closed-set accuracy and AUROC for open-set detection; thus, we decided
to omit OpenAUC in this scenario due to its redundancy.

On the CIFAR-10 dataset, the contrastive dissimilarity methods (CDS
and CDV) achieved the highest closed-set accuracies, with CDV reaching
91.4%, surpassing the baseline by 2 percentage points. The AUROC val-
ues for open-set detection also improved significantly, with CDS attain-
ing 78.3% compared to 72.2% for the baseline. For the SVHN dataset,
CDV achieved the highest closed-set accuracy of 97.3%, outperforming
the baseline by 3.3 percentage points. The AUROC increased substan-
tially as well, with CDS reaching 94.1%, an improvement of 4.8 per-
centage points over the baseline.

Table 4 presents the results for the class scaling benchmark on the
DTD and FMD datasets. Our methods consistently outperformed the
baseline across different proportions of unseen classes. The contrastive
dissimilarity methods (CDS and CDV) particularly demonstrated supe-
rior performance in both closed-set accuracy and AUROC.

As we increased the proportion of unseen classes in the class scal-
ing benchmarks, our proposed methods maintained robust performance

Table 3
Standard benchmark results.

Method
 CIFAR-10 SVHN
 Acc𝑘 AUROC Acc𝑘 AUROC

Baseline
 MSP

89.4 (2.5) 72.2 (3.6)
94.0 (0.7) 88.1 (1.6)

 MLS 71.2 (3.6) 89.3 (1.6)

TDS
 MSP

89.4 (2.2) 73.8 (2.4)
96.7 (0.6) 91.7 (1.3)

 MDS 69.6 (2.6) 82.5 (7.3)
TDV

 MSP
88.9 (2.5) 75.7 (3.8)

96.1 (0.9) 88.8 (2.8)
 MDS 65.1 (3.4) 80.1 (7.7)

CDS
 MSP

91.3 (1.9) 78.3 (2.4)
97.1 (0.3) 94.1 (0.8)

 MDS 76.4 (2.6) 93.2 (0.8)
CDV

 MSP 91.4 (1.8) 77.4 (2.8) 97.3 (0.3) 93.3 (0.9)
 MDS 76.7 (2.7) 93.0 (0.9)

improvements over the baseline on both datasets. The CDV maintained
high closed-set accuracy across the splits, starting from 75% accuracy at
10% unseen classes and progressively increasing to 82% at 50% unseen
classes. In comparison, the baseline accuracy improved from 69.3% to
80% over the same range. The AUROC for the contrastive dissimilar-
ity methods consistently surpassed the baseline; at 10% unseen classes,
CDS and CDV achieved an AUROC of 74.7% and 74.9% compared to
66.8%, marking an 8.1 percentage points improvement. At 50% unseen
classes, both CDS and CDV attained an AUROC of approximately 80%,
11.9 percentage points higher than the baseline.

Similarly, on the FMD dataset, our methods maintained high closed-
set accuracy across all proportions of unseen classes. The TDS method
achieved accuracies ranging from 86.8% at 10% unseen classes to
90.1% at 50% unseen classes, consistently outperforming the baseline,
which ranged from 71.9% to 89.4%. In terms of AUROC, the CDV
method showed consistent improvements over the baseline. At 10%

Table 4
Class scaling benchmark results.

Split Method
 DTD FMD
 Acc𝑘 AUROC Acc𝑘 AUROC

10%

Baseline
 MSP

69.3 (1.6) 66.8 (3.6)
71.9 (2.7) 60.2 (3.9)

 MLS 66.5 (3.8) 60.8 (3.4)
TDS

 MSP
69.6 (0.8) 64.5 (2.3) 86.8 (0.7) 70.6 (9.9)

 MDS 73.6 (3.7) 73.1 (8.9)
TDV

 MSP
69.0 (1.4) 70.9 (5)

86.6 (1.1) 71.3 (4.9)
 MDS 73.7 (3.7) 71.9 (8.5)

CDS
 MSP

75.0 (2) 73.5 (4.2)
86.0 (1.7) 72.7 (9.6)

 MDS 74.7 (4.2) 73.8 (11)
CDV

 MSP 75.0 (1.7) 73.7 (4.5)
86.3 (0.9) 72.3 (14.2)

 MDS 74.9 (4) 73.9 (11.8)

20%

Baseline
 MSP

73.6 (0.9) 67.5 (2.4)
86.0 (2.4) 73.9 (2)

 MLS 67.3 (2.4) 73.7 (2.4)
TDS

 MSP
71.8 (1.6) 66.8 (0.9)

88.6 (2.2) 79.7 (1.1)
 MDS 74.7 (3.5) 81.1 (1.3)

TDV
 MSP

71.2 (1.9) 73.6 (3.6) 89.1 (1.9) 78.5 (2.4)
 MDS 74.8 (3.4) 81.4 (1.7)

CDS
 MSP

76.8 (1.4) 74.9 (3.9)
88.0 (1.6) 79.3 (3)

 MDS 76.1 (4) 80.1 (2.7)
CDV

 MSP 77.0 (1.5) 75.0 (4.5)
88.3 (2) 80.1 (2.3)

 MDS 76.3 (4) 80.5 (2.5)

30%

Baseline
 MSP

73.8 (1.8) 68.5 (2.7)
86.9 (1.9) 75 (3.5)

 MLS 68.2 (2.8) 75.2 (3.3)
TDS

 MSP
73.0 (2.2) 68 (1.1)

89.3 (1.8) 79.3 (2.6)
 MDS 75.7 (1) 79.4 (4.5)

TDV
 MSP

72.8 (2.4) 73.3 (1.7) 90.2 (1.2) 78.9 (2.9)
 MDS 75.7 (0.9) 79.7 (4.7)

CDS
 MSP

77.2 (1.6) 75.3 (2.3)
89.7 (3.4) 78 (2.8)

 MDS 77.6 (2.3) 79.1 (2.9)
CDV

 MSP 77.3 (1.7) 75.2 (2.7)
89.4 (3) 79.0 (2.2)

 MDS 77.8 (2.4) 79.4 (3)

40%

Baseline
 MSP

75.1 (1.6) 66.9 (2.7)
75.2 (2.4) 64.4 (2)

 MLS 66.6 (2.9) 64.6 (2.4)
TDS

 MSP
75.5 (2.2) 71.2 (2) 90.3 (1.9) 77.8 (2.3)

 MDS 76.0 (0.8) 79.0 (2.3)
TDV

 MSP
75.1 (2.4) 74 (1.2)

90.1 (2) 77.6 (2.2)
 MDS 76.1 (0.9) 79.6 (2.7)

CDS
 MSP

78.3 (1.8) 74.4 (2)
87.6 (3.4) 76.8 (1)

 MDS 76.3 (1.8) 77.8 (1.1)
CDV

 MSP 79.0 (1.4) 75.0 (1.4)
87.9 (3.2) 76.9 (1)

 MDS 76.2 (2) 78.0 (1.4)

50%

Baseline
 MSP

80.0 (3.6) 68.1 (1.6)
89.4 (4.2) 76.7 (4.1)

 MLS 68.1 (1.7) 76.7 (4.1)
TDS

 MSP
80.0 (2.2) 75.3 (2.6)

90.1 (3.5) 78.9 (5.4)
 MDS 79.1 (1.9) 79.7 (5.6)

TDV
 MSP

80.5 (2.5) 76.5 (2.4) 90.1 (3.8) 77.1 (4)
 MDS 79.2 (2) 80.0 (5.1)

CDS
 MSP

81.8 (2.1) 78.5 (2.7)
88.8 (3) 78.6 (4)

 MDS 80.0 (2.6) 79.6 (4.3)
CDV

 MSP 82.0 (1.9) 78.9 (3.1)
89.1 (3.4) 76.4 (7.2)

 MDS 79.9 (2.6) 79.3 (4.5)

Knowledge-Based Systems 327 (2025) 114108

9

L. O. Teixeira et al.

Table 5
Semantic shift benchmark results.

Dataset Method
 EffNetV2S ResNet50
 Acc𝑘 AUROC OpenAUC Acc𝑘 AUROC OpenAUC

CUB

Baseline
 MSP 90.4 88.9/82.1 83.5/78.2

86.9
 86.9/79.1 79.5/73.5

 MLS 89.6/82.2 84.0/78.0 86.8/78.8 79.4/73.0
TDS

 MSP
80.8

 71.3/67.1 62.8/59.4
76.6

 70.9/65.9 60.0/56.2
 MDS 86.2/70.8 73.0/61.7 84.4/70.0 68.8/58.7

TDV
 MSP

81.9
 86.4/71.5 73.5/62.3

78.1
 85.1/71.1 69.6/59.7

 MDS 86.5/70.6 73.4/61.4 83.9/70.0 68.8/58.8
CDS

 MSP
87.7

 86.5/78.9 79.8/74.0
83.3

 78.2/75.5 70.2/68.4
 MDS 87.8/77.5 80.5/72.5 85.1/76.4 75.9/69.9

CDV
 MSP

88.4
 88.0/78.0 81.1/73.2

85.8
 85.5/77.0 77.5/71.3

 MDS 88.1/77.4 81.0/72.5 85.4/76.3 77.4/70.7

Aircraft

Baseline
 MSP

85.9
 86.9/76.9 79.1/71.0

82.7
 81.6/74.8 72.4/67.2

 MLS 88.0/77.3 79.7/71.0 82.4/75.1 72.8/67.1
TDS

 MSP
77.3

 55.5/54.9 49.1/48.4
75.2

 53.7/53.9 46.2/46.2
 MDS 84.9/72.3 69.5/59.8 80.5/73.4 64.6/59.1

TDV
 MSP

75.8
 84.5/71.8 67.5/57.9

73.3
 79.9/73.6 62.1/57.4

 MDS 84.4/71.6 67.3/57.5 80.5/73.8 62.3/57.4
CDS

 MSP
86.3

 84.7/75.0 77.6/69.6
82.0

 70.6/69.7 62.9/62.2
 MDS 86.2/76.3 78.9/70.5 80.8/74.5 71.9/67.3

CDV
 MSP 86.7 86.9/76.9 79.9/71.4

84.2
 80.6/74.4 72.8/68.1

 MDS 87.4/77.4 80.4/71.8 80.5/74.6 72.8/68.1

Cars

Baseline
 MSP

93.6
 90.7/81.8 87.1/78.9

90.4
 89.1/81.1 83.5/76.7

 MLS 90.8/81.6 87.1/78.6 89.3/81.1 83.4/76.5
TDS

 MSP
82.6

 68.7/67.2 61.5/60.1
78.2

 64.5/63.0 55.8/54.6
 MDS 84.0/78.9 73.1/69.2 79.2/74.5 66.4/62.8

TDV
 MSP

82.8
 84.9/80.0 73.5/69.8

78.6
 80.2/75.4 66.6/63.0

 MDS 83.6/78.8 72.4/68.7 79.3/75.2 65.9/62.8
CDS

 MSP
92.5

 87.1/82.2 83.3/79.0
91.6

 88.8/81.2 84.5/77.9
 MDS 89.8/83.7 86.0/80.4 88.6/81.5 84.2/78.1

CDV
 MSP 93.7 90.3/84.4 87.0/81.6

92.2
 88.9/82.1 84.7/78.8

 MDS 90.1/84.2 86.8/81.4 88.5/81.8 84.4/78.6

unseen classes, it achieved an AUROC of 73.9%, compared to 60.8%.
This performance was sustained as the proportion of unseen classes in-
creased, at 50%, TDS achieved an AUROC of 79.7%, surpassing the
baseline by approximately 3 percentage points.

On the Semantic Shift Benchmark (SSB), we evaluated our methods
on three fine-grained datasets: CUB, Aircraft, and Cars, using both Effi-
cientNetV2S and ResNet50 architectures. Table 5 shows our results with
closed-set accuracy (Acc𝑘), as well as AUROC and OpenAUC metrics for
open-set detection, reported separately for the easy and hard unknown
classes (reported as easy/hard).

On the CUB dataset, CDV achieved closed-set accuracies close to the
baseline: 88.4% with EfficientNetV2S and 85.8% with ResNet50, com-
pared to the baseline of 90.4% and 86.9%, respectively. In open-set
recognition, CDV demonstrated competitive performance with Efficient-
NetV2S, CDV attained AUROC scores of 88.1% (easy) and 78% (hard),
compared to the baseline of 89.6% and 82.2%. OpenAUC scores for CDV
were 81.1% (easy) and 73.2% (hard), again lower than the baseline.

For the Aircraft dataset, CDV surpassed the baseline in both archi-
tectures; using EfficientNetV2S, CDV achieved a closed-set accuracy of
86.7%, exceeding the baseline of 85.9%; on ResNet50, CDV reached
84.2% versus the baseline of 82.7%. In open-set, CDV with Efficient-
NetV2S attained AUROC scores of 87.4% (easy) and 77.4% (hard),
slightly higher than the baseline. OpenAUC scores for CDV were also
improved, reaching 80.4% (easy) and 71.8% (hard).

In the Cars dataset, CDV achieved closed-set accuracies of 93.7%
with EfficientNetV2S and 92.2% with ResNet50, closely surpassing the
baseline of 93.6% and 90.4%. Notably, CDV improved AUROC and Ope-
nAUC scores for hard unknown classes; with EfficientNetV2S, CDV at-
tained AUROC scores of 90.3% (easy) and 84.4% (hard), compared to
the baseline of 90.8% and 81.8%. OpenAUC scores for CDV were 87%
(easy) and 81.6% (hard), exceeding the baseline in the hard set.

In all cases, similar trends to EfficientNetV2S were observed with
ResNet50, indicating consistent performance across different network
architectures.

5.1. Closed- and open-set correlation

We evaluated the correlation between closed-set classification ac-
curacy and open-set performance (measured using AUROC), Fig. 4, by
focusing exclusively on the best-performing open-set scoring methods:
MLS and MDS. To keep the results clear, we used only the 60/40 in-class
scaling benchmark and limited the scope to the EfficientNet architec-
ture. This yielded a Pearson correlation of 𝑟 = 0.51 (p < 0.001, 95% CI
[.37, 0.63]), indicating a moderate positive relationship between closed-
set accuracy and open-set performance. These results suggest that, al-
though improvements in closed-set accuracy generally correlate with
better open-set performance, the strength of this relationship is moder-
ate within the scope of our work.

5.2. Baseline versus dissimilarity

Across all experiments, the proposed methods demonstrated notable
improvements over the baseline. First, the baseline method achieved
a mean closed-set accuracy of 81.1%. In comparison, TDS achieved a
mean accuracy of 83%, an absolute increase of 1.9 percentage points
(t(65) = 2.21, p = 0.031); similarly, TDV attained a mean accuracy of
82.9%, an increase of 1.8 percentage points (t(65) = 2.07, p = 0.042);
CDS achieved a mean accuracy of 85%, an absolute improvement of 3.9
percentage points over the baseline (t(65) = 6.39, p = < 0.001); CDV
further improved the mean accuracy to 85.3%, surpassing the baseline
by 4.2 percentage points (t(65) = 6.94, p = < 0.001).

Analyzing open-set performance, the MLS baseline achieves a mean
AUROC of 72.8%. In comparison, TDS attains a mean AUROC of 77.2%,
representing an absolute increase of 4.4 percentage points (t(71) =
4.55, p < 0.001); TDV achieves a mean AUROC of 76.7%, an increase
of 3.9 percentage points over MLS (t(71) = 3.79, p < 0.001). CDS has
a mean AUROC of 79.3%, an absolute improvement of 6.5 percentage
points over MLS (t(71) = 8.95, p < 0.001); and, CDV attains the highest

Knowledge-Based Systems 327 (2025) 114108

10

L. O. Teixeira et al.

Fig. 4. Correlation between closed-set accuracy and AUROC.

mean AUROC of 79.5%, surpassing MLS by 6.7 percentage points (t(71)
= 9, p < 0.001). In both cases, the results are statistically significant,
with CDS and CDV achieving the largest performance gains.

5.3. Triplet versus contrastive objectives

We compared the performance of the triplet and contrastive learn-
ing methods across all experiments. In terms of closed-set classification
accuracy, triplet learning achieved a mean Acc𝑘 of 82.9%, while con-
trastive learning attained a higher mean Acc𝑘 of 85.2%, representing an
absolute increase of 2.3 percentage points (t(131) = 6.74, p < 0.001).
For open-set recognition performance, triplet learning achieved a mean
AUROC of 75.9%, and contrastive learning improved upon this with
a mean AUROC of 78.9%, an absolute increase of 3 percentage points
(t(287) = 9.09, p < 0.001). In both cases, contrastive learning achieves
a higher and statistically significant score.

5.4. Effect of embedding dimensionality

To isolate the influence of embedding size, we retrained models with
different embedding dimensions while keeping every other hyperparam-
eter fixed, limiting the analysis to the two best-performing contrastive
variants (CDS and CDV) and evaluating them on the standard bench-
marks and on SSB; for the former we used only the first cross-validation
fold, and for the latter we considered only the EfficientNet-V2 backbone.
Open-set performance was measured with AUROC computed from the
proposed MDS score, and statistical significance was assessed with linear
regression. Complete results are reported in Table 6.

For closed-set accuracy, Acc𝑘, a linear model with embedding dimen-
sionality as a continuous predictor, controlling for dataset and method,
found no significant effect (𝑏 = 5.74 × 10−6, 𝑝 = 0.162). The changes
were minor: CIFAR-10 varied by 0.2 percentage points (CDS 89.2 to
89.4%; CDV 89.3 to 89.5%), and SVHN by 0.1 percentage points; CUB,
Aircraft and Cars by 1.1 percentage points.

Table 6
Effect of embedding dimensionality on CDS and CDV.

Dataset Emb.
 CDS CDV
 Acc𝑘 AUROC Acc𝑘 AUROC

CIFAR-10
 32-D 89.2 79.3 89.3 80.0
 64-D 89.2 77.6 89.5 79.2
 128-D 89.4 78.5 89.3 79.7

SVHN
 32-D 97.5 94.8 97.6 94.7
 64-D 97.4 94.3 97.5 94.2
 128-D 97.4 94.7 97.6 94.5

CUB

 64-D 87.9 86.6/78.0 87.9 86.4/77.4
 128-D 87.7 87.8/77.5 88.4 88.1/77.4
 256-D 88.2 87.8/79.5 88.6 87.5/79.4
 512-D 87.6 88.7/79.2 89.0 88.4/79.1

Aircraft

 64-D 86.8 83.6/72.4 87.4 84.6/72.7
 128-D 86.3 86.2/76.3 86.7 87.4/77.4
 256-D 85.7 83.4/74.7 86.6 84.4/75.5
 512-D 86.3 84.1/75.7 86.6 85.1/76.7

Cars

 64-D 92.4 89.4/84.1 93.3 89.5/84.6
 128-D 92.5 89.8/83.7 93.7 90.1/84.2
 256-D 93.2 89.8/83.9 93.4 89.8/84.6
 512-D 93.5 90.8/83.9 94.0 90.9/84.6

The same strategy applied to open-set AUROC with MDS scoring on
the standard benchmarks (CIFAR-10 and SVHN) again showed no ef-
fect of embedding dimensionality; in fact, larger embeddings slightly
reduced open-set performance (𝑏 = −2.24 × 10−5, 𝑝 = 0.643). CIFAR-10
ranged from 77.6 to 79.3% for CDS, a difference of 1.7 percentage
points, and from 79.2 to 80.0% for CDV; SVHN spanned 94.3–94.8%
(CDS) and 94.2–94.7% (CDV), only 0.5 percentage points in both cases.

For the fine-grained SSB suite (CUB, Aircraft, Cars), the lin-
ear model likewise yielded a non-significant coefficient (𝑏 = 2.26 ×
10−5, 𝑝 = 0.558). In this benchmark, the improvements were larger over-

Knowledge-Based Systems 327 (2025) 114108

11

L. O. Teixeira et al.

all, with the single most significant jump of 4.7 percentage points on
Aircraft-Hard (CDV increased from 72.7 to 77.4%). However, they did
not translate into a consistent upward trend; some datasets peaked at
128-D, others at 512-D, and a few even dipped.

In summary, after adjustments, increasing the embedding from
32/64-D to 512-D yields, at best, marginal improvements that are rarely
statistically reliable. Any AUROC gain must be weighed against the ad-
ditional compute and storage, so optimal dimensionality is best selected
on a case-by-case basis.

5.5. Impact of prototype count

Following the same experimental strategy as for embedding dimen-
sionality, we assessed the impact of prototype count by building dissim-
ilarity representations with 1, 3, 5, 10, 15, and 20 prototypes per class
while keeping every other hyperparameter fixed. We again focused on
the two best-performing contrastive variants (CDS and CDV) and eval-
uated them on the standard benchmarks and on SSB: for the standard
benchmarks we considered only the first cross-validation fold, and for
SSB we used the EfficientNet-V2 backbone exclusively. Open-set perfor-
mance was measured with AUROC computed from the proposed MDS
score, and statistical significance was assessed with linear regression.
The detailed results are provided in Table 7.

For closed-set accuracy, Acc𝑘, we fitted a linear model with pro-
totype count as a continuous predictor, adjusting for the dataset and
method. The prototype count did not significantly predict accuracy
(𝑏 = 6.16 × 10−5, 𝑝 = 0.259). Across all five datasets, closed-set accuracy
changed by less than one percentage point for either contrastive variant.
The largest shift was observed in Cars, where CDS rose from 91.7% us-
ing one prototype to 92.5% using ten prototypes, a gain of 0.8 percent-
age points; the corresponding CDV scores moved only 0.2 percentage
points (93.5 to 93.7%). On the classic benchmarks, the changes were

Table 7
Impact of prototype count on CDS and CDV.

Dataset
 Prot. CDS CDV
 count Acc𝑘 AUROC Acc𝑘 AUROC

CIFAR-10

 1 89.1 77.4 89.2 79.3
 3 89.3 78.3 89.4 79.8
 5 89.4 78.5 89.3 79.7
 10 89.5 78.9 89.3 79.9
 15 89.4 78.8 89.3 79.8
 20 89.2 79.1 89.3 79.9

SVHN

 1 97.4 94.8 97.5 94.6
 3 97.4 94.5 97.6 94.3
 5 97.4 94.7 97.6 94.5
 10 97.4 94.7 97.6 94.4
 15 97.4 94.6 97.6 94.2
 20 97.4 94.2 97.5 93.8

CUB

 1 87.5 87.5/77.6 88.3 87.9/77.5
 3 87.7 87.6/77.8 88.4 87.7/77.5
 5 87.7 87.7/77.8 88.4 87.9/77.6
 10 87.6 87.8/77.6 88.5 87.9/77.4
 15 87.7 87.9/77.6 88.4 87.9/77.4
 20 87.7 87.8/77.5 88.4 88.1/77.4

Aircraft

 1 86.2 85.2/75.5 86.6 86.0/76.1
 3 86.4 85.4/75.2 86.5 86.8/76.7
 5 86.3 85.8/75.7 86.8 86.8/76.9
 10 86.3 85.5/75.7 86.8 87.4/77.1
 15 86.3 86.1/76.1 86.6 87.5/77.2
 20 86.3 86.2/76.3 86.7 87.4/77.4

Cars

 1 91.7 89.4/83.3 93.5 89.6/83.8
 3 92.1 89.7/83.4 93.6 89.8/84.0
 5 92.2 89.7/83.9 93.6 89.9/84.2
 10 92.5 89.8/83.6 93.5 90.1/84.2
 15 92.4 89.8/83.7 93.7 90.1/84.2
 20 92.5 89.8/83.7 93.7 90.1/84.2

even smaller; for example, on CIFAR-10, CDS varied by just 0.4 percent-
age points (89.1 to 89.5%), while CDV varied by only 0.2 percentage
points. In short, adding prototypes produced no practically meaningful
accuracy gains for either CDS or CDV.

The effect of prototype count on open-set AUROC with MDS scor-
ing on CIFAR-10 and SVHN was likewise negligible (𝑏 = 1.04 × 10−4, 𝑝 =
0.545). On CIFAR-10, CDS AUROC ranged from 77.4% with one proto-
type to 79.1% with 20 prototypes, a difference of 1.7 percentage points,
whereas CDV varied by 0.6 percentage points (79.9 to 79.3%). On
SVHN, CDS fluctuated by only 0.6 percentage points (94.2 to 94.8%),
and CDV by 0.8 percentage points (93.8 to 94.6%).

For the fine-grained SSB suite (CUB, Aircraft, Cars), we extended the
model to include the difficulty subset (Easy vs. Hard) as an additional co-
variate. Prototype count remained non-significant (𝑏 = 2.54 × 10−4, 𝑝 =
0.185). Dataset- and subset-specific AUROC ranges were all smaller than
1.3 percentage points; the largest change was observed in the Aircraft-
Hard subset, which increased from 76.1 (1 prototype) to 77.4% (20 pro-
totypes). In many cases, the peak AUROC was achieved with just 3–5
prototypes, underscoring that adding more prototypes offers no practi-
cal benefit and can occasionally hurt performance.

Overall, adding more prototypes yields only marginal, usually non-
significant, gains in both closed-set accuracy and open-set AUROC. In
summary, increasing the count from 1 to 20 yields no statistically sig-
nificant improvement in either metric. While a larger bank of prototypes
can modestly enlarge the coverage of the open space, our results show
that a small number of well-positioned prototypes per class is typically
sufficient under the conditions we evaluated.

5.6. Clustering algorithm

To determine whether the clustering algorithm used for prototype se-
lection matters, we evaluated four approaches: K-means, K-means++,
spectral, and agglomerative clustering while leaving every other hyper-
parameter untouched. As this design choice is only relevant once proto-
types are in place, we restricted the evaluation to the three fine-grained
SSB datasets (CUB, Aircraft, Cars), used the EfficientNet-V2 backbone
throughout, and reported results for the two best contrastive variants
(CDS and CDV) again. Open-set performance was measured with AU-
ROC computed from the proposed MDS score, and statistical significance
was assessed with linear regression. Complete results appear in Table 8.

For closed-set accuracy, Acc𝑘, a linear model with clustering algo-
rithm as a categorical predictor, controlling for dataset and method,
yielded no significant effect for any of the three comparisons. Across all
datasets, accuracy varied by at most 0.6 percentage points; the largest
change occurred on Cars, where CDS rose from 92.4% with vanilla K-
means to 93.0% with agglomerative clustering; on CUB and Aircraft,
both variants fluctuated by ≤ 0.2 percentage points.

Table 8
Comparison of clustering algorithms for prototype selection on CDS
and CDV.

Dataset Clustering
 CDS CDV
 Acc𝑘 AUROC Acc𝑘 AUROC

CUB

 K-means 87.6 87.8/77.5 88.3 88.1/77.4
 K-means++ 87.7 87.8/77.5 88.4 88.1/77.4
 Spectral 87.6 87.7/77.8 88.2 88.0/77.4
 Hierarchical 87.7 87.9/77.6 88.3 88.0/77.4

Aircraft

 K-means 86.3 86.3/76.2 86.8 87.3/77.3
 K-means++ 86.3 86.2/76.3 86.7 87.4/77.4
 Spectral 86.3 86.4/76.1 86.9 87.3/77.2
 Hierarchical 86.4 86.6/76.2 86.8 87.4/77.3

Cars

 K-means 92.4 89.9/83.7 93.6 90.0/84.2
 K-means++ 92.5 89.8/83.7 93.7 90.1/84.2
 Spectral 92.9 89.9/83.9 93.6 90.0/84.2
 Hierarchical 93.0 89.9/83.6 93.6 90.1/84.3

Knowledge-Based Systems 327 (2025) 114108

12

L. O. Teixeira et al.

The same strategy applied to open-set AUROC on SSB, now in-
cluding the difficulty subset as an additional covariate, again found
no significant effect of clustering choice. Dataset- and subset-specific
AUROC ranges were similarly small: on Aircraft-Hard, CDS spanned
75.5–76.3%, while CDV varied by just 0.3 percentage points; on Cars-
Hard, the spread was 0.7 percentage points (83.6–84.3%) for CDS and
0.1 percentage points for CDV.

Overall, changing the clustering algorithm produced no measurable
effect on either closed-set accuracy or open-set AUROC under our ex-
perimental conditions.

5.7. Multi-view augmentation

Following the same evaluation protocol used in the previous abla-
tions, to evaluate the robustness of the trained models and the effect of
multi-view dimensionality, we varied the number of aggregated views
presented at inference time. Keeping the backbone, prototypes, and all
other hyperparameters fixed, we tested {1, 5, 10, 20, 50, 100} views with
the CDV variant on the three SSB datasets. Detailed results are provided
in Table 9.

For closed-set accuracy, a linear model with aggregated-view count
as a continuous predictor ,controlling for dataset, found no signifi-
cant effect (𝑏 = 9.4 × 10−6, 𝑝 = 0.469). Across all datasets the maximum
change was 0.6 percentage points: CUB rose from 88.3 to 88.6%, Air-
craft from 86.5 to 87.1%, and Cars from 93.4 to 93.7%.

The same model fitted to open-set AUROC, including subset difficulty
as an additional covariate, likewise yielded a non-significant coefficient
(𝑏 = 2.2 × 10−5, 𝑝 = 0.695). AUROC spreads never exceeded 0.4 percent-
age points on any dataset-subset combination.

In summary, increasing the number of aggregated views beyond five
does not improve either closed- or open-set performance under the con-
ditions we evaluated.

5.8. Limited training data

Next, to understand how the methods behave when training data
are scarce, we randomly sampled {5, 10, 20, 50}% of the original training
images for each dataset and retrained all models from scratch. Because
tiny splits leave too few examples to place many reliable prototypes,
at the 5% budget, the majority of classes contain only a single labeled
image. We proportionally reduced the number of prototypes per class
to 1, 2, 5, 10, respectively, while keeping all other hyperparameters un-

Table 9
Effect of multi-view dimensionality on CDV
performance.

Dataset Multi-view
 CDV
 Acc𝑘 AUROC

CUB

 1 88.3 87.5/77.4
 5 88.6 88.1/77.5
 10 88.5 88.1/77.4
 20 88.4 88.1/77.4
 50 88.2 88.1/77.3
 100 88.4 88.0/77.2

Aircraft

 1 86.5 86.4/76.5
 5 87.0 87.1/77.3
 10 86.8 87.3/77.4
 20 86.7 87.4/77.4
 50 86.4 87.7/77.5
 100 87.1 87.9/77.6

Cars

 1 93.4 90.0/84.2
 5 93.6 90.2/84.3
 10 93.5 90.0/84.4
 20 93.7 90.1/84.2
 50 93.6 90.0/84.2
 100 93.6 90.0/84.1

Table 10
Performance when training data are limited on Baseline, CDS and CDV.

Dataset
 Training Baseline CDS CDV
 data Acc𝑘 AUROC Acc𝑘 AUROC Acc𝑘 AUROC

CUB

 5% 39.0 66.5/57.6 27.9 60.3/56.5 41.9 61.0/56.2
 10% 53.5 67.4/57.1 53.0 68.1/62.1 56.9 68.3/62.6
 20% 71.0 75.1/60.6 70.0 75.1/68.8 70.9 75.2/69.1
 50% 84.2 85.5/65.2 82.4 82.5/75.7 83.0 82.7/75.9
 100% 90.4 89.6/82.2 87.7 87.8/77.5 88.4 88.1/77.4

Aircraft

 5% 27.1 58.2/58.2 11.6 55.8/58.4 26.9 53.5/57.8
 10% 44.3 58.5/59.4 36.8 58.5/59.3 41.9 58.6/59.5
 20% 56.1 70.3/61.6 56.2 66.0/65.7 58.6 64.6/64.9
 50% 75.4 80.3/71.8 77.2 76.8/73.2 78.4 76.0/73.2
 100% 85.7 88.0/77.3 86.3 86.2/76.3 86.7 87.4/77.4

Cars

 5% 20.4 53.4/56.3 4.5 54.1/54.0 23.7 54.0/54.1
 10% 35.0 55.6/61.1 29.6 59.5/60.0 38.7 59.3/60.5
 20% 58.7 68.3/66.8 60.5 70.3/67.5 63.5 71.1/68.0
 50% 84.6 80.5/76.3 85.8 83.6/78.4 86.5 84.0/78.7
 100% 93.6 90.8/81.6 82.5 89.8/83.7 93.7 90.1/84.2

changed. Fig. 5 displays the closed-set accuracy and AUROC learning
curves for the Hard split of the SSB suite only, whereas Table 10 reports
the complete results.

For closed-set accuracy (Acc𝑘), performance declines steeply when
only 5% of the labels are available; CDV already surpasses the baseline
on two of the three datasets: it scores 41.9% on CUB versus 39.0% for
the baseline and 23.7% versus 20.4% on Cars, while trailing the base-
line by just 0.2 percentage points on Aircraft (26.9 vs 27.1%). As the
budget rises to 10%, CDV extends its lead on CUB (+3.4 percentage
points) and Cars (+3.7 percentage points). At 20%, the three methods
roughly converge on CUB, but CDV pulls ahead on Aircraft (+2.5 per-
centage points over the baseline) and Cars (+4.8 percentage points).
With 50% of the data, CDV is now best on both Aircraft (78.4% vs.
75.4%) and Cars (86.5% vs. 84.6%) while sitting only 1.2 percentage
points below the baseline on CUB. In contrast, CDS lags markedly at the
smallest budgets but closes the gap once five or more prototypes per
class are available, even overtaking the baseline on Cars at medium and
high budgets.

On the hard subset, AUROC rises smoothly as more labels enter the
training pool, but the gains materialize sooner for the dissimilarity-
based methods. With only 5% of the data, the baseline posts the highest
AUROC on all three datasets by a small margin; as soon as the budget
doubles to 10%, both CDS and CDV jump ahead on CUB (+5.0 per-
centage points and +5.5 percentage points, respectively) and pull even
with the baseline on Aircraft and Cars. At 20%, they are clearly superior
across the board, leading by up to 8.5 percentage points on CUB and by
3–4 percentage points on Aircraft and Cars. The gap widens further at
50%, where dissimilarity boosts CUB-Hard AUROC by +10.7 percent-
age points (75.9 vs. 65.2) and adds roughly +1.4-2.4 percentage points
on the other two datasets.

CDV, and to a slightly lesser extent CDS, surpass the baseline and
hold that advantage across almost every data budget, still matching or
surpassing it on two of the three datasets even under full supervision.
Although the baseline maintains a slight edge in the most extreme low-
data setting, a small bank of well-chosen prototypes quickly proves to
be the more reliable choice for open-set detection, with CDV delivering
the most consistent gains overall.

5.9. Limitations and future work

This study is confined to medium-scale image datasets and CNN
backbones. Although transformer architectures and large-scale open-
world benchmarks may raise the absolute performance ceiling, evalu-
ating these settings lies outside the scope of the present work.

Furthermore, our method has several limitations: i) it depends on
many hyper-parameters, including projection-head depth, temperature,

Knowledge-Based Systems 327 (2025) 114108

13

L. O. Teixeira et al.

Fig. 5. Learning curves for Acc𝑘 and AUROC vs. data budget.

learning rate, batch size, and prototype selection, that must be tuned
for each task; ii) because every prediction is driven by the dissim-
ilarity between learned embeddings, any weakness in those embed-
dings directly degrades performance; iii) the curse of dimensional-
ity persists, as redundant features inflate the dissimilarity vector, add
noise, and lower accuracy, though feature selection or pooling can
curb this effect; and iv) the MDS is only as reliable as its prototypes,
so a poor or imbalanced prototype set weakens open-set rejection, al-
though automated pruning or periodic re-clustering could reduce that
sensitivity.

As future work, methodologically, we see two main avenues for
improvement: first, the method could leverage KUCs in two comple-
mentary ways: during training, KUC images can be used as hard neg-
atives to increase the margin around each known class, and at infer-
ence, prototypes drawn from the same KUC pool can serve as hard neg-
atives when computing the minimum dissimilarity score. Second, ar-
chitectural enhancements could be explored: more metric learning ob-
jectives (e.g., proxy-based, angular-margin, adaptive-radius), stronger
representation learners (e.g., generative models, masked-image pre-
training, self-distillation), and more sophisticated prototype selection
strategies beyond unsupervised clustering (e.g., diversity-aware sam-
pling, supervised pruning, or adversarially synthesized examples) to
further broaden coverage. Empirically, a comprehensive cross-domain
evaluation spanning vision, text, and audio benchmarks under vary-
ing noise and imbalance levels remains an important next step for rig-
orously stress-testing the framework in realistic, continually evolving
scenarios.

6. Conclusion

In this paper, we proposed a novel dissimilarity-based framework
for open-set recognition that unifies representation and metric learning
to derive a task-specific dissimilarity function; by mapping data into
a space of pairwise differences, the method more effectively separates
known from unknown classes, and our experiments confirm that the
contrastive dissimilarity variants (CDS and CDV) consistently surpass
strong baselines across diverse datasets and openness levels. Building
on previous research, we also observed a clear positive correlation be-
tween closed-set accuracy and open-set performance, suggesting that
advances in standard classification accuracy directly translate into im-
proved rejection of unseen categories. Finally, we note an important
open challenge: metrics optimized only on seen classes do not always
extrapolate gracefully to unseen semantics, and this shortcoming grows
with semantic shift; developing approaches that mitigate this limitation
remains a promising direction for future research.

CRediT authorship contribution statement

Lucas O. Teixeira: Writing – original draft, Visualization, Methodol-
ogy, Investigation, Formal analysis, Conceptualization; Diego Bertolini:
Writing – review & editing, Visualization, Validation; Luiz S. Oliveira:
Writing – review & editing, Validation, Methodology; George D.C. Cav-
alcanti: Writing – review & editing, Validation, Methodology; Yan-
dre M.G. Costa: Writing – review & editing, Validation, Supervision,
Methodology, Conceptualization.

Knowledge-Based Systems 327 (2025) 114108

14

L. O. Teixeira et al.

Data availability

The data used is publicly available, and the code is available at
https://github.com/lucasxteixeira/openset-dissimilarity.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Funding

This study was financed in part by the National Council for Scien-
tific and Technological Development (CNPq) and Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance
Code 001.

Appendix A. Toy example of dissimilarity-based open-set
recognition

Fig. A.6 shows a synthetic two-dimensional data set with two known
Gaussian clusters, drawn as green and blue circles, and one unknown
cluster, drawn as red triangles. Each column corresponds to a different
number of prototypes per known class: one, two, and three, represented
as black crosses.

In the first row, samples appear in their original coordinates. The
color of each point is the decision of a nearest-prototype classifier with-
out any rejection rule, so every sample receives the class of the closest
prototype, even when that prototype is far away.

In the second row, every sample is embedded in a dissimilarity space
whose coordinates are Euclidean distances to the prototype set. For dis-
play, these vectors are reduced to two principal components. The shad-
ing encodes the open-set decision: a point is colored green or blue if it
is within a threshold of a prototype and light gray if it lies outside, in
which case the model outputs it as unknown. Increasing the number of
prototypes tightens the coverage of the known space and reduces the
gray area to some extent.

The third row represents the dissimilarity vector. In this view, each
original sample is transformed into multiple points, one for each proto-
type, by taking the absolute difference between their feature values. As
a result, class labels are reduced to a binary tag indicating whether the
sample and prototype come from the same class (orange) or different
classes (purple). The open-set decision then combines the outcomes of
all related pairs; however, the plot still shows a clear separation between
same-class and different-class pairs.

The number and placement of prototypes strongly affect the deci-
sion boundary. Fewer prototypes create a more simplistic boundary and
a larger rejected region, reducing the risk of false accepts but potentially
under-fitting known classes. More prototypes provide greater coverage
of the known samples but increase the probability of accepting unknown
points as known, and they can introduce more noise, especially in the
dissimilarity vector representation where each sample generates multi-
ple pairwise points.

Fig. A.6. Toy example of open-set boundaries with one, two, and three prototypes per class.

Knowledge-Based Systems 327 (2025) 114108

15

https://github.com/lucasxteixeira/openset-dissimilarity

L. O. Teixeira et al.

References

[1] W.J. Scheirer, A. de Rezen, A. Sapkota, T.E. Boult, Toward open set recognition,
IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013) 1757–1772.

[2] A. Bendale, T.E. Boult, Towards open set deep networks, in: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 1563–1572.

[3] L. Neal, M. Olson, X. Fern, W.-K. Wong, F. Li, Open set learning with counterfactual
images, in: Proceedings of the European Conference on Computer Vision (ECCV),
2018.

[4] G. Chen, P. Peng, X. Wang, Y. Tian, Adversarial reciprocal points learning for open
set recognition, IEEE Trans. Pattern Anal. Mach. Intell. 44 (2022) 8065–8081.

[5] H. Zhang, A. Li, J. Guo, Y. Guo, Hybrid models for open set recognition, Springer,
2020. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part III 16, 102–117.

[6] S. Vaze, K. Han, A. Vedaldi, A. Zisserman, Open-set recognition: a good closed-set
classifier is all you need?, in: International Conference on Learning Representations,
2022.

[7] P.F. Jaeger, C.T. Lüth, L. Klein, T.J. Bungert, A call to reflect on evaluation prac-
tices for failure Detection in Image Classification, in: The Eleventh International
Conference on Learning Representations, 2023.

[8] E. Pękalska, P. Paclik, R.P.W. Duin, A generalized kernel approach to dissimilarity-
based classification, J. Mach. Learn. Res. 2 (2002) 175–211.

[9] E. Pękalska, R. Duin, Dissimilarity-based classification for vectorial representa-
tions, in: 18th International Conference on Pattern Recognition (ICPR'06), IEEE,
2006.

[10] Y.M.G. Costa, D. Bertolini, A.S. Britto, G.D.C. Cavalcanti, L.E.S. Oliveira, The dis-
similarity approach: a review, Artif. Intell. Rev. 53 (2019) 2783–2808.

[11] E. Pękalska, R.P. Duin, P. Paclík, Prototype selection for dissimilarity-based classi-
fiers, Pattern Recognit. 39 (2006) 189–208. Part Special Issue: Complexity Reduc-
tion.

[12] L.O. Teixeira, D. Bertolini, L.S. Oliveira, G.D.C. Cavalcanti, Y.M.G. Costa, Con-
trastive dissimilarity: optimizing performance on imbalanced and limited data sets,
Neural Comput. Appl. 36 (2024) 20439–20456.

[13] L.O. Teixeira, D. Bertolini, L.S. Oliveira, G.D.C. Cavalcanti, Y.M.G. Costa, Triplet
dissimilarity: a texture classification approach using dissimilarity and siamese net-
works, Soft comput.. (2025). Accepted for publication (in press).

[14] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: a unified embedding for face recog-
nition and clustering, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[15] R. Hadsell, S. Chopra, Y. LeCun, Dimensionality reduction by learning an invari-
ant mapping, in: 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, 2006, pp. 1735–1742.

[16] A. Dosovitskiy, J.T. Springenberg, M. Riedmiller, T. Brox, Discriminative unsu-
pervised feature learning with convolutional neural networks, in: Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, K. Weinberger (Eds.), Advances in Neural Infor-
mation Processing Systems, volume 27, Curran Associates, Inc., 2014.

[17] Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new
perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013) 1798–1828.

[18] B. Kulis, et al., Metric learning: a survey, Foundations Trends Mach. Learn. 5 (2013)
287–364.

[19] A.v.d. Oord, Y. Li, O. Vinyals, Representation learning with contrastive predictive
coding, 2018, https://arxiv.org/abs/1807.03748.

[20] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive
learning of visual representations, in: Proceedings of the 37th International Confer-
ence on Machine Learning, JMLR.org, 2020.

[21] K. Sohn, Improved deep metric learning with multi-class n-pair loss objective, in:
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, R. Garnett (Eds.), Advances in Neural
Information Processing Systems, volume 29, Curran Associates, Inc., 2016.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial networks, Commun. ACM 63 (2020)
139–144.

[23] G.P. Nguyen, M. Worring, A.W.M. Smeulders, Similarity learning via dissimilarity
space in cbir, in: Proceedings of the 8th ACM International Workshop on Multimedia
Information Retrieval, Association for Computing Machinery, New York, NY, USA,
2006, p. 107–116.

[24] R.H. Zottesso, Y.M. Costa, D. Bertolini, L.E. Oliveira, Bird species identification using
spectrogram and dissimilarity approach, Ecol. Inform. 48 (2018) 187–197.

[25] I. Theodorakopoulos, D. Kastaniotis, G. Economou, S. Fotopoulos, Pose-based hu-
man action recognition via sparse representation in dissimilarity space, J. Vis. Com-
mun. Image Represent. 25 (2014) 12–23.

[26] L. Nanni, G. Minchio, S. Brahnam, G. Maguolo, A. Lumini, Experiments of image
classification using dissimilarity spaces built with siamese networks, Sensors 21
(2021) 1573.

[27] L. Nanni, G. Minchio, S. Brahnam, D. Sarraggiotto, A. Lumini, Closing the per-
formance gap between siamese networks for dissimilarity image classification and
convolutional neural networks, Sensors 21 (2021) 5809.

[28] C. Geng, S.-J. Huang, S. Chen, Recent advances in open set recognition: a survey,
IEEE Trans. Pattern Anal. Mach. Intell. 43 (2021) 3614–3631.

[29] A.R. Dhamija, M. Günther, T.E. Boult, Reducing network agnostophobia, in: Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, Curran Associates Inc., Red Hook, NY, USA, 2018, p. 9175–9186.

[30] Z. Wang, Q. Xu, Z. Yang, Y. He, X. Cao, Q. Huang, Openauc: towards auc-oriented
open-set recognition, in: Proceedings of the 36th International Conference on Neural
Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA, 2024.

[31] Y. He, H. Su, H. Yu, C. Yang, W. Sui, C. Wang, S. Liu, A light-weight framework
for open-set object detection with decoupled feature alignment in joint space, 2024,
https://arxiv.org/abs/2412.14680.

[32] G. Feng, D. Desai, S. Pasquali, D. Mehta, Open set recognition for random forest, in:
Proceedings of the 5th ACM International Conference on AI in Finance, Association
for Computing Machinery, New York, NY, USA, 2024, p. 45–53.

[33] N. Bahavan, S. Seneviratne, S. Halgamuge, Sphor: A representation learning per-
spective on open-set recognition for identifying unknown classes in deep learning
models, 2025, https://arxiv.org/abs/2503.08049.

[34] E. Pękalska, R.P.W. Duin, The Dissimilarity Representation for Pattern Recognition:
Foundations and Applications, WORLD SCIENTIFIC, 2005.

[35] D. Bertolini, L.S. Oliveira, R. Sabourin, Multi-script writer identification using dis-
similarity, in: 2016 23rd International Conference on Pattern Recognition (ICPR),
2016, pp. 3025–3030.

[36] T.B. Viana, V.L. Souza, A.L. Oliveira, R.M. Cruz, R. Sabourin, A multi-task approach
for contrastive learning of handwritten signature feature representations, Expert
Syst. Appl. 217 (2023) 119589.

[37] V.L. Souza, A.L. Oliveira, R.M. Cruz, R. Sabourin, A white-box analysis on the writer-
independent dichotomy transformation applied to offline handwritten signature ver-
ification, Expert. Syst. Appl. 154 (2020) 113397.

[38] R.P. Duin, E. Pękalska, The dissimilarity space: bridging structural and statistical
pattern recognition, Pattern Recognit. Lett. 33 (2012) 826–832. Special Issue on
Awards from ICPR 2010.

[39] A. Krizhevsky, Learning multiple layers of features from tiny images, 2009. Techni-
cal Rep., University of Toronto.

[40] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A.Y. Ng, et al., Reading digits in
natural images with unsupervised feature learning, Granada, 2011. NIPS Workshop
on Deep Learning and Unsupervised Feature Learning, 2011, 4.

[41] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, A. Vedaldi, Describing textures in the
wild, in: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2014.

[42] L. Sharan, R. Rosenholtz, E.H. Adelson, Accuracy and speed of material categoriza-
tion in real-world images, J. Vis. 14 (2014).

[43] C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie, The Caltech-UCSD Birds-
200-2011 Dataset, 2011, Technical Report CNS-TR-2011-001, California Institute of
Technology.

[44] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, A. Vedaldi, Fine-grained visual classifi-
cation of aircraft, 2013. http://arxiv.org/abs/1306.5151.

[45] J. Krause, M. Stark, J. Deng, L. Fei-Fei, 3D object representations for fine-grained
categorization, in: 2013 IEEE International Conference on Computer Vision Work-
shops, 2013, pp. 554–561.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in python, J.
Mach. Learn. Res. 12 (2011) 2825–2830.

[47] Y. Movshovitz-Attias, A. Toshev, T.K. Leung, S. Ioffe, S. Singh, No fuss distance
metric learning using proxies, in: 2017 IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 360–368.

[48] Y. Zhai, X. Guo, Y. Lu, H. Li, In defense of the classification loss for person re-
identification, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2019, pp. 1526–1535.

[49] A. Buslaev, V.I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, A.A. Kalinin,
Albumentations: fast and flexible image augmentations, Information 11 (2020) 125.

[50] E.D. Cubuk, B. Zoph, J. Shlens, Q. Le, Randaugment: practical automated data aug-
mentation with a reduced search space, in: H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, H. Lin (Eds.), Advances in Neural Information Processing Systems, vol-
ume 33, Curran Associates, Inc., 2020, pp. 18613–18624.

Knowledge-Based Systems 327 (2025) 114108

16

https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2412.14680
https://arxiv.org/abs/2503.08049
http://arxiv.org/abs/1306.5151

	Improving open set recognition with dissimilarity-based metric learning
	1 Introduction
	2 Literature review
	2.1 Representation and metric learning
	2.2 Dissimilarity
	2.3 Open set recognition

	3 Proposed method
	3.1 Representation and metric learning (phase 1)
	3.2 Dissimilarity representation (phase 2)
	3.2.1 Prototype selection
	3.2.2 Dissimilarity space
	3.2.3 Dissimilarity vector

	3.3 Open set recognition (phase 3)

	4 Experimental setup
	4.1 Standard benchmarks
	4.2 Class scaling benchmark
	4.3 Semantic shift benchmark
	4.4 Representation and metric learning
	4.5 Dissimilarity
	4.6 Open set recognition
	4.7 Training and evaluation protocol

	5 Results and discussion
	5.1 Closed- and open-set correlation
	5.2 Baseline versus dissimilarity
	5.3 Triplet versus contrastive objectives
	5.4 Effect of embedding dimensionality
	5.5 Impact of prototype count
	5.6 Clustering algorithm
	5.7 Multi-view augmentation
	5.8 Limited training data
	5.9 Limitations and future work

	6 Conclusion
	A Toy example of dissimilarity-based open-set recognition

