
From use cases to classes: a way of building object model with UML

Ying Liang*

Department of Computing and Information Systems, University of Paisley, Paisley PA1 2BE, UK

Received 12 July 2002; revised 4 September 2002; accepted 12 September 2002

Abstract

In a use case-driven process, classes in the class diagram need to be identified from use cases in the use case diagram. Current object

modelling approaches identify classes either from use case descriptions, or using classic categories. Both ways are inefficient when use cases

can be described with many scenarios in different words. This paper represents a new approach that identifies classes based on goals of use

cases without descriptions. The approach produces use case-entity diagrams as a vehicle for deriving classes from use cases and to show the

involvement of classes in use cases of a system.

q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Object modelling; Use case; Use case’s goal; Class; UML

1. Introduction

Unified Modelling Language [5,25] (UML) is a visual

modelling language adopted as a standard for object-

oriented modelling and design in software development by

the industry body Object Management Group (OMG). It

was created mainly based on three object modelling

techniques and methods (Booch [4], OOSE [12], OMT

[24]) that have been used in industry for many years. It was

also influenced by other techniques such as statecharts

invented by Harrel [9] and programming languages such as

Cþþ [30]. UML has been evolved with many versions

since it started officially in 1994 [5]. The latest release is

UML 1.3 which this paper refers to. UML consists of a set of

diagrams that are used to represent models of a system in

diagrammatic notation through stages of development, as

shown in Table 1. Sometimes, sequence diagrams, collab-

oration diagrams and activity diagrams may be also used for

assisting to represent use case descriptions at requirements

capture stage.

Each of models is a blueprint of a system with a view that

enforces the model to focus on entities in a given

perspective of the system and ignore entities not relevant

to the perspective [5]. The views with UML are relatively

orthogonal so that each of the diagrams can show one aspect

of a system. This helps solve the problem with a notation

that tries to cover every aspect of a system and cannot be

described as simple and easy to understand [11]. To show

clearly when and where different kinds of diagrams are

produced, they should refer to each other in interesting and

useful ways and allow CASE tool vendors to provide

coherent cross-referencing and consistency checking [10].

Such a way is normally defined as a modelling process in an

object-oriented method [17,18,20,22].

Although UML is a modelling language without a

modelling process, many people think that a use case-

driven process is an effective way of modelling a system

with UML [1,2,6,13,14,16,31] as it enables to show

functional requirements using a use case diagram at

requirements capture stage and to generate the other

diagrams as requirements specification from this diagram

at analysis and design stage. Functional requirements mean

what services the system should provide in particular

situations [28] and the use case diagram is thought good and

useful in collecting functional requirements [19]. Use cases

in the diagram are thought easier than objects for users to

join in object modelling [2,5,15,21,23]. A use case diagram

for a system includes uses cases and actors: use cases

represent the functional requirements of the system, and

actors represent the units or people in the organisation that

are expecting to receive the values or responses delivered by

the use cases. Fig. 1 is an example of such a diagram that has

an Enrol course use case and two actors Course Admission

0950-5849/03/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 95 0 -5 84 9 (0 2) 00 1 64 -7

Information and Software Technology 45 (2003) 83–93

www.elsevier.com/locate/infsof

* Tel.: þ44-141-848-3886; fax: þ44-141-848-3542.

E-mail address: lian-ci0@paisley.ac.uk (Y. Liang).

http://www.elsevier.com/locate/infsof


and Academic Department in an education system. In

general, all use cases of a system are at the same level of

abstraction in the use case diagram [21].

In a use case-driven process, mapping use cases in the

use case diagram into classes in the class diagram is a key

activity [7]. Currently there are two typical approaches for

carrying out the mapping-use case descriptions and classic

categories [1,8]—which we call noun-oriented object

modelling approaches in this paper:

† The first approach identifies candidate classes by

considering all nouns and noun phrases in use case

descriptions as candidate classes (e.g. A student asks the

Course Admission for enrolling a computing course in an

education system ), and then selecting significant classes

from the candidates [24].

† The second approach identifies classes by checking if

nouns in use case descriptions fall into classic

categories such as tangible things, roles, concepts,

events, and so on [4,26,27]. For example, ‘student’,

and ‘course’ in the above description are classes as

they fall into roles and concepts categories.

A common problem in object modelling with these

approaches is the discovery of too many classes at one time,

for example, make every noun a class [1]. Our experiences

of using these approaches in case studies and teaching UML

also showed that the approaches had following problems in

object modelling:

† A description of a use case may show one of its

scenarios. This means that it shows one way that may be

not the only way of achieving the goal of the use case

[29]. The classes identified using this approach could be

limit to this description only. Also different classes can

be identified for the same use case when different words

are likely used by different people when describing it.

† There might be too many nouns and noun phrases in a use

case description to select significant classes from them

easily.

† Different people may use different types of classic

category in classifying the things in a system. This can

cause conflict and difficulty of making agreement on

classes.

† Something in a system may fall into many classic

categories when it plays different roles in different parts.

This makes use of classic category more difficult.

In addition, requirements elicitation includes elicitation

of both functions and entities in a system. Use case

descriptions emphasise function elicitation only. Therefore

the analyst cannot elicit entities effectively from them. Also

these approaches let the analyst rather than actors identify

classes that often represent the interest of the analyst rather

than the interest of actors. The classes identified by these

approaches therefore may not be acceptable to the actors.

All these problems may cause the representation of user

requirements inappropriate and vague.

The following section shows a new object modelling

approach to mapping use cases into classes in a different

way that intends to improve the effectiveness of generating

class diagram from use case diagrams and the quality of

requirements specification.

2. A goal-oriented approach to building the object model

The principle of this approach is to identify classes from

use cases’ goals rather than use case descriptions with the

use case-driven process. Classes are the entities that

participate in achieving the goals in the real world. They

have their own features and can collaborate with use cases.

Two entities refer to each other when one is created based

on or act on the other in use cases. Goals and entities must

be described by actors of use cases rather than analysts of

the system because they are part of user requirements

gathered from the actors. The approach provides a seven-

step process to generate the class diagram from the use case

diagram for a system, as the route illustrated in Fig. 2. Steps

are represented using a circle containing a step number.

Grey arrows are used to link the steps to the part of

Table 1

Diagrams in UML

Diagram Model View Stage

Use case diagrams Use case model Use case view Requirements capture

Class diagrams Analysis model Modelling and design view Analysis and design

Sequence diagrams Design model

Collaboration diagrams

Statecharts

Activity diagrams

Component diagrams Implementation model Implementation view Implementation

Deployment diagrams Deployment model Deployment view

Fig. 1. A use case diagram.

Y. Liang / Information and Software Technology 45 (2003) 83–9384



the diagrams they work on. More details of the steps are

described below.

2.1. Step 1: determine the goal of each of use cases

Use cases are popular because they focus on functions

that meet users’ goal [3]. A user’s goal means the goal of a

use case: it is to yield observable result of a value to an actor

[5]. Actors of use cases have goals (or needs) and use

applications to help satisfy them [14]. The goal of a use case

determines the scope of the use case. The goal of a use case

meant in the approach is defined as follows:

The goal of a use case is the objective of the use case’s

effort within a system. The goal usually is seen as either

values that the use case supplies to its actors or responses

that the use case replies to its actors. The goal is unique to

a use case, no matter how it is achieved through routes of

the use case.

This definition is consistent with the role of a use case in

UML: it shows what a system does but not how it does [5].

The use case’s goal must be described by actors of the use

case. Following questions are asked to the actors when

identifying the goal:

† Do you think what is the purpose of the use case?

† Which service do you expect the use case to provide?

† Which value or response do you expect the use case send

to you?

The approach shows the goal of a use case explicitly using a

use case-entity diagram. For example, two actors of the

Enrol course use case in Fig. 1 described the goal of the use

case as new registration that is a value delivered to the

Course Admission and the copy of a new registration that is

a response sent to the Academic Department. The goal is

explicitly represented in a use case-entity diagram Fig. 3,

using two goal flows that are attached by a value or a

response. The goal of a use case in a system should be a goal

of the system.

2.2. Step 2: identify entities using the goal of use cases

A use case involves entities in achieving its goal within a

system. An entity is something that plays a role in the use

case for achieving the goal. It may be involved in many use

cases and have different roles in a system. It generally has its

own features that make it different from other entities, and is

involved in a use case by collaborating with the use case.

Identify entities by asking actors of the use case the

Fig. 2. Generating class diagram from use case diagram.

Fig. 3. A use case-entity diagram representing the use case’s goal.

Y. Liang / Information and Software Technology 45 (2003) 83–93 85



following questions:

† What does the goal mean to you?

† Which terms do you think common in the vocabulary of

the use case and the problem domain?

† Which entities do you think necessary and important to

achieve the goal of the use case?

† Which specific features of the entities do you think in

particular necessary and important to achieve the goal?

For example, the actors in Fig. 2 described that (a) the

goal means a new registration on a specific course for a

specific student; (b) ‘registration’, ‘course’, and ‘student’

are common terms in the vocabulary of enrolling course in

an education problem domain; (c) the course and the student

are necessary and important to generate a new registration;

and in particular (d) registration_no, current date, course

code, title, student matric_no, and name are specifically

necessary and important to generate the new registration.

The common terms described above mean the entities that

are significant to generate new registration and must be

specified for the system using a use case-entity diagram, i.e.

Fig. 4. Rectangle boxes show those entities and their

features that are involved in the use case particularly. A

colon (:) is used to separate the entity name and the features.

In general, different use cases have different goals

because they represent different functional requirements of

a system. Therefore a use case may involve part, but not

whole, of features of an entity when the entity is involved

in many use cases of a system. For instance, there is

another use case ‘Create course’ in the education system

whose goal is new course described by the actor

Academic Department. By asking the above questions,

the actor also described that (a) the goal means a new

course led by a specific course leader; (b) ‘course’ and

‘course leader’ are common terms in the education system

domain; (c) the course and the course leader are necessary

and important to create a new course; (d) course code,

title, level, course leader’s name, title, post, office and

tel_no are in particular necessary and important to create

the new course. Those identified entities and their features

are shown in another use case-entity diagram, Fig. 5, in

which the number of the Course’s features has been

increased from two to three. The whole features of an

entity will be represented together within a class in a class

diagram in the next step.

2.3. Step 3: specify entities as classes and their features as

attributes of the classes in a class diagram

This step is to represent the entities and their features

shown in use case-entity diagrams as significant classes and

attributes in a class diagram (Fig. 6). They are regarded as

significant classes because they must participate in achiev-

ing the goals of the system.

2.4. Step 4: specify references between entities as

association relationships between classes

A use case may involve many entities, as shown in Figs.

4 and 5, that may have to refer to one another in achieving

the use case’s goal. Identify the references by asking actors

the following questions:

† For each entity, do you think that it is produced based on,

or its existence depends on, other entities in the use case?

If so, it should refer to those entities.

† For each entity, do you think that it can act on, or be acted

by, other entities in the use case? If so, it should refer to

those entities.

For example, the actors described the references between

the entities in Figs. 4 and 5 and multiplicity of the references

as (a) a registration is generated based on a specific course

for a specific student, and a course is created with a specific

course leader; (b) a student can apply for registration on

Fig. 4. Enrol course use case and entities involved.

Fig. 5. Create course use case and entities involved.

Y. Liang / Information and Software Technology 45 (2003) 83–9386



different courses, a course can be acted by many

registrations and one course leader, and one course leader

can act on many courses. These references are represented

as association relationships between classes in the class

diagram, Fig. 6. The multiplicity (i.e. one to many, or many

to many, etc.) of a reference is shown as the multiplicity (i.e.

1:1..*, or 1..*:1..*) of an association relationship.

2.5. Step 5: identify collaboration between use cases and

entities

The entities involved in a use case are expected to

collaborate with the use case for achieving its goal. Identify

collaboration by asking actors the following questions:

† Do you think what the use case needs to do with each

entity?

† Do you think what the use case needs to know about each

entity?

† Do you think what each entity must contribute to the use

case?

For example, the actors in Fig. 4 described (a) The use

case assigns a matric_no to the student; it needs to know the

name of the student; and the student provides its name to the

use case. (b) The use case needs to know the code and title

of the course; and the course provides the code and tile to

the use case. (c) The use case creates a new registration with

the current date and a unique registration number.

The collaboration identified above is added to the use

case-entity diagram, as shown in Fig. 7. Each solid line

shows the collaboration between the use case and an entity.

One end of it links to a black ball with the collaboration, and

another end of it links to the entity that fulfils the

collaboration.

Identification of collaboration can help understand roles

and responsibility of entities in the use case and also help

check the references between the entities.

2.6. Step 6: specify collaboration as operations of classes

The collaboration between entities and a use case means

what the entities must do for achieving the use case’s goal.

Thus they are significant operations of the classes and are

specified in the class diagram explicitly, as shown in Fig. 8.

2.7. Step7: test use case-entity diagrams and class diagram

The approach tests classes in the class diagram against

individual use cases instead of the whole system. This helps

reduce the complexity of testing classes. The following

guides can be used in testing the diagrams:

† Test use cases against functional requirements: check if

(a) each of use cases represents a functional requirement,

(b) all such requirements are covered by the use cases, (c)

the goal of each use case is same as described by the

actors.

† Test entities against each of use cases: check if (a) the

entities are sufficient and necessary to achieve the goal,

(b) features of each entity are what the use case needs to

know about the entity, (c) collaboration linked to the

entities are sufficient and necessary to achieve the goal of

the use case.

† Test classes against the use case-entity diagrams:

check if (a) the classes map all entities in the

diagram, (b) attributes of a class are all features of the

entity in different use case-entity diagrams, (c)

operations of a class are entire collaboration between

the entity and use cases, (d) each association

relationship between two classes represents a reference

between two entities, and (e) the multiplicity of it is

same as the multiplicity of the reference.

The order of the seven steps can be either sequential or

iterative in object modelling. You can go through seven

steps together on all use cases at one time, or alternatively,

Fig. 6. Classes and association relationships.

Fig. 7. Collaborations between Enrol course use case and entities involved.

Y. Liang / Information and Software Technology 45 (2003) 83–93 87



go through them on one use case at one time and then repeat

them again and again on the rest use cases.

3. A case study: the book trader system

This approach has been applied for a few case studies.

This section shows one of them as an example—a book

trader system whose use case diagram is shown in Fig. 9.

In Step 1, actors described (a) the new order is the goal of

Place order (Fig. 10), (b) the dispatch note is the goal of

Deliver book (Fig. 11), (c) the book availability is the goal

of Check stock (Fig. 12), (d) the credit status of a customer

Fig. 8. Operations of classes.

Fig. 9. A use case diagram for the book trader system.

Fig. 12. Check stock use case and entities involved.

Fig. 11. Deliver book use case and entities involved.

Fig. 10. Place order use case and entities involved.

Fig. 15. A class diagram for the book trader system.

Fig. 14. Generate invoice use case and entities involved.

Fig. 13. Check credit use case and entities involved.

Y. Liang / Information and Software Technology 45 (2003) 83–9388



is the goal of Check credit (Fig. 13), and (e) the new invoice

is the goal of Generate invoice (Fig. 14).

In Step 2, the actors described the entities and their

features involved in achieving the goals of the use cases as

follows:

(a) The goal of Place order means a new order to be

created on books for a customer. Each order line is

created on one book. The common terms and entities

are ‘order’, ‘customer’ and ‘book’. The features of the

entities that are involved in this use case are as

described in Fig. 10. Many orders can act on the same

book or on the same customer.

(b) The goal of Deliver book means a dispatch note that is

a copy of an order referring to the name and address of

a customer. The common terms and entities involved in

this use case are ‘order’ and ‘customer’. The features of

them involved in the use case are as described in Fig.

11.

(c) The goal of Check stock means the book availability

that depends on an order line and a book. The common

terms and entities in this use case are ‘order’ and

‘book’. The current stock level of the book and the

item_no and quantity of an order line are particularly

involved as shown in Fig. 12.

(d) The goal of Check credit means the credit status that

depends on an order and a customer. The common

terms and entities involved in this use case are ‘order’

and ‘customer’. The features of them involved in this

use case in particular are as described in Fig. 13.

(e) The goal of Generate invoice means a new invoice to

be created for an order. The common terms and entities

involved in this use case are ‘invoice’ and ‘order’. The

features of them involved in this use case are as

described in Fig. 14.

In Step 3, the above entities and their features are

represented as significant classes and attributes in a class

diagram, Fig. 15.

In Step 4, the references between entities are represented

by association relationships between the classes in the class

diagram, Fig. 15: (a) an order refers to a specific customer as

it is created for the customer. (b) Many orders may refer to

one customer if they are created for the same customer. (c)

An invoice refers to an order exactly as it is created for that

order only. (d) An order and an invoice may consist of many

lines each of which is created on one book and refers to that

book only. In this situation, the class diagram can represent

the order and invoice and their lines separately with a

special association relationship-whole-part relationship

represented by a line ended by a black diamond, according

to UML [5]. (e) Lines in different orders or invoices may

refer to the same book.

In Step 5, the actors described collaboration between the

use cases and the entities as follows:

(a) Collaboration between Place order use case and the

entities: the use case creates a new order including

lines. The use case needs either to know the customer

number, or to record a new customer and assign a

customer number to it. Customer needs to provide its

number to the use case. The use case needs to know the

title and price of each ordered book and Book must

provide these features to it. The collaboration is shown

in Fig. 16.

(b) Collaboration between Deliver book use case and the

entities: the use case needs to know entire detail of

Order and Order must provide its whole features to it.

The use case needs to know the customer name and

address; Customer must provide these features to it.

The collaboration is illustrated in Fig. 17.

Fig. 16. Collaboration between the Place order use case and entities involved.

Fig. 17. Collaboration between Deliver book use case and entities involved. Fig. 18. Collaboration between Check stock use case and entities involved.

Y. Liang / Information and Software Technology 45 (2003) 83–93 89



(c) Collaboration between Check stock use case and the

entities: the use case needs to know the quantity in

order lines; Order needs to provide this feature to it.

The use case needs to know the current stock; Book

must provide this feature to it. The use case needs to

reduce the stock level when an order line is accepted.

The collaboration is recorded in Fig. 18.

(d) Collaboration between Check credit use case and the

entities: the use case needs to know the total cost of the

order; Order needs to provide this feature to it. The use

case needs to know the current available credit of the

customer; Customer must provide the feature to it. The

use case reduces the credit balance when the order is

accepted. The collaboration is shown in Fig. 19.

(e) Collaboration between Generate invoice use case and

the entities: the use case creates a new invoice. It needs

to know entire details of the order; Order must provide

whole features to it. The use case needs to know the

customer number; Customer must provide this feature

to it. The collaboration is shown in Fig. 20.

In Step 6, all collaboration described are specified as

operations of the classes in the class diagram, Fig. 21.

4. Comparison and evaluation

The class diagram in UML is often generated from the

use case diagram of a system through a use-case driven

process. The most popular approaches carrying out this

process are noun-oriented [13] object modelling approaches

as discussed above. Other less popular approaches that also

carry out this process are scenario-oriented [14] object

modelling approaches that identify classes from events and

interactions in use case descriptions. The goal-oriented

object modelling approach presented in this paper aims to

carry out the use case-driven process in a different way, that

is, it identifies classes, attributes, operations, and relation-

ships from use cases’ goals rather than from nouns or events

and interactions in use case descriptions. Table 2 compares

them in details.

The goal-oriented modelling approach was applied in a

few small and medium size case studies for the purpose of

evaluation and comparison with other object modelling

approaches. Table 3 evaluates the modelling process with

the approaches by considering the effectiveness of devel-

oping class diagrams and the stability of the diagram, based

on the experiences of the case studies.

Fig. 19. Collaboration between Place order use case and entities involved.

Fig. 20. Collaboration between Generate invoice use case and entities

involved.

Fig. 21. Operations of the classes in the book trader system.

Y. Liang / Information and Software Technology 45 (2003) 83–9390



The case studies also showed that the scenario-oriented

approach seemed closer to the goal-oriented approach than

the noun-oriented approach in the sense that they both are

very concerned about fulfilment of use cases. However, the

new approach does not have a conflict with the reality in

which most use cases have alternate routes in a system and a

use case description only covers a specific route [6], as it

uses goals to focus on what actors expect from a use case

and ignore the routes through the use cases that produce

output.

The case studies were done by people who also know

other object modelling approaches with the use case-driven

process. The experiences obtained through the case studies

are listed in Table 4, regarding the approach, use case-entity

diagrams and class diagram.

The case studies also showed that, similar to noun-

oriented or scenario-oriented object modelling

approaches, there might be many entities involved in a

complex use case and this makes a difficulty of drawing

use case-entity diagrams. In this situation it is necessary

to partition the complex use case into small and simple

ones, so that the complexity of the modelling can be

reduced and controlled.

Table 2

Comparison of the approaches generating class diagram from use case diagrams

Goal-oriented Noun-oriented Scenario-oriented

With use case diagram Actors describe goals of

use cases

Analysts write use case

descriptions

Analysts write use case

descriptions

Generate class diagram Identify classes and attributes

from use cases’ goals

Identify classes and attributes

from nouns in descriptions

Identify classes and attributes

from events/interactions

Identify relationships between classes

from references

Identify relationships between classes

from verbs

Identify relationships between classes

from interactions

Identify operations from collaborations

between use cases and

classes

Identify operations from attributes Identify operations from events/interactions

Table 3

Evaluation of the processes of generating class diagram from use case diagrams

Goal-oriented Noun-oriented Scenario-oriented

Effectiveness of the process No need of finding candidate

classes

Need of finding candidate classes No need of finding candidate

classes

Goals of a use case

do not depend on a

route through the use case.

Thus classes identified are not

specific to one route

A use case description depends

on words used. Thus classes

identified are specific to a

description

A scenario of a use

case depends on a route

through the use case. Thus

classes identified are specific to

a route

Must draw class diagram based

on use case-entity diagrams

Cause confusions when a noun

falls into many classic categories

and when a noun may

be a class or an attribute

May draw class diagram based

on sequence or collaboration diagrams

Stability of class diagram with

the process

Stable as the goal of

a use case is normally

unique

Instable if existing many descriptions

for a use case

Instable if existing many routes

through a use case

Table 4

Experiences of using the approach in case studies

Experiences

Goal-oriented process Seven steps are easy to follow

Goals help produce class diagram

effectively as irrelevant classes and

attributes and operations are impossible

to be picked

Not need prepared use case descriptions

Goals help identify system boundary

Use case-entity diagrams Make it easy to identify

significant classes directly without wasting

time on candidate classes

Useful to identify proper attributes

and operations for classes

Enable to precisely illustrate how

individual classes are involved in use cases

They take time to draw,

compared with other approaches. However,

they can significantly reduce time

of producing class diagram

Class diagram Straightforward to generate it from

use case-entity diagrams

Easy to test it by

referring to and walking through

use case-entity diagrams

Y. Liang / Information and Software Technology 45 (2003) 83–93 91



5. Conclusions

This paper represents a new goal-oriented object

modelling approach that carries out the use case-driven

process with UML. The approach identifies classes for a

system from use cases’ goals. It provides the use case-entity

diagram for bridging the gap between the use case diagram

and the class diagram, so that the derivation from the former

to the latter is visible and effectively traceable and testable.

It allows actors of use cases to describe the goals of use

cases and the entities involved in achieving the goals,

although the analyst can make recommendations based on

their past experiences on developing other similar systems.

This paper shows an example of applying the approach in

object modelling. Generalisation relationships are, however,

not emphasised and discussed in particular in generating the

class diagram with this approach, as they are best identified

by the analyst rather than by actors in the modelling process.

The author thinks that the approach in general has following

special characteristics in comparison with other object

modelling approaches that also carry out a use case-driven

process:

(a) It focuses on use cases’ goals rather than use case

descriptions in identifying classes from use cases, so

that classes identified are not limit to one description.

(b) It identifies entities that are involved in achieving use

cases’ goals, instead of nouns, events and interactions

in use case descriptions, so that things to be considered

are definitely significant to the system.

(c) It identifies attributes and operations of classes based

on their involvement in individual use cases, so that

features and operations irrelevant to use cases can be

ignored in object modelling.

(d) It introduces a new use case-entity diagram that can

explicitly show involvement of classes in individual

use cases in a system, so that the complexity of

modelling a large system with object orientation can be

monitored and controlled effectively. The new dia-

grams therefore help represent user requirements

precisely with use case-driven process.

In addition, goal flows are emphasised by this approach.

Goal flows are different from data flows in conventional

data flow diagrams because they show what the user expects

from the system, instead of what the system will output

based on input. They do not show any input to the system,

because such data should be best considered at design stage.

Goal flows can bring the following advantages into object

modelling:

(a) Help realise the role of the use case diagram in UML:

show functional requirements of a system only (i.e.

what the system is expected to do).

(b) Help concentrate on what the system is expected to

deliver rather than on how the system transforms from

input into output.

(c) Help focus on real world conceptual classes that

achieve the goal of a use case in a problem domain,

rather than focus on software classes [14] (i.e. software

components) that implement the use case in a software

system. Such focus is in particular important and

necessary in object-oriented analysis to build the

analysis object model that consists of conceptual

classes only and that is not a model of software

components [14].

(d) Help test the class diagram against functional

requirements of a system via use case-entity

diagrams.

The new goal-oriented approach is also hoped to bring

the following helps into system modelling:

(a) Help enhance reusability of entities involved in the use

cases that have similar goal.

(b) Help identify classes gradually from use cases one by

one at different times, instead of from all use cases at

one time.

(c) Help appreciate and understand roles and responsi-

bilities of classes in a system through identifying

operations of classes based on collaboration between

use cases and entities.

(d) The collaboration between use cases and entities,

identified in Step 5, may be useful in modelling

dynamic behaviour of the same system using sequence

or collaboration diagrams, since the messages passed

between objects could be identified from the

collaboration.

(e) May help find a complementary process from require-

ments capture to object modelling with UML, so that

more efficient CASE tools supporting object modelling

with UML can be developed.

References

[1] P. Allen, S. Frost, Component-Based Development for Enterprise

Systems, Cambridge University Press, Cambridge, 1998.

[2] S. Bennett, S. McRobb, R. Farmer, Object-Oriented Systems Analysis

and Design using UML, McGraw-Hill, New York, 1999.

[3] G. Berrisford, Improving OO analysis methods, Journal of Object-

Oriented Programming Mar/Apr (1998) 6–7.

[4] G. Booch, Object-Oriented Design with Applications, Second ed.,

Addison-Wesley, Reading, MA, 1994.

[5] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modelling

Language: User Guide, Addison-Wesley, Reading, MA, 1999.

[6] I.K. Bray, An Introduction to Requirements Engineering, Addison-

Wesley, Reading, MA, 2002.

[7] S. Gossain, Object Modelling and Design Strategies, Cambridge

University Press, Cambridge, 1998.

[8] I. Graham, Use cases combined with Booch/OMT/UML: process and

products, Journal of Object-Oriented Programming Jan (1998) 76–78.

[9] D. Harel, Statecharts: a visual formalism for complex systems,

Science of Computer Programming 8 (1987) 231–274.

Y. Liang / Information and Software Technology 45 (2003) 83–9392



[10] B. Henderson-Sellers, OO diagram connectivity, Journal of Object-

Oriented Programming Nov/Dec (1998) 60–68.

[11] A. Jaaksi, A method for your first object-oriented project, Journal of

Object-Oriented Programming Jan (1998) 17–24.

[12] I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard, Object-

Oriented Software Engineering: a Use Case Driven Approach,

Addison-Wesley, Reading, MA, 1992.

[13] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software

Development Process, Addison-Wesley, Reading, MA, 1999.

[14] C. Larman, Applying UML and Patterns—an Introduction to Object-

Oriented Analysis and Design and the Unified Process, Prentice-Hall,

Englewood Cliffs, NJ, 2002.

[15] S. Lauesen, Real-life object-oriented systems, IEEE Software Mar/

Apr (1998) 76–82.

[16] T.C. Lethbridge, R. Laganiere, Object-Oriented Software Engineer-

ing: Practical Software Development Using UML and Java, McGraw-

Hill, New York, 2001.

[17] Y. Liang, M.A. Newton, H.M. Robinson, The use of object models for

information systems analysis, Proceedings of the Fourth International

Conference on Information Systems Development, Slovenia (1994)

625–634.

[18] Y. Liang, An approach to assessing and comparing object-oriented

analysis methods, Journal of Object-Oriented Programming Jun

(2000) 27–33.

[19] L. Mattingly, H. Rao, Writing effective use cases and introducing

collaboration cases, Journal of Object-Oriented Programming Oct

(1998) 77–84.

[20] D.E. Monarchi, G.I. Puhr, A research typology for object-oriented

analysis and design, Communications of the ACM 35 (9) (1992)

35–47.

[21] B. Oesterich, Developing Software with UML, Addison-Wesley,

Reading, MA, 1999.

[22] T.W. Olle, J. Hagelstein, I.G. Macdonald, C. Rolland, H.H. Sol,

F.J.M. Van Assche, Verrijn-Stuart, An Information Systems Meth-

odologies—a Framework for Understanding, Addison-Wesley, Read-

ing, MA, 1988.

[23] D. Rosenberg, K. Scott, Use Case Driven Object Modelling with

UML: a Practical Approach, Addison-Wesley, Reading, MA, 1999.

[24] J. Rumbaugh, J. Premerlani, M. Eddy, W. Lorensen, Object-Oriented

Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[25] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modelling

Language Reference Manual, Addison-Wesley, Reading, MA, 1999.

[26] S. Shlaer, S.J. Mellor, Object-Oriented System Analysis: Modeling

the World in Data, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[27] S. Shlaer, S.J. Mellor, Object Lifecycle: Modeling the World in States,

Prentice-Hall, Englewood Cliffs, NJ, 1992.

[28] I. Sommerville, Software Engineering, Fifth ed., Addison-Wesley,

Reading, MA, 1996.

[29] P. Stevens, R. Pooley, Using UML Software Engineering with Objects

and Components, Addison-Wesley, Reading, MA, 2000.

[30] B. Stroustrup, The Cþþ Programming Language, Second ed.,

Addison-Wesley, Reading, MA, 1991.

[31] M. Weisfeld, The Object-Oriented Thought Process, SAMS Publish-

ing, 2000.

Y. Liang / Information and Software Technology 45 (2003) 83–93 93


	From use cases to classes: a way of building object model with UML
	Introduction
	A goal-oriented approach to building the object model
	Step 1: determine the goal of each of use cases
	Step 2: identify entities using the goal of use cases
	Step 3: specify entities as classes and their features as attributes of the classes in a class diagram
	Step 4: specify references between entities as association relationships between classes
	Step 5: identify collaboration between use cases and entities
	Step 6: specify collaboration as operations of classes
	Step7: test use case-entity diagrams and class diagram

	A case study: the book trader system
	Comparison and evaluation
	Conclusions
	References


