
computer 42

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$25.00 © 2009 IEEE

with a pacemaker, the odds that the device’s manufacturer
will recall it or issue a defect warning over a one-year
period are about one in 15. For implantable cardioverter
defibrillators—more sophisticated devices that can deliver
a strong electric shock to avert sudden death—the odds of
a warning are even higher: nearly one in six.

The worldwide market for embedded systems is around
160 billion euros, with an annual growth of 9 percent.
Figure 1 shows the size and annual volume of selected em-
bedded software.2,3 While these statistics are comparable
to the world’s biggest software packages, such as Micro-
soft Windows, embedded software is far more complex
due to the real-time and interface constraints that do not
affect IT, application, or desktop software.

The embedded and information systems communi-
ties tend to exist in almost complete isolation from one
another. This holds for conferences as well as for organiza-
tion layout and products. Embedded-software engineers
typically don’t attend mainstream computer shows or
software engineering conferences, but rather attend
their domain-specific events, such as the SAE Conver-
gence series, because they relate software engineering to
specific industry domain challenges and solutions.

E
mbedded software shapes our world. It is difficult
to imagine day-to-day life without it. Examples
of embedded software include pacemakers, cell
phones, home appliances, energy generation and
distribution, satellites, and automotive compo-

nents such as antilock brakes. Embedded software creates
both huge value and unprecedented risks.

Pacemakers are a good example of how embedded soft-
ware helps millions of persons live a better life. Yet between
1990 and 2000, firmware errors accounted for about 40
percent of the half million devices recalled.1 For a person

Christof Ebert, Vector

Capers Jones, Software Productivity Research

Due to the complex system context of
embedded-software applications, defects
can cause life-threatening situations, de-
lays can create huge costs, and insufficient
productivity can impact entire economies.
Providing better estimates, setting objec-
tives, and identifying critical hot spots in
embedded-software engineering requires
adequate benchmarking data.

EMBEDDED
SOFTWARE:
FACTS, FIGURES,
AND FUTURE

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

Siz
e i

n o
bje

ct
ins

tru
cti

on
s 109

108

107

106
1950 1960 1970 1980

Years
1990 2000 2010

Space �ight control
Switching systems
Automotive embedded SW
Linux kernel

Figure 2. Complexity growth of embedded systems.

43AprIL 2009

We therefore want to provide an overview of techniques
and methods that impact embedded-software engineering.
Instead of diving into one specific development meth-
odology, we want to bootstrap a measurement-driven
approach focused on improvements in embedded-soft-
ware engineering.

Measuring eMbedded soFtware
In 2008, there were some 30 embedded microproces-

sors per person in developed countries with at least 2.5
million function points of embedded software.2,4 As more
devices become automated and consumers acquire more
such devices, the volume of embedded software is increas-
ing at 10 to 20 percent per year depending on the domain.
Embedded microprocessors account for more than 98
percent of all produced microprocessors, thus vastly sur-
passing computing power in the IT industry.

Figure 2 shows the evolution of some embedded systems
in terms of software size over time—namely onboard soft-
ware in spacecraft, telecommunications switching systems,
automotive embedded software, and the Linux kernel,
which serves as the basis of many embedded systems. Win-
dows Mobile and other embedded operating systems are
evolving at the same pace. We use these examples because
we have been working on these components.

The growth rate of embedded software has accelerated
over the past decades. For instance, new cars currently
have 20 to 70 electronic control units with more than 100
million object code instructions, totaling close to 1 Gbyte of
software in a premium car. Value creation in cars is primar-
ily determined by embedded software, resulting not only
in increased cost and complexity, but also in increased po-
tential defects from embedded software. While mechanical
defects are decreasing in rate, defects caused by electronic
systems are increasing rapidly.

But how do we assess the defect density of embedded
software? How do we evaluate supplier schedules? To es-
timate, set objectives, and identify critical hot spots in
development, testing, and project management, we need
industrial benchmarking data, such as expected defects.
Where do you get such initial data? This data might not be
readily available, or it is not yet scalable for new products,
methodologies, or projects.

While researchers have begun to publish increasing
amounts of data for standard software, this is not the case
for embedded-software development. There are many
informal claims for tools, languages, and methodologies,
but empirical data on their actual effectiveness in terms
of quality or productivity is rarely collected. The reason
is simply that embedded software tends to “disappear”
within the surrounding systems. It is highly specific to its
environment, thus making empirical studies difficult.5

To provide facts and figures, we draw from our mea-

surement experiences and present quantitative data
accumulated over our combined 60 years of embedded
software engineering experience.2,3,6 Knowing that it is often
difficult to use simple numbers to characterize a situation,
we also provide concrete and fact-based guidance from
our own experiences so you can use it as a baseline in your
projects. Clearly, this is not a substitute for your own mea-
surement database, but it does provide a starting point.

Project lessons and
cost estiMation tools

We started by looking into our own project lessons
learned and the cost-estimation tools on which we have
been working for decades. We have continuously verified
this data with client visits and published experiences.1,3,4,6-13
Over time, this experience has provided a broad basis of
data points from embedded projects and products. From
this we derived simple rules of thumb (or heuristics) that
are applicable even in situations where no historic informa-
tion is accessible.

This article uses function points as defined by the Inter-
national Function Point Users Group and assumes version
4.2 of the IFPUG counting rules.3,4 Adjustments to the data
would be needed for COSMIC function points or other vari-
ations on IFPUG counting methods.

To improve your own embedded development pro-
cesses, and to ensure that benchmark data applies to
your environment, we strongly suggest building your own

Airplane navigation

Pacemaker

Mobile phone
(low-cost) RT-Linux

Automotive SW

Space
flight SW

Washing
machine

109

108

107

106

105

104

103

102

101

100
105 106 107 108 109

Size in object instructions

Sy
ste

m
s p

er
 ye

ar Mobile phone
(high-end)

Figure 1. Embedded software size and deployment.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

computer 44

history database with baselines for estimation, quality
planning, and the like. To get started without much over-
head, we recommend the following lean set of effective
project indicators:2,6

Requirements status and volatility.•	 Requirements
status and change rate is a basic ingredient for track-
ing progress based on externally perceived value.
Always remember that you are paid for implement-
ing requirements, not for generating code. Too many
changes indicate that the project was not sufficiently
prepared.
Product size and complexity.•	 Size can be measured in
function points or as code size in lines of code (LOC)
or statements. Be prepared to distinguish between
what is new and what is reused or automatically gen-
erated code.

Effort. •	 This is a basic monitoring parameter to ensure
you stay on budget. Effort is estimated up front for
the project and its activities. Afterward, these effort
elements are tracked.
Schedule and time.•	 Monitor results, increments, and
milestones to ensure that you can keep the scheduled
delivery time. Similar to effort, time is broken down
into increments or phases that are tracked based on
what has been delivered so far. Note that milestone
completion must be aligned with defined quality crite-
ria to avoid detecting poor quality software too late.
Project progress. •	 This is the key measurement during
the entire project execution. Progress has many
facets and should monitor deliverables and how they
contribute to achieving the project’s goals. Typically,
there are milestones for the big steps and earned
value and increments for the day-to-day operational
tracking. Earned value techniques look to the degree
with which results such as implemented and tested
requirements or closed-work packages relate to effort
spent and elapsed time. This lets us estimate the cost
and remaining time to complete the project.
Quality.•	 This is the most difficult measurement, as it
is hardly possible to forecast accurately whether the
product has already achieved the quality level ex-
pected for operational usage. Quality measurements
need to predict quality levels and track discovered de-
fects against estimated defects. Reviews, unit test, and
test progress and coverage are the key measurements

to indicate quality. Reliability models are established
to forecast how many defects still need to be found.
Note that quality attributes are not only functional
but also relate to performance, security, safety, diag-
nosability, and maintainability.

This set of measurements applies to project tracking
and oversight from a product- and contractor-manage-
ment perspective and thus keeps measurements lean yet
effective. These measurements are state of the practice
in embedded-software engineering and thus are neces-
sary if you need to justify development practices and your
risk management in, for instance, litigation.13 Consider
the Heisenberg Uncertainty Principle for Software: Ac-
curate estimating and measurement change the project.
The more you know what’s going on, the more you can
influence and improve. Measurements have impact, and
with more impact, their usage and benefits will grow.

develoPMent Practices
Embedded-software systems pose extraordinary chal-

lenges to the software engineer due to their complexity.
The main source of complexity is the large number of
subtle and often unexpected interactions among the
various parts of these systems, which have the following
common features:

functionality represented by states and events;•	
real-time behavior of events and expected actions;•	
combined software/hardware systems equipped •	
with distributed software, computers, sensors, and
actuators;
high demands on availability, safety, information se-•	
curity, and interoperability; and
long-lived systems in which embedded software is •	
expected to work reliably.

Embedded-software development practices vary to
a high degree across industries. Mostly, they evolve at
different speeds and without much cross-fertilization.
One reason is that embedded developers often do not
really consider themselves “software engineers.” By train-
ing, many of them are electrical engineers, automotive
engineers, or telecommunications engineers, or have
some other background. They don’t want to be viewed
as software engineers because software engineering has
a lower professional status than more mature forms of
engineering—particularly the types of engineering that
have certification and licensing requirements.

design and engineering constraints
Embedded systems heavily influence design and en-

gineering constraints of their respective surrounding
systems—and vice versa. To illustrate, we researched

Embedded systems heavily influence
design and engineering constraints of
their respective surrounding systems—
and vice versa.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

45AprIL 2009

automotive embedded electronic control units
(ECUs) over time and analyzed how they impact
design decisions. While in the 1980s the major-
ity of electronics in a car came from the radio
and the engine controller, automotive electronics
increased significantly to provide safety, and,
more recently, comfort functions. In the past, pri-
mary car buying criteria were power, speed, and
design. Today, buyers demand energy efficiency,
safety, and comfort.

Figure 3 shows the evolution of embedded sys-
tems in cars since 1985. The upper line shows the
number of ECUs in high-end models at release
time, while the lower line shows the electric
energy consumption of these ECUs.

Programming environments
A common denominator across all embedded-software

domains is the use of programming languages that allow
direct access to interfaces, memory, and so forth. More
than 80 percent of all companies are using C and to some
degree C++. More than 40 percent are using assembler for
lower-level interfaces. Java is increasingly used for GUI and
application programming. Eclipse-based development tools
dominate engineering workbenches due to the many dif-
ferent tools that need to be federated, such as modeling and
simulation tools (for example, Matlab/Simulink, Rose, and
Tau), testing environments (LabView, CANoe, HIL/SIL, and
emulators), product life-cycle management environments
(Teamcenter and eASEE), configuration management tools
(Subversion and CVS), requirements tools (DOORS and
Caliber), and of course compilers, debuggers, and the like.
Due to the intensive supplier interaction and collaboration,
which is much higher than in traditional IT, tools such as
DOORS or Matlab/Simulink have respective market shares
of more than 50 percent.

software practices
Because of the high-reliability and quality requirements

for embedded applications, as well as the often stringent
performance requirements, since the 1990s, the embedded
world has focused on software practices that yield high
quality. Some examples of the practices used for embed-
ded software include the following:

quality function deployment for requirements •	
prioritization and traceability of quality;
model-driven design and test;•	
mathematical modeling for reliability, power con- •	
sumption, thermal, and performance analysis;
formal design and code inspections;•	
automated static code analysis for memory, •	
performance, and security;
broad automatic testing;•	

Six Sigma for software development;•	
adoption and fairly rapid ascent to CMMI levels 3 •	
and above (in fact the CMMI was created by explicit
demand from the embedded-software industries);
 components that are explicitly designed for reuse; •	
and
 selected agile principles such as feature-driven design •	
and daily Scrum sessions for status and quality
topics.

The embedded domain tends to be more formal in its
development practices than either the IT or desktop soft-
ware domains. Because many embedded applications are
safety-critical by nature (for example, medical, industry
automation, automotive, or transport), developers have
been forced to systematically introduce and use formal
methods that concentrate on quality. Some industries
are under extreme quality and schedule pressure, result-
ing in extensive oversight criteria. For example, in the
satellite business, deadlines and quality are obviously
not negotiable, and the same holds for domains such as
automotive electronic suppliers or the industry automa-
tion domain where huge external systems are waiting for
the in-time availability of high-quality embedded software
controllers.

deFect Potentials and reMoval
Quality as a multifactor set of requirements is more

complex and important in embedded systems than in
application software or information systems. As many em-
bedded devices have immediate impact on the user, often
under safety conditions, defect potentials and removal
must be closely monitored and improved. The embedded-
software domain sometimes stumbles and releases prod-
ucts that are dangerous or fail to work effectively. There
have been serious issues with medical instruments, an-
tilock brakes, and home appliances. Failures and poor
quality in embedded software can sometimes cause death
or serious injury. As a result, some embedded devices
such as medical instruments have serious liability issues.

Em
be

dd
ed

 co
nt

ro
l u

nit
s a

nd
po

we
r c

on
su

m
pt

ion

0.1

1

10

100

1985 1990 1995 2000
Years

2005 2010

Figure 3. Automotive embedded systems (upper line: number of
control units) and overall electrical energy consumption (lower line:
consumption in kW).

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

computer 46

Therefore, top-notch quality control is a mandatory fea-
ture of many embedded applications.

Quality plays a pivotal role in efficiency and cost im-
provement. Quality leads, and productivity follows. For
productivity to improve at all, quality must be improved
faster and to a higher level than productivity. Attempts to
improve productivity without improving quality first are
not effective.

software quality
Finding and fixing bugs is overall the most expensive

activity in software development. Studies of software
quality indicate a strong correlation between application
size and the total number of defects that must be elimi-
nated. A simple rule of thumb can provide an approximate
but useful estimate of potential defects for embedded
applications: Raise the size of the application in function
points to the 1.22 power, and the result will yield the ap-
proximate total number of defects that must be found and
eliminated. This rule of thumb includes all major sources
of defects: requirements, design, coding, and documenta-
tion, as well as “bad fixes” or secondary defects that are
accidentally included in attempts to repair other defects.
Note that this rule of thumb is for embedded software.
Other forms of software such as information systems or
commercial packages would need different exponents.
The predicted number of defects will be somewhat higher
than will cause failures.

A similar rule of thumb can predict the approximate
number of test cases. Since embedded software tends to
perform more kinds of testing and have more test cases
than other forms, the rule of thumb is: Raise the size of
the application in function points to the 1.24 power to
determine the approximate number of test cases that are
likely to be used.

To illustrate these two rules of thumb, we consider an
application of 1,000 function points coded in C. Given
that the ratio of C statements to function points is ap-

proximately 100 to 1 (understanding that the exact value
differs depending on the specific C dialect), 1,000 func-
tion points is equivalent to 100,000 C statements or 150
KLOC. A thousand function points raised to the 1.22
power equals 4,570 potential defects in all categories,
or 30 defects per KLOC. Of these total defects, about
20 percent would be high-severity defects. While this
may seem like a large number of defects, a significant
percentage—in the range of 95 to 99 percent, depend-
ing on the organization’s maturity level—will be found
prior to delivery.

This amount of code requires some 5,350 test cases
based on industrial benchmarks. Your own number could
be much higher for two reasons. First, test-driven develop-
ment and criticality-based testing multiplies this number
by at least a factor of 10. Second, embedded-software orga-
nizations typically have a test-case redundancy of around
30 to 50 percent due to collecting, but never revisiting, old
test cases.

verification and validation
Code verification and validation stages for embedded

software encompass peer reviews, static code analysis,
subroutine and algorithmic testing, unit testing, component
testing, functional testing including hardware-in-the-loop
(HIL) and software-in-the-loop (SIL), integration testing,
system testing, and qualification and acceptance testing.
Each of these V&V steps will typically yield 30 percent of
defect-removal effectiveness. This provides 97 percent
overall code defect-removal effectiveness if all 10 steps
are performed adequately. In our experience, maturity
level 3 organizations in the embedded-software domain
demonstrate 98 percent removal effectiveness, typically
with high emphasis on reviews and test methodology.3,6,10
Maturity level 5 organizations in embedded-software sys-
tems, such as Boeing or Motorola, achieve 99 percent and
higher removal effectiveness.

By contrast, the average defect-removal effectiveness at
release of application software and information systems is
only about 85 percent.6 You can imagine what that means
for software such as Windows given its millions of LOC.
Overall, the embedded domain does a somewhat better
job in terms of defect-removal levels than other forms of
software.

Compared to other forms of software such as desktop
applications, and business information systems, the em-
bedded-software domain tends to use more sophisticated
software quality assurance, better quality measurements,
formal inspections, and more test stages. Table 1 shows
a typical pattern of defect prevention, verification, and
validation activities used for embedded-software de-
velopment based on the SPR database.4,6 Note that the
list is based on history data and does not prescribe cer-
tain techniques or effort. It includes all common forms

The following list provides additional sources of information
about the topics discussed in this article.

IEEE Software•	 , special issue on software development for
embedded systems, May/June 2009; www.computer.org/
portal/site/software
Newsletter and archive on embedded-software engineer-•	
ing and technologies: www.embedded.com
Function Point calculation and benchmarks: International •	
Function Point Users Group (IFPUG); www.IFPUG.org
Benchmarks on a variety of IT and software projects: Inter-•	
national Software Benchmarking Standards Group (ISBSG);
www.ISBSG.org

embedded-SoftwAre reSourceS

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

47AprIL 2009

of defect prevention and removal used for embedded
applications. Any specific embedded application might
use only a subset of the activities shown.

Interpreting this list requires introducing and explaining
specific terms. Assignment scope is the amount of work
assigned to one engineer. Assignment scopes are used to
determine staffing levels. Production rate is the amount of
work that one person can perform in a given period such
as an hour or a month.

Late defect correction in embedded software costs
much more than for other software types due to the close
hardware interaction and the demands from certifica-
tion bodies such as the US Food and Drug Administration
for more intense regression testing. The clear focus is
thus on detecting defects as early as possible in the phase
where they are inserted. Sixty percent of a system’s de-

fects come from 20 percent of its components (modules,
classes, or units).3 However, the distribution varies based
on environment characteristics such as processes used
and quality goals. Ten percent of all code accounts for 90
percent of outage time, whereas 20 percent of all defects
need 60 to 80 percent of correction effort.10 Most of the
avoidable rework comes from a small number of soft-
ware defects, where avoidable rework is defined as work
done to mitigate the effects of errors or to improve system
performance.

Adapt your V&V strategies to this Pareto imbalance
and focus expensive reviews and manual test on critical
areas, while performing basic regression testing bottom
up with unit test, test-driven development, and automatic
integration test routines based on operational profiles.
Note that test cases and test scripts often contain defects,

table 1. typical pattern of embedded software defect prevention and removal.

activities
assignment scope in

function points

Production rate in
function points per

month
defect-removal

effectiveness (percent)
bad fix injection

(percent)

Manual reviews

Design inspections 1,000 160 85.0 4.0

Code inspections 200 60 85.0 4.0

Quality function
deployment 1,000 200 82.0 3.0

Test plan inspection 750 125 80.0 5.0

Test script inspection 300 175 78.0 4.0

Document review 3,500 1,000 77.0 2.5

Pair programming review 2,500 200 75.0 5.0

Bug repair inspection 300 90 70.0 3.0

Quality assurance review 2,500 750 45.0 7.0

Manual testing

Subroutine testing 5 100 50.0 2.0

Component testing 1,250 150 40.0 3.0

System testing 2,000 200 40.0 7.0

New function testing 125 110 35.0 5.0

Regression testing 150 150 30.0 7.0

Unit testing 50 90 25.0 4.0

automated testing

Static code analysis 15,000 10,000 87.0 1.0

System test 500 200 40.0 8.0

Regression test 500 175 37.0 7.0

Unit test 500 250 35.0 4.0

New function test 500 200 35.0 5.0

Qualification

Usability testing 5,000 2,000 65.0 4.0

Preseries testing 15,000 500 45.0 5.0

Acceptance testing 5,000 3,000 40.0 7.0

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

computer 48

are not enough focused on what matters, and are highly
redundant. It is therefore necessary to review test strategy
and test cases as much as the design and implementa-
tion. Model-driven approaches help in making code more
consistent but do not replace reviews because they would
just delay early errors from the modeling down to the vali-
dation where the model is finally checked versus reality.
Don’t collect test cases like stamps, but rather use test-
driven development and implementation-independent test
strategies to improve your test quality.

Projects and Productivity
A client developing embedded software asked us to

evaluate his company’s engineering efficiency. He had
organically grown his embedded automotive software
business and gradually introduced people, processes,
and tools. The company’s software technology was un-
questionably far above average. Its embedded-software

development had grown from support, to mechanical and
hardware engineering, to being the major value driver
and cost factor.

But how to improve efficiency was unclear to manage-
ment. To start, let’s look at planning.

Planning
A good predictor is the Putnam formula, which states

that project effort is proportional to size to the power of 3
divided by duration to the power of 4 and again divided by
productivity to the power of 3. For embedded software, this
effort multiplies by a factor of 2 to 4. High-dependability
software multiplies the base effort by a factor of 3 to 10. For
maintenance projects, the base effort multiplies by a factor
of 2 to 5. The minimum project duration in months is 2.5
times effort in person-years to the power of 1/3.2,10

As an example, take an automotive embedded control-
ler on which five persons would typically work for two
years. The minimum duration could be 6 to 8 months with
intensive front-loading and priority-driven design with
parallel verification and validation. This can be achieved
by a short requirements and design phase of 2 to 3 months
and intensive parallel verification and validation.

Allocating engineers to several projects in parallel re-
duces productivity. Experience shows that productivity
is reduced in steps depending on the amount of context
switching due to the different assignments—for example,
interruptions by phone calls from the second project while
doing design in the first. As a rule, consider a 30 percent

overall productivity decrease if an engineer is working on
several independent assignments.

Business case validity seems to be optimal with 5 to 10
percent delays. Zero is overly expensive, but more than
10 percent decreases customer satisfaction. A common
tradeoff is permitting few customer requirements changes
(or by sales and marketing) that make projects a bit late
but add tangible value for the customer.

Cost and efficiency increasingly are the focus of embedded-
software development. New entrants from low-cost coun-
tries have shown that high reliability is not designed bottom
up with expensive components and methods but can be
achieved with low-cost redundancy. Cost pressure in some
embedded industries has caused double-digit reductions
for the same software year over year. Today, embedded-
software engineering needs to deliver on time with excel-
lent quality at a continuously decreasing cost per unit.

requirements and test
The two major cost drivers in embedded-software de-

velopment are requirements and test.
requirements. Requirements are the single major

driver. We often develop the wrong things due to not
reviewing and analyzing requirements, missing and vague
requirements, or confusing needs and requirements. Forty
percent of all software defects in embedded systems result
from insufficient requirements and analysis activities. The
typical effort allocated to requirements engineering is 3
to 7 percent of total project cost. It is 5 to 10 percent for
all requirements-management-related activities during
the life cycle, which includes change management during
the project. Doubling this effort has the potential to reduce
life-cycle cost by 20 to 40 percent, thus yielding a direct
ROI of 4, not considering benefits such as better reuse.
The cost reduction mostly stems from reduced error rates
during elicitation and analysis, earlier defect removal
during specification and requirements verification, and
improved consistency across work products.

test. Testing after code completion consumes 30
to 40 percent of embedded-development resources
and—depending on the project life cycle (sequential or
incremental)—requires a lead time of 15 to 50 percent of
total project duration. The minimum lead time is achieved
when test strongly overlaps development, such as in incre-
mental development with a stable build that is continuously
regression tested and integration of software artifacts is
split into groups of check-ins tested in “stage areas,” which
then are connected to further stage areas, developing an
integration “tree.” In this case, there is only the system test
at the end, contributing to lead time on the critical proj-
ect path. On the other hand, testing practiced in a classic
waterfall approach—which still is widely seen in embed-
ded-software development due to the many interfaces and
external dependencies— significantly increases lead time

Cost and efficiency increasingly are
the focus of embedded-software
development.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

Applications that enter testing with
an excessive volume of defects cannot
exit the testing phase because they
don’t work.

49AprIL 2009

due to repetitive component integration overheads and
heavy extra effort from late changes.

How to reduce test effort? First, by detecting defects
close to the phase where they are created: Reviews,
models, and code analysis will help. Second, by removing
redundancy: Across projects, at least 30 percent of all test
cases are redundant, as embedded-software engineers
have the tendency to add test cases “to be on the safe
side” and don’t control them by means of coverage or
related effectiveness criteria. Review your test strategies,
use coverage tools, and apply orthogonal test-case arrays
to reduce test redundancies.

schedule pressures
Beware of the negative impact of time pressure. We

often find companies that compress schedules to a point
that makes engineers skip necessary V&V activities, only
to find later they need extra time and incur costs for repair.
V&V activities are necessary and need to be planned up
front. Organizations insisting on requirements reviews on
each project and requirement change have quality, sched-
ule, and efficiency advantages of more than 20 percent
simply because they start with the right requirements and
have fewer changes afterward.

A surprising finding is that software projects that achieve
95 percent or higher in total defect-removal effectiveness tend
to have shorter development schedules and lower develop-
ment costs than similar projects of the same size that achieve
only 85 percent (or lower) defect-removal efficiency.3,4,6 This
occurs because testing is the main portion of development
where schedule delays mount up and costs begin to exceed
budgets. Applications that enter testing with an excessive
volume of defects cannot exit the testing phase because
they don’t work. By contrast, similar projects using formal
inspections, static analysis, and other methods in addition
to testing will have shorter test schedules because a majority
of defects have already been eliminated.

Productivity. Improving productivity can reduce the
duration of a task or project (given that all other factors are
known) by up to 25 percent. This implies excellent team
building and teamwork, strong planning and monitoring
on the critical path, strong method and tool support, high
parallelism, and early defect removal.

Such mechanisms are not sustainable, however, and
demand strong follow-up. They bear the risk of high stress
levels and attrition of team members if pressure is main-
tained for too long. New defects are inserted with changes
and corrections, specifically those late in a project that
are done under pressure. Corrections create some 5 to 30
percent new defects depending on time pressure and un-
derlying tool support. Sometimes, secondary and tertiary
bad fixes occur. One of the authors was an expert witness
in a lawsuit where four consecutive attempts to repair a
bug failed, and each attempt added at least one new bug. In

particular, late defect removal while being on the project’s
critical path causes many new defects because quality as-
surance activities are reduced and engineers are stressed.
This must be considered when planning testing, validation,
or maintenance activities.

outsourcing. Be aware that outsourcing and distrib-
uted development of embedded software is difficult and is
often canceled before it delivers any real savings. Dividing
a business process across the world with shared respon-
sibilities costs extra money and requires rework effort.
Our own experience shows that with two locations, you
should budget 20 to 30 percent overhead, and for three
to four locations, the overhead is some 30 to 40 percent.12
This overhead is due to additional interfaces, management,
team effort, collaboration support, quality control, reviews,
and so on. Reported cost reduction from global software
engineering is much less than the commonly touted 50 to

70 percent savings if only labor costs are compared—as the
media often do. In our experience, outsourced embedded-
software engineering projects report a 10 to 15 percent cost
reduction after a two- to three-year learning curve. Initially,
outsourcing demands up to 20 percent additional effort. For
India, communication and automotive supplier companies
report that the effective savings after a three-year period
is 15 to 20 percent.

challenges and solutions
By 2015, massively parallel computing systems will

evolve to the individual device level, with systems on chip
being produced on wafer scale. Sensors and processors will
include mechanical or biological systems, optical devices,
wireless connectivity, and voice recognition. With highly
networked systems, energy distribution will change from
a centralized architecture to many small distributed units,
such as solar cells, wind turbines, and others. Users will
receive online-demand information from smart meters,
and utilities will boost their capacity management from the
many embedded yet powerful batteries in e-vehicles. With
sensors arriving at the biological level, implants will ease
diagnosis and facilitate seamless medical support and,
where needed, immediate yet remote assistance.

Many scenarios can be derived from these major
trends.2,14,15 To provide value for embedded-software en-
gineers, we distill from these trends four design principles
with concrete guidance for improving embedded-software
engineering.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

computer 50

be your target. Apply it on the highest feasible aggrega-
tion level, such as in embedded-controller design. Reduce
code size and refactor your software periodically. Reduce
variants and use platform- or product-line engineering
to avoid any kind of ad hoc variation. Establish penalty
schemes if code is duplicated or modified without an
agreed-upon business case. Refactor your test strategies
and test cases to focus on critical defect removal.

value orientation
Embedded software is always under cost pressure.

Apply the RACE principle: reduce accidents and control
essence.3 Accidents imply unnecessary overhead such
as gold plating, rework due to late defect removal, or too
many requirements changes. Essence is what customers
pay for.

complexity management
Embedded software continues to grow by 10 to

30 percent per year depending on the application do-
main.2 Increasing complexity means extra defects and
cost.

Measure the complexity of your embedded software
and control it. Use systematic processes both internally
and with your suppliers to mitigate risks and allow for
fast recuperation in case of insufficient performance. Use
CMMI or SPICE and demand similar use from your suppli-
ers. Both frameworks are designed for mixed software/
hardware systems and help build a state-of-the-practice
engineering environment.

Apply model-driven design and test to trace design
decisions and foster fast change cycles. Round-trip engi-
neering is not yet available on a systems scale but should

Christof Ebert, Vector

Jürgen Salecker, Siemens Corporate Technology

embedded systems have overwhelming penetration around the
world. Innovations are increasingly triggered by software

embedded in automotive, transportation, industrial-automation,
medical-equipment, communication, energy, and many other kinds
of systems. They use about 98 percent of all the microprocessors
produced worldwide.

Embedded software differs significantly from desktop and
enterprise software, mostly in environmental conditions—partic-
ularly real-time and performance expectations, safety needs, low
production costs (because of high volumes), heterogeneous envi-
ronments, changing platforms, long life spans, and maintenance
difficulties. They communicate with their environment (other
embedded devices, enterprise systems, or mechanical or biologi-
cal systems) in many ways—via sensors, actors, specialized human
interfaces, and general-purpose communication links.

IEEE Software, another IEEE Computer Society magazine, is
dedicating its May/June issue to embedded software. The issue
shows how environmental conditions impact embedded-
software engineering. Emphasis is on the state of the practice and
current development techniques and trends. Above all, it provides
many hands-on industrial experiences from which all of us can
learn, independent of the domain we’re engaged in and the type
of software we use in our day-to-day engineering work.

In “Trends in Embedded-Software Engineering,” Peter Ligges-
meyer and Mario Trapp summarize current advances in
embedded-software engineering such as model-driven develop-
ment (MDD). You might argue that such techniques are already
used in IT and application software development. True and not so
true, as the Point-Counterpoint discussion by Les Hatton and
Michiel van Genuchten highlights with interesting insights. One
of the most relevant trends in embedded-software engineering is
the move toward more abstraction and thus being able to better
manage complexity throughout the life cycle. In “UML-Based
Model-Driven Development for HSDPA Design,” Jesús Martinez,
Pedro Merino, Alberto Salmerón, and Francisco Malpartida show
how to introduce MDD to embedded-software development. The

application and development of domain-specific languages is
well suited for the embedded domain as well.

Complexity reigns in embedded software, as elsewhere. But
power and performance restrictions demand we control complex-
ity. One possible solution is the application of multicore
microcontrollers, which are now entering the embedded domain.
“Embedded Multiprocessor Systems-on-Chip Programming” by
Jean-Yves Mignolet and Roel Wuyts will help professionals avoid
common traps when entering this domain. Because of its embed-
ded character with respect to critical environments and often
life-threatening risks, embedded software faces high-quality
requirements. Systematic, thorough, and completely traceable
verification and validation are key to good quality. In “Formal
Modeling and Verification of Safety-Critical Software,” Junbeom
Yoo, Eunkyong Jee, and Sungdeok (Steve) Cha show how such
techniques are applied to safety-critical software in a nuclear-
reactor protection system. In line with this article, the Software
Technology department in the Software May/June issue intro-
duces practical aspects of static code analysis as well as current
practices and tools for embedded software.

In “A Case for Taking a More Agile Approach in Embedded-
Systems Development,” Michael Smith, James Miller, Lily Huang,
and Albert Tran show how to keep good processes sufficiently
lean to allow for flexibility and efficiency. “Experiences in Improv-
ing Flight Software Development Processes,” by Ronald Kirk
Kandt, emphasizes the impact that a higher level of software
development maturity has had on a software engineering proj-
ect at the Jet Propulsion Laboratory. High quality and
performance requirements combined with fierce cost pressures
demand strong, continuously improving engineering and man-
agement processes.

Enjoy reading the IEEE Software May/June issue.

Christof Ebert is a partner and managing director at Vector. Contact him
at christof.ebert@vector-consulting.de.

Jürgen Salecker is competence field manager for embedded systems
at Siemens Corporate Technology. Contact him at juergen.salecker@
siemens.com.

embedded SoftwAre

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

51AprIL 2009

they managed to improve early detection by a factor of 2
to 5, reduce maintenance costs by more than 40 percent,
and shorten development schedules by 15 to 50 percent.3,6
This would have been impossible without measuring and
assessing quality, cost, and schedule.

Will embedded software grow in revenues, and
therefore jobs, as we have come to expect? Clearly, the
worsening economic environment will impact all com-
panies throughout the technology supply chain. But the
overall structure of the embedded industry and the posi-
tioning of individual companies are vastly different from
the last recession in 2001.

First, the demand will not cease given the widespread
needs related to transportation, communication, auto-
mation, safety, and security. This means that risks can
be distributed over more segments, including recession-
resistant medical and industrial markets. Second, recent
growth rates have been lower than before 2001, while cash
positions have increased. Third, the embedded-systems
market has become more global with new markets and
R&D centers emerging in developing and faster-growing
regions. Fourth, and not least, good embedded-software
engineering skills remain scarce on a global scope because
such skills are difficult to acquire and are immediately
mission-critical. Certainly, we will see some impact from
the current economic environment, but much less than in
other industries. Compound average annual growth rates
are 7 percent for embedded hardware, 10 percent for em-
bedded software, and 15 percent for related engineering
services.2,15

Embedded software has tremendous impact. It de-
termines value and risks in many of today’s products,
independent of domain and usage. If done well, it is invis-
ible and makes people spend money for the product. The
equation is simple: More embedded software in a product
increases sales and market share. But one wrong bit out
of billions can bring a system down and can cause physi-
cal damage.

Embedded-software engineering must cope with the
close relationship of value and risk. Competition drives
quality. The goal is not perfection but professionalism.
In the 1970s, Japanese industry, which had practically no
international market share, started shipping technical
equipment that showed value in terms of cost and quality.
They stunned the industries in the US and Europe—and
changed behaviors toward a strong focus on value and
quality.

Of course, demands and markets have changed today,
but the underlying rationale is the same: We must continu-
ously look for better ways to develop embedded software.
Smart embedded-software engineers will spend their ca-
reers engaged in this search for the better, and they will
find continuous challenges, solutions, and lots of personal
rewards.

Grow systems engineering skills in your software teams.
Take a systems perspective when deciding on software ar-
chitecture, interfaces, or future evolution.

Embedded software cannot be evaluated in its own lim-
ited software scope. Establish reviews for your requirements
from the perspective of both product management and
testing. Specify requirements so that they show their
respective marginal value and at the same time are
testable. Ensure consistency and traceability of deci-
sions. Install one change-control agent who decides on
all incoming change requests and on all software to be
released.

safety and security
Risks from malfunctions of embedded software are

much higher than those of application software. Secu-
rity rapidly grows in relevance as embedded software
communicates autonomously with other computing
systems.

Embedded-software engineers must know and use a
richer combination of defect prevention and removal ac-
tivities than other software domains. Safety, security, or
performance cannot be designed or tested in isolation.
They influence each other as well as all functional and
interface requirements.

Focus on architecture and performance requirements
before diving into algorithms and functions. Use tech-
niques such as disciplined traceability of requirements
and changes, model-driven development, code analysis,
test-driven development, and automatic testing to achieve
a high-maturity process culture.

energy efficiency
While early embedded software typically drove energy

consumption beyond what was necessary for plain func-
tionality, today it must control energy consumption. Energy
efficiency is currently the major embedded trend. Software
contributes to energy savings.

Use performance tools to identify idle processes and
switch them off. Put hardware systems in sleep mode
when performance is not demanded. Adjust processor
speed to demands. Cache data to avoid bus and inter-
face load. Deploy passive sensors that trigger wake-up
functions. Make your embedded software independent
of standby power supply by using capacitors and flash
memories.

W
e have introduced systematic engineering
concepts and productivity improve-
ments in many companies around the
world in embedded-software domains
such as telecommunications, the auto-

motive industry, and transportation. Within a few years,

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

Silver Bullet Security Podcast

In-depth in ter v iews w i th secur i t y gurus . Hos ted by Gar y McGraw.

w w w.computer.org /secur i t y /podcasts

Sponsored by

COVER FE ATURE

computer 52

 12. C. Ebert, “Global Software Engineering,” ReadyNotes, IEEE
CS Press, 2006; www.computer.org/portal/pages/ieeecs/
ReadyNotes/ebert_abstract.html.

 13. C. Jones, Confl ict and Litigation between Software Clients
and Developers, Software Productivity Research Inc.,
2008.

 14. ITEA, Technology Roadmap for Software-Intensive Systems,
2nd ed., 2004; www.itea2.org/itea_roadmap_2.

 15. OECD, “Information Technology Outlook 2006”; www.
oecd.org/sti/ito, 2006. Annually updated.

Christof Ebert is a partner and managing director at
Vector. His research interests include product management
and productivity improvement. He received a PhD in electri-
cal engineering from the University of Stuttgart, Germany.
He is an IEEE senior member and distinguished visitor.
Contact him at christof.ebert@vector-consulting.de.

Capers Jones, chief scientist emeritus of Software Produc-
tivity Research LLC, is also the president of Capers Jones
& Associates LLC. His research interests focus on software
productivity and measurement. He received a degree in
English from the University of Florida. He is a member of
the IEEE Computer Society and a lifetime member of the
International Function Point Users Group. Contact him at
cjonesIII@cs.com.

references
 1. W.H. Maisel et al., “Recalls and Safety Alerts Involving

Pacemakers and Implantable Cardioverter-Defi brillator
Generators,” JAMA, vol. 286, 15 Aug. 2001, pp. 793-799;
http://jama.ama-assn.org/cgi/content/abstract/286/7/793.

 2. BITKOM, “Studie zur Bedeutung des Sektors Embedded-
Systeme in Deutschland” [“Embedded Systems Study in
Germany”], 2008, (in German); www.bitkom.org/files/
documents/Studie_BITKOM_Embedded-Systeme_11_11_
2008.pdf.

 3. C. Ebert and R. Dumke, Software Measurement, Springer,
2007.

 4. C. Jones, Estimating Software Costs, McGraw Hill, 2007.
 5. A.S. Berger, Embedded Systems Design: An Introduction to

Processes, Tools, and Techniques, CMP Books, 2001.
 6. C. Jones, Applied Software Measurement, McGraw Hill,

2008.
 7. ISBSG, “The Benchmark,” release 10, ISBSG; www.isbsg.

org.
 8. S. McConnell, Professional Software Development, Addison-

Wesley, 2003.
 9. C. Jones, Software Quality—Analysis and Guidelines for

Success, International Thomson Computer Press, 1997.
 10. F. Shull et al, “What We Have Learned about Fighting De-

fects,” Proc. 8th Int’l Symp. Software Metrics, IEEE CS Press,
2002, pp. 249-258.

 11. A. Endres and D. Rombach, A Handbook of Software and
Systems Engineering—Empirical Observation, Laws and
Theories, Addison-Wesley, 2003.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on November 14, 2009 at 14:08 from IEEE Xplore. Restrictions apply.

