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with a pacemaker, the odds that the device’s manufacturer 
will recall it or issue a defect warning over a one-year 
period are about one in 15. For implantable cardioverter 
defibrillators—more sophisticated devices that can deliver 
a strong electric shock to avert sudden death—the odds of 
a warning are even higher: nearly one in six.

The worldwide market for embedded systems is around 
160 billion euros, with an annual growth of 9 percent. 
Figure 1 shows the size and annual volume of selected em-
bedded software.2,3 While these statistics are comparable 
to the world’s biggest software packages, such as Micro-
soft Windows, embedded software is far more complex 
due to the real-time and interface constraints that do not 
affect IT, application, or desktop software.

The embedded and information systems communi-
ties tend to exist in almost complete isolation from one 
another. This holds for conferences as well as for organiza-
tion layout and products. Embedded-software engineers 
typically don’t attend mainstream computer shows or 
software engineering conferences, but rather attend 
their domain-specific events, such as the SAE Conver-
gence series, because they relate software engineering to  
specific industry domain challenges and solutions. 

E
mbedded software shapes our world. It is difficult 
to imagine day-to-day life without it. Examples 
of embedded software include pacemakers, cell 
phones, home appliances, energy generation and 
distribution, satellites, and automotive compo-

nents such as antilock brakes. Embedded software creates 
both huge value and unprecedented risks. 

Pacemakers are a good example of how embedded soft-
ware helps millions of persons live a better life. Yet between 
1990 and 2000, firmware errors accounted for about 40 
percent of the half million devices recalled.1 For a person 
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Due to the complex system context of  
embedded-software applications, defects 
can cause life-threatening situations, de-
lays can create huge costs, and insufficient 
productivity can impact entire economies. 
Providing better estimates, setting objec-
tives, and identifying critical hot spots in 
embedded-software engineering requires 
adequate benchmarking data. 
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We therefore want to provide an overview of techniques 
and methods that impact embedded-software engineering. 
Instead of diving into one specific development meth-
odology, we want to bootstrap a measurement-driven 
approach focused on improvements in embedded-soft-
ware engineering.

Measuring eMbedded soFtware 
In 2008, there were some 30 embedded microproces-

sors per person in developed countries with at least 2.5 
million function points of embedded software.2,4 As more 
devices become automated and consumers acquire more 
such devices, the volume of embedded software is increas-
ing at 10 to 20 percent per year depending on the domain. 
Embedded microprocessors account for more than 98 
percent of all produced microprocessors, thus vastly sur-
passing computing power in the IT industry.

Figure 2 shows the evolution of some embedded systems 
in terms of software size over time—namely onboard soft-
ware in spacecraft, telecommunications switching systems, 
automotive embedded software, and the Linux kernel, 
which serves as the basis of many embedded systems. Win-
dows Mobile and other embedded operating systems are 
evolving at the same pace. We use these examples because 
we have been working on these components. 

The growth rate of embedded software has accelerated 
over the past decades. For instance, new cars currently 
have 20 to 70 electronic control units with more than 100 
million object code instructions, totaling close to 1 Gbyte of 
software in a premium car. Value creation in cars is primar-
ily determined by embedded software, resulting not only 
in increased cost and complexity, but also in increased po-
tential defects from embedded software. While mechanical 
defects are decreasing in rate, defects caused by electronic 
systems are increasing rapidly.

But how do we assess the defect density of embedded 
software? How do we evaluate supplier schedules? To es-
timate, set objectives, and identify critical hot spots in 
development, testing, and project management, we need 
industrial benchmarking data, such as expected defects. 
Where do you get such initial data? This data might not be 
readily available, or it is not yet scalable for new products, 
methodologies, or projects. 

While researchers have begun to publish increasing 
amounts of data for standard software, this is not the case 
for embedded-software development. There are many 
informal claims for tools, languages, and methodologies, 
but empirical data on their actual effectiveness in terms 
of quality or productivity is rarely collected. The reason 
is simply that embedded software tends to “disappear” 
within the surrounding systems. It is highly specific to its 
environment, thus making empirical studies difficult.5

To provide facts and figures, we draw from our mea-

surement experiences and present quantitative data 
accumulated over our combined 60 years of embedded 
software engineering experience.2,3,6 Knowing that it is often 
difficult to use simple numbers to characterize a situation, 
we also provide concrete and fact-based guidance from 
our own experiences so you can use it as a baseline in your 
projects. Clearly, this is not a substitute for your own mea-
surement database, but it does provide a starting point.

Project lessons and  
cost estiMation tools

We started by looking into our own project lessons 
learned and the cost-estimation tools on which we have 
been working for decades. We have continuously verified 
this data with client visits and published experiences.1,3,4,6-13 
Over time, this experience has provided a broad basis of 
data points from embedded projects and products. From 
this we derived simple rules of thumb (or heuristics) that 
are applicable even in situations where no historic informa-
tion is accessible. 

This article uses function points as defined by the Inter-
national Function Point Users Group and assumes version 
4.2 of the IFPUG counting rules.3,4 Adjustments to the data 
would be needed for COSMIC function points or other vari-
ations on IFPUG counting methods.

To improve your own embedded development pro-
cesses, and to ensure that benchmark data applies to 
your environment, we strongly suggest building your own 
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Figure 1. Embedded software size and deployment.
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history database with baselines for estimation, quality 
planning, and the like. To get started without much over-
head, we recommend the following lean set of effective 
project indicators:2,6

Requirements status and volatility.•	  Requirements 
status and change rate is a basic ingredient for track-
ing progress based on externally perceived value. 
Always remember that you are paid for implement-
ing requirements, not for generating code. Too many 
changes indicate that the project was not sufficiently 
prepared.
Product size and complexity.•	  Size can be measured in 
function points or as code size in lines of code (LOC) 
or statements. Be prepared to distinguish between 
what is new and what is reused or automatically gen-
erated code.

Effort. •	 This is a basic monitoring parameter to ensure 
you stay on budget. Effort is estimated up front for 
the project and its activities. Afterward, these effort 
elements are tracked.
Schedule and time.•	  Monitor results, increments, and 
milestones to ensure that you can keep the scheduled 
delivery time. Similar to effort, time is broken down 
into increments or phases that are tracked based on 
what has been delivered so far. Note that milestone 
completion must be aligned with defined quality crite-
ria to avoid detecting poor quality software too late.
Project progress. •	 This is the key measurement during 
the entire project execution. Progress has many 
facets and should monitor deliverables and how they 
contribute to achieving the project’s goals. Typically, 
there are milestones for the big steps and earned 
value and increments for the day-to-day operational 
tracking. Earned value techniques look to the degree 
with which results such as implemented and tested 
requirements or closed-work packages relate to effort 
spent and elapsed time. This lets us estimate the cost 
and remaining time to complete the project.
Quality.•	  This is the most difficult measurement, as it 
is hardly possible to forecast accurately whether the 
product has already achieved the quality level ex-
pected for operational usage. Quality measurements 
need to predict quality levels and track discovered de-
fects against estimated defects. Reviews, unit test, and 
test progress and coverage are the key measurements 

to indicate quality. Reliability models are established 
to forecast how many defects still need to be found. 
Note that quality attributes are not only functional 
but also relate to performance, security, safety, diag-
nosability, and maintainability.

This set of measurements applies to project tracking 
and oversight from a product- and contractor-manage-
ment perspective and thus keeps measurements lean yet 
effective. These measurements are state of the practice 
in embedded-software engineering and thus are neces-
sary if you need to justify development practices and your 
risk management in, for instance, litigation.13 Consider 
the Heisenberg Uncertainty Principle for Software: Ac-
curate estimating and measurement change the project. 
The more you know what’s going on, the more you can 
influence and improve. Measurements have impact, and 
with more impact, their usage and benefits will grow.

develoPMent Practices
Embedded-software systems pose extraordinary chal-

lenges to the software engineer due to their complexity. 
The main source of complexity is the large number of 
subtle and often unexpected interactions among the 
various parts of these systems, which have the following 
common features:

functionality represented by states and events;•	
real-time behavior of events and expected actions;•	
combined software/hardware systems equipped •	
with distributed software, computers, sensors, and 
actuators;
high demands on availability, safety, information se-•	
curity, and interoperability; and
long-lived systems in which embedded software is •	
expected to work reliably.

Embedded-software development practices vary to 
a high degree across industries. Mostly, they evolve at 
different speeds and without much cross-fertilization. 
One reason is that embedded developers often do not 
really consider themselves “software engineers.” By train-
ing, many of them are electrical engineers, automotive 
engineers, or telecommunications engineers, or have 
some other background. They don’t want to be viewed 
as software engineers because software engineering has 
a lower professional status than more mature forms of 
engineering—particularly the types of engineering that 
have certification and licensing requirements.

design and engineering constraints
Embedded systems heavily influence design and en-

gineering constraints of their respective surrounding 
systems—and vice versa. To illustrate, we researched 

Embedded systems heavily influence 
design and engineering constraints of 
their respective surrounding systems—
and vice versa.
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automotive embedded electronic control units 
(ECUs) over time and analyzed how they impact 
design decisions. While in the 1980s the major-
ity of electronics in a car came from the radio 
and the engine controller, automotive electronics 
increased significantly to provide safety, and, 
more recently, comfort functions. In the past, pri-
mary car buying criteria were power, speed, and 
design. Today, buyers demand energy efficiency, 
safety, and comfort. 

Figure 3 shows the evolution of embedded sys-
tems in cars since 1985. The upper line shows the 
number of ECUs in high-end models at release 
time, while the lower line shows the electric 
energy consumption of these ECUs. 

Programming environments
A common denominator across all embedded-software 

domains is the use of programming languages that allow 
direct access to interfaces, memory, and so forth. More 
than 80 percent of all companies are using C and to some 
degree C++. More than 40 percent are using assembler for 
lower-level interfaces. Java is increasingly used for GUI and 
application programming. Eclipse-based development tools 
dominate engineering workbenches due to the many dif-
ferent tools that need to be federated, such as modeling and 
simulation tools (for example, Matlab/Simulink, Rose, and 
Tau), testing environments (LabView, CANoe, HIL/SIL, and 
emulators), product life-cycle management environments 
(Teamcenter and eASEE), configuration management tools 
(Subversion and CVS), requirements tools (DOORS and 
Caliber), and of course compilers, debuggers, and the like. 
Due to the intensive supplier interaction and collaboration, 
which is much higher than in traditional IT, tools such as 
DOORS or Matlab/Simulink have respective market shares 
of more than 50 percent.

software practices
Because of the high-reliability and quality requirements 

for embedded applications, as well as the often stringent 
performance requirements, since the 1990s, the embedded 
world has focused on software practices that yield high 
quality. Some examples of the practices used for embed-
ded software include the following:

quality function deployment for requirements  •	
prioritization and traceability of quality;
model-driven design and test;•	
mathematical modeling for reliability, power con- •	
sumption, thermal, and performance analysis;
formal design and code inspections;•	
automated static code analysis for memory,  •	
performance, and security;
broad automatic testing;•	

Six Sigma for software development;•	
adoption and fairly rapid ascent to CMMI levels 3 •	
and above (in fact the CMMI was created by explicit 
demand from the embedded-software industries);
 components that are explicitly designed for reuse; •	
and
 selected agile principles such as feature-driven design •	
and daily Scrum sessions for status and quality 
topics.

The embedded domain tends to be more formal in its 
development practices than either the IT or desktop soft-
ware domains. Because many embedded applications are 
safety-critical by nature (for example, medical, industry 
automation, automotive, or transport), developers have 
been forced to systematically introduce and use formal 
methods that concentrate on quality. Some industries 
are under extreme quality and schedule pressure, result-
ing in extensive oversight criteria. For example, in the 
satellite business, deadlines and quality are obviously 
not negotiable, and the same holds for domains such as 
automotive electronic suppliers or the industry automa-
tion domain where huge external systems are waiting for 
the in-time availability of high-quality embedded software 
controllers.

deFect Potentials and reMoval
Quality as a multifactor set of requirements is more 

complex and important in embedded systems than in 
application software or information systems. As many em-
bedded devices have immediate impact on the user, often 
under safety conditions, defect potentials and removal 
must be closely monitored and improved. The embedded- 
software domain sometimes stumbles and releases prod-
ucts that are dangerous or fail to work effectively. There 
have been serious issues with medical instruments, an-
tilock brakes, and home appliances. Failures and poor 
quality in embedded software can sometimes cause death 
or serious injury. As a result, some embedded devices 
such as medical instruments have serious liability issues. 
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Figure 3. Automotive embedded systems (upper line: number of 
control units) and overall electrical energy consumption (lower line: 
consumption in kW).
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Therefore, top-notch quality control is a mandatory fea-
ture of many embedded applications.

Quality plays a pivotal role in efficiency and cost im-
provement. Quality leads, and productivity follows. For 
productivity to improve at all, quality must be improved 
faster and to a higher level than productivity. Attempts to 
improve productivity without improving quality first are 
not effective.

software quality
Finding and fixing bugs is overall the most expensive 

activity in software development. Studies of software 
quality indicate a strong correlation between application 
size and the total number of defects that must be elimi-
nated. A simple rule of thumb can provide an approximate 
but useful estimate of potential defects for embedded 
applications: Raise the size of the application in function 
points to the 1.22 power, and the result will yield the ap-
proximate total number of defects that must be found and 
eliminated. This rule of thumb includes all major sources 
of defects: requirements, design, coding, and documenta-
tion, as well as “bad fixes” or secondary defects that are 
accidentally included in attempts to repair other defects. 
Note that this rule of thumb is for embedded software. 
Other forms of software such as information systems or 
commercial packages would need different exponents. 
The predicted number of defects will be somewhat higher 
than will cause failures.

A similar rule of thumb can predict the approximate 
number of test cases. Since embedded software tends to 
perform more kinds of testing and have more test cases 
than other forms, the rule of thumb is: Raise the size of 
the application in function points to the 1.24 power to 
determine the approximate number of test cases that are 
likely to be used.

To illustrate these two rules of thumb, we consider an 
application of 1,000 function points coded in C. Given 
that the ratio of C statements to function points is ap-

proximately 100 to 1 (understanding that the exact value 
differs depending on the specific C dialect), 1,000 func-
tion points is equivalent to 100,000 C statements or 150 
KLOC. A thousand function points raised to the 1.22 
power equals 4,570 potential defects in all categories, 
or 30 defects per KLOC. Of these total defects, about 
20 percent would be high-severity defects. While this 
may seem like a large number of defects, a significant 
percentage—in the range of 95 to 99 percent, depend-
ing on the organization’s maturity level—will be found 
prior to delivery.

This amount of code requires some 5,350 test cases 
based on industrial benchmarks. Your own number could 
be much higher for two reasons. First, test-driven develop-
ment and criticality-based testing multiplies this number 
by at least a factor of 10. Second, embedded-software orga-
nizations typically have a test-case redundancy of around 
30 to 50 percent due to collecting, but never revisiting, old 
test cases.

verification and validation
Code verification and validation stages for embedded 

software encompass peer reviews, static code analysis, 
subroutine and algorithmic testing, unit testing, component 
testing, functional testing including hardware-in-the-loop 
(HIL) and software-in-the-loop (SIL), integration testing, 
system testing, and qualification and acceptance testing. 
Each of these V&V steps will typically yield 30 percent of 
defect-removal effectiveness. This provides 97 percent 
overall code defect-removal effectiveness if all 10 steps 
are performed adequately. In our experience, maturity 
level 3 organizations in the embedded-software domain 
demonstrate 98 percent removal effectiveness, typically 
with high emphasis on reviews and test methodology.3,6,10 
Maturity level 5 organizations in embedded-software sys-
tems, such as Boeing or Motorola, achieve 99 percent and 
higher removal effectiveness.

By contrast, the average defect-removal effectiveness at 
release of application software and information systems is 
only about 85 percent.6 You can imagine what that means 
for software such as Windows given its millions of LOC. 
Overall, the embedded domain does a somewhat better 
job in terms of defect-removal levels than other forms of 
software.

Compared to other forms of software such as desktop 
applications, and business information systems, the em-
bedded-software domain tends to use more sophisticated 
software quality assurance, better quality measurements, 
formal inspections, and more test stages. Table 1 shows 
a typical pattern of defect prevention, verification, and 
validation activities used for embedded-software de-
velopment based on the SPR database.4,6 Note that the 
list is based on history data and does not prescribe cer-
tain techniques or effort. It includes all common forms 

The following list provides additional sources of information 
about the topics discussed in this article.

IEEE Software•	 , special issue on software development for 
embedded systems, May/June 2009; www.computer.org/
portal/site/software
Newsletter and archive on embedded-software engineer-•	
ing and technologies: www.embedded.com
Function Point calculation and benchmarks: International •	
Function Point Users Group (IFPUG); www.IFPUG.org
Benchmarks on a variety of IT and software projects: Inter-•	
national Software Benchmarking Standards Group (ISBSG); 
www.ISBSG.org

embedded-SoftwAre reSourceS
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of defect prevention and removal used for embedded  
applications. Any specific embedded application might 
use only a subset of the activities shown.

Interpreting this list requires introducing and explaining 
specific terms. Assignment scope is the amount of work 
assigned to one engineer. Assignment scopes are used to 
determine staffing levels. Production rate is the amount of 
work that one person can perform in a given period such 
as an hour or a month.

Late defect correction in embedded software costs 
much more than for other software types due to the close 
hardware interaction and the demands from certifica-
tion bodies such as the US Food and Drug Administration 
for more intense regression testing. The clear focus is 
thus on detecting defects as early as possible in the phase 
where they are inserted. Sixty percent of a system’s de-

fects come from 20 percent of its components (modules, 
classes, or units).3 However, the distribution varies based 
on environment characteristics such as processes used 
and quality goals. Ten percent of all code accounts for 90 
percent of outage time, whereas 20 percent of all defects 
need 60 to 80 percent of correction effort.10 Most of the 
avoidable rework comes from a small number of soft-
ware defects, where avoidable rework is defined as work 
done to mitigate the effects of errors or to improve system 
performance.

Adapt your V&V strategies to this Pareto imbalance 
and focus expensive reviews and manual test on critical 
areas, while performing basic regression testing bottom 
up with unit test, test-driven development, and automatic 
integration test routines based on operational profiles. 
Note that test cases and test scripts often contain defects, 

table 1. typical pattern of embedded software defect prevention and removal.

activities
assignment scope in 

function points

Production rate in 
function points per 

month
defect-removal 

effectiveness (percent)
bad fix injection 

(percent)

Manual reviews

Design inspections 1,000 160 85.0 4.0

Code inspections 200 60 85.0 4.0

Quality function 
deployment 1,000 200 82.0 3.0

Test plan inspection 750 125 80.0 5.0

Test script inspection 300 175 78.0 4.0

Document review 3,500 1,000 77.0 2.5

Pair programming review 2,500 200 75.0 5.0

Bug repair inspection 300 90 70.0 3.0

Quality assurance review 2,500 750 45.0 7.0

Manual testing

Subroutine testing 5 100 50.0 2.0

Component testing 1,250 150 40.0 3.0

System testing 2,000 200 40.0 7.0

New function testing 125 110 35.0 5.0

Regression testing 150 150 30.0 7.0

Unit testing 50 90 25.0 4.0

automated testing

Static code analysis 15,000 10,000 87.0 1.0

System test 500 200 40.0 8.0

Regression test 500 175 37.0 7.0

Unit test 500 250 35.0 4.0

New function test 500 200 35.0 5.0

Qualification

Usability testing 5,000 2,000 65.0 4.0

Preseries testing 15,000 500 45.0 5.0

Acceptance testing 5,000 3,000 40.0 7.0
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are not enough focused on what matters, and are highly 
redundant. It is therefore necessary to review test strategy 
and test cases as much as the design and implementa-
tion. Model-driven approaches help in making code more 
consistent but do not replace reviews because they would 
just delay early errors from the modeling down to the vali-
dation where the model is finally checked versus reality. 
Don’t collect test cases like stamps, but rather use test-
driven development and implementation-independent test 
strategies to improve your test quality.

Projects and Productivity
A client developing embedded software asked us to 

evaluate his company’s engineering efficiency. He had 
organically grown his embedded automotive software 
business and gradually introduced people, processes, 
and tools. The company’s software technology was un-
questionably far above average. Its embedded-software 

development had grown from support, to mechanical and 
hardware engineering, to being the major value driver 
and cost factor. 

But how to improve efficiency was unclear to manage-
ment. To start, let’s look at planning.

Planning
A good predictor is the Putnam formula, which states 

that project effort is proportional to size to the power of 3 
divided by duration to the power of 4 and again divided by 
productivity to the power of 3. For embedded software, this 
effort multiplies by a factor of 2 to 4. High-dependability 
software multiplies the base effort by a factor of 3 to 10. For 
maintenance projects, the base effort multiplies by a factor 
of 2 to 5. The minimum project duration in months is 2.5 
times effort in person-years to the power of 1/3.2,10

As an example, take an automotive embedded control-
ler on which five persons would typically work for two 
years. The minimum duration could be 6 to 8 months with 
intensive front-loading and priority-driven design with 
parallel verification and validation. This can be achieved 
by a short requirements and design phase of 2 to 3 months 
and intensive parallel verification and validation.

Allocating engineers to several projects in parallel re-
duces productivity. Experience shows that productivity 
is reduced in steps depending on the amount of context 
switching due to the different assignments—for example, 
interruptions by phone calls from the second project while 
doing design in the first. As a rule, consider a 30 percent 

overall productivity decrease if an engineer is working on 
several independent assignments.

Business case validity seems to be optimal with 5 to 10 
percent delays. Zero is overly expensive, but more than 
10 percent decreases customer satisfaction. A common 
tradeoff is permitting few customer requirements changes 
(or by sales and marketing) that make projects a bit late 
but add tangible value for the customer.

Cost and efficiency increasingly are the focus of embedded- 
software development. New entrants from low-cost coun-
tries have shown that high reliability is not designed bottom 
up with expensive components and methods but can be 
achieved with low-cost redundancy. Cost pressure in some 
embedded industries has caused double-digit reductions 
for the same software year over year. Today, embedded- 
software engineering needs to deliver on time with excel-
lent quality at a continuously decreasing cost per unit.

requirements and test
The two major cost drivers in embedded-software de-

velopment are requirements and test. 
requirements. Requirements are the single major 

driver. We often develop the wrong things due to not 
reviewing and analyzing requirements, missing and vague 
requirements, or confusing needs and requirements. Forty 
percent of all software defects in embedded systems result 
from insufficient requirements and analysis activities. The 
typical effort allocated to requirements engineering is 3 
to 7 percent of total project cost. It is 5 to 10 percent for 
all requirements-management-related activities during 
the life cycle, which includes change management during 
the project. Doubling this effort has the potential to reduce 
life-cycle cost by 20 to 40 percent, thus yielding a direct 
ROI of 4, not considering benefits such as better reuse. 
The cost reduction mostly stems from reduced error rates 
during elicitation and analysis, earlier defect removal 
during specification and requirements verification, and 
improved consistency across work products.

test. Testing after code completion consumes 30 
to 40 percent of embedded-development resources 
and—depending on the project life cycle (sequential or 
incremental)—requires a lead time of 15 to 50 percent of 
total project duration. The minimum lead time is achieved 
when test strongly overlaps development, such as in incre-
mental development with a stable build that is continuously 
regression tested and integration of software artifacts is 
split into groups of check-ins tested in “stage areas,” which 
then are connected to further stage areas, developing an 
integration “tree.” In this case, there is only the system test 
at the end, contributing to lead time on the critical proj-
ect path. On the other hand, testing practiced in a classic 
waterfall approach—which still is widely seen in embed-
ded-software development due to the many interfaces and 
external dependencies— significantly increases lead time 

Cost and efficiency increasingly are 
the focus of embedded-software 
development. 
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due to repetitive component integration overheads and 
heavy extra effort from late changes. 

How to reduce test effort? First, by detecting defects 
close to the phase where they are created: Reviews, 
models, and code analysis will help. Second, by removing  
redundancy: Across projects, at least 30 percent of all test 
cases are redundant, as embedded-software engineers 
have the tendency to add test cases “to be on the safe 
side” and don’t control them by means of coverage or 
related effectiveness criteria. Review your test strategies, 
use coverage tools, and apply orthogonal test-case arrays 
to reduce test redundancies.

schedule pressures
Beware of the negative impact of time pressure. We 

often find companies that compress schedules to a point 
that makes engineers skip necessary V&V activities, only 
to find later they need extra time and incur costs for repair. 
V&V activities are necessary and need to be planned up 
front. Organizations insisting on requirements reviews on 
each project and requirement change have quality, sched-
ule, and efficiency advantages of more than 20 percent 
simply because they start with the right requirements and 
have fewer changes afterward.

A surprising finding is that software projects that achieve 
95 percent or higher in total defect-removal effectiveness tend 
to have shorter development schedules and lower develop-
ment costs than similar projects of the same size that achieve 
only 85 percent (or lower) defect-removal efficiency.3,4,6 This 
occurs because testing is the main portion of development 
where schedule delays mount up and costs begin to exceed 
budgets. Applications that enter testing with an excessive 
volume of defects cannot exit the testing phase because 
they don’t work. By contrast, similar projects using formal 
inspections, static analysis, and other methods in addition 
to testing will have shorter test schedules because a majority 
of defects have already been eliminated.

Productivity. Improving productivity can reduce the 
duration of a task or project (given that all other factors are 
known) by up to 25 percent. This implies excellent team 
building and teamwork, strong planning and monitoring 
on the critical path, strong method and tool support, high 
parallelism, and early defect removal. 

Such mechanisms are not sustainable, however, and 
demand strong follow-up. They bear the risk of high stress 
levels and attrition of team members if pressure is main-
tained for too long. New defects are inserted with changes 
and corrections, specifically those late in a project that 
are done under pressure. Corrections create some 5 to 30 
percent new defects depending on time pressure and un-
derlying tool support. Sometimes, secondary and tertiary 
bad fixes occur. One of the authors was an expert witness 
in a lawsuit where four consecutive attempts to repair a 
bug failed, and each attempt added at least one new bug. In 

particular, late defect removal while being on the project’s 
critical path causes many new defects because quality as-
surance activities are reduced and engineers are stressed. 
This must be considered when planning testing, validation, 
or maintenance activities.

outsourcing. Be aware that outsourcing and distrib-
uted development of embedded software is difficult and is 
often canceled before it delivers any real savings. Dividing 
a business process across the world with shared respon-
sibilities costs extra money and requires rework effort. 
Our own experience shows that with two locations, you 
should budget 20 to 30 percent overhead, and for three 
to four locations, the overhead is some 30 to 40 percent.12 
This overhead is due to additional interfaces, management, 
team effort, collaboration support, quality control, reviews, 
and so on. Reported cost reduction from global software 
engineering is much less than the commonly touted 50 to 

70 percent savings if only labor costs are compared—as the 
media often do. In our experience, outsourced embedded-
software engineering projects report a 10 to 15 percent cost 
reduction after a two- to three-year learning curve. Initially, 
outsourcing demands up to 20 percent additional effort. For 
India, communication and automotive supplier companies 
report that the effective savings after a three-year period 
is 15 to 20 percent.

challenges and solutions
By 2015, massively parallel computing systems will 

evolve to the individual device level, with systems on chip 
being produced on wafer scale. Sensors and processors will 
include mechanical or biological systems, optical devices, 
wireless connectivity, and voice recognition. With highly 
networked systems, energy distribution will change from 
a centralized architecture to many small distributed units, 
such as solar cells, wind turbines, and others. Users will 
receive online-demand information from smart meters, 
and utilities will boost their capacity management from the 
many embedded yet powerful batteries in e-vehicles. With 
sensors arriving at the biological level, implants will ease 
diagnosis and facilitate seamless medical support and, 
where needed, immediate yet remote assistance. 

Many scenarios can be derived from these major 
trends.2,14,15 To provide value for embedded-software en-
gineers, we distill from these trends four design principles 
with concrete guidance for improving embedded-software 
engineering.
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be your target. Apply it on the highest feasible aggrega-
tion level, such as in embedded-controller design. Reduce 
code size and refactor your software periodically. Reduce 
variants and use platform- or product-line engineering 
to avoid any kind of ad hoc variation. Establish penalty 
schemes if code is duplicated or modified without an 
agreed-upon business case. Refactor your test strategies 
and test cases to focus on critical defect removal.

value orientation 
Embedded software is always under cost pressure. 

Apply the RACE principle: reduce accidents and control 
essence.3 Accidents imply unnecessary overhead such 
as gold plating, rework due to late defect removal, or too 
many requirements changes. Essence is what customers 
pay for. 

complexity management
Embedded software continues to grow by 10 to  

30 percent per year depending on the application do-
main.2 Increasing complexity means extra defects and 
cost. 

Measure the complexity of your embedded software 
and control it. Use systematic processes both internally 
and with your suppliers to mitigate risks and allow for 
fast recuperation in case of insufficient performance. Use 
CMMI or SPICE and demand similar use from your suppli-
ers. Both frameworks are designed for mixed software/
hardware systems and help build a state-of-the-practice 
engineering environment. 

Apply model-driven design and test to trace design 
decisions and foster fast change cycles. Round-trip engi-
neering is not yet available on a systems scale but should 

Christof Ebert, Vector

Jürgen Salecker, Siemens Corporate Technology

embedded systems have overwhelming penetration around the 
world. Innovations are increasingly triggered by software 

embedded in automotive, transportation, industrial-automation, 
medical-equipment, communication, energy, and many other kinds 
of systems. They use about 98 percent of all the microprocessors 
produced worldwide.

Embedded software differs significantly from desktop and 
enterprise software, mostly in environmental conditions—partic-
ularly real-time and performance expectations, safety needs, low 
production costs (because of high volumes), heterogeneous envi-
ronments, changing platforms, long life spans, and maintenance 
difficulties. They communicate with their environment (other 
embedded devices, enterprise systems, or mechanical or biologi-
cal systems) in many ways—via sensors, actors, specialized human 
interfaces, and general-purpose communication links.

IEEE Software, another IEEE Computer Society magazine, is 
dedicating its May/June issue to embedded software. The issue 
shows how environmental conditions impact embedded- 
software engineering. Emphasis is on the state of the practice and 
current development techniques and trends. Above all, it provides 
many hands-on industrial experiences from which all of us can 
learn, independent of the domain we’re engaged in and the type 
of software we use in our day-to-day engineering work.

In “Trends in Embedded-Software Engineering,” Peter Ligges-
meyer and Mario Trapp summarize current advances in 
embedded-software engineering such as model-driven develop-
ment (MDD). You might argue that such techniques are already 
used in IT and application software development. True and not so 
true, as the Point-Counterpoint discussion by Les Hatton and 
Michiel van Genuchten highlights with interesting insights. One 
of the most relevant trends in embedded-software engineering is 
the move toward more abstraction and thus being able to better 
manage complexity throughout the life cycle. In “UML-Based 
Model-Driven Development for HSDPA Design,” Jesús Martinez, 
Pedro Merino, Alberto Salmerón, and Francisco Malpartida show 
how to introduce MDD to embedded-software development. The 

application and development of domain-specific languages is 
well suited for the embedded domain as well.

Complexity reigns in embedded software, as elsewhere. But 
power and performance restrictions demand we control complex-
ity. One possible solution is the application of multicore 
microcontrollers, which are now entering the embedded domain. 
“Embedded Multiprocessor Systems-on-Chip Programming” by 
Jean-Yves Mignolet and Roel Wuyts will help professionals avoid 
common traps when entering this domain. Because of its embed-
ded character with respect to critical environments and often 
life-threatening risks, embedded software faces high-quality 
requirements. Systematic, thorough, and completely traceable 
verification and validation are key to good quality. In “Formal 
Modeling and Verification of Safety-Critical Software,” Junbeom 
Yoo, Eunkyong Jee, and Sungdeok (Steve) Cha show how such 
techniques are applied to safety-critical software in a nuclear- 
reactor protection system. In line with this article, the Software 
Technology department in the Software May/June issue intro-
duces practical aspects of static code analysis as well as current 
practices and tools for embedded software.

In “A Case for Taking a More Agile Approach in Embedded-
Systems Development,” Michael Smith, James Miller, Lily Huang, 
and Albert Tran show how to keep good processes sufficiently 
lean to allow for flexibility and efficiency. “Experiences in Improv-
ing Flight Software Development Processes,” by Ronald Kirk 
Kandt, emphasizes the impact that a higher level of software 
development maturity has had on a software engineering proj-
ect at the Jet Propulsion Laboratory. High quality and 
performance requirements combined with fierce cost pressures 
demand strong, continuously improving engineering and man-
agement processes.

Enjoy reading the IEEE Software May/June issue.

Christof Ebert is a partner and managing director at Vector. Contact him 
at christof.ebert@vector-consulting.de.

Jürgen Salecker is competence field manager for embedded systems 
at Siemens Corporate Technology. Contact him at juergen.salecker@
siemens.com.

embedded SoftwAre
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they managed to improve early detection by a factor of 2 
to 5, reduce maintenance costs by more than 40 percent, 
and shorten development schedules by 15 to 50 percent.3,6 
This would have been impossible without measuring and 
assessing quality, cost, and schedule.

Will embedded software grow in revenues, and 
therefore jobs, as we have come to expect? Clearly, the 
worsening economic environment will impact all com-
panies throughout the technology supply chain. But the 
overall structure of the embedded industry and the posi-
tioning of individual companies are vastly different from 
the last recession in 2001. 

First, the demand will not cease given the widespread 
needs related to transportation, communication, auto-
mation, safety, and security. This means that risks can 
be distributed over more segments, including recession-
resistant medical and industrial markets. Second, recent 
growth rates have been lower than before 2001, while cash 
positions have increased. Third, the embedded-systems 
market has become more global with new markets and 
R&D centers emerging in developing and faster-growing 
regions. Fourth, and not least, good embedded-software 
engineering skills remain scarce on a global scope because 
such skills are difficult to acquire and are immediately 
mission-critical. Certainly, we will see some impact from 
the current economic environment, but much less than in 
other industries. Compound average annual growth rates 
are 7 percent for embedded hardware, 10 percent for em-
bedded software, and 15 percent for related engineering 
services.2,15

Embedded software has tremendous impact. It de-
termines value and risks in many of today’s products, 
independent of domain and usage. If done well, it is invis-
ible and makes people spend money for the product. The 
equation is simple: More embedded software in a product 
increases sales and market share. But one wrong bit out 
of billions can bring a system down and can cause physi-
cal damage. 

Embedded-software engineering must cope with the 
close relationship of value and risk. Competition drives 
quality. The goal is not perfection but professionalism. 
In the 1970s, Japanese industry, which had practically no 
international market share, started shipping technical 
equipment that showed value in terms of cost and quality. 
They stunned the industries in the US and Europe—and 
changed behaviors toward a strong focus on value and 
quality. 

Of course, demands and markets have changed today, 
but the underlying rationale is the same: We must continu-
ously look for better ways to develop embedded software. 
Smart embedded-software engineers will spend their ca-
reers engaged in this search for the better, and they will 
find continuous challenges, solutions, and lots of personal 
rewards. 

Grow systems engineering skills in your software teams. 
Take a systems perspective when deciding on software ar-
chitecture, interfaces, or future evolution. 

Embedded software cannot be evaluated in its own lim-
ited software scope. Establish reviews for your requirements  
from the perspective of both product management and 
testing. Specify requirements so that they show their 
respective marginal value and at the same time are 
testable. Ensure consistency and traceability of deci-
sions. Install one change-control agent who decides on 
all incoming change requests and on all software to be 
released.

safety and security 
Risks from malfunctions of embedded software are 

much higher than those of application software. Secu-
rity rapidly grows in relevance as embedded software 
communicates autonomously with other computing 
systems. 

Embedded-software engineers must know and use a 
richer combination of defect prevention and removal ac-
tivities than other software domains. Safety, security, or 
performance cannot be designed or tested in isolation. 
They influence each other as well as all functional and 
interface requirements. 

Focus on architecture and performance requirements 
before diving into algorithms and functions. Use tech-
niques such as disciplined traceability of requirements 
and changes, model-driven development, code analysis, 
test-driven development, and automatic testing to achieve 
a high-maturity process culture.

energy efficiency 
While early embedded software typically drove energy 

consumption beyond what was necessary for plain func-
tionality, today it must control energy consumption. Energy 
efficiency is currently the major embedded trend. Software 
contributes to energy savings. 

Use performance tools to identify idle processes and 
switch them off. Put hardware systems in sleep mode 
when performance is not demanded. Adjust processor 
speed to demands. Cache data to avoid bus and inter-
face load. Deploy passive sensors that trigger wake-up 
functions. Make your embedded software independent 
of standby power supply by using capacitors and flash 
memories.

W
e have introduced systematic engineering 
concepts and productivity improve-
ments in many companies around the 
world in embedded-software domains 
such as telecommunications, the auto-

motive industry, and transportation. Within a few years, 
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