
Maratona de Programação UFPR

• This problemset contains six problems and is nine pages long.

• The input is redirected to the standard input (stdin) and the output is read from the
standard output (stdout).

• Each problem will be tested with a single file as the input. Pay attention to the problem
specification regarding how the problem input ends.

• The original statements were taken from a Russian website. The grammar and choice of
words is not flawless, but do not change the intended meaning of the sentences.

1

A: Free Cash
File: cash.[pas|c|cpp|java]

Valera runs a 24/7 fast food cafe. He magically learned that next day n people will visit his
cafe. For each person we know the arrival time: the i-th person comes exactly at hi hours mi

minutes. The cafe spends less than a minute to serve each client, but if a client comes in and
sees that there is no free cash, than he doesn’t want to wait and leaves the cafe immediately.

Valera is very greedy, so he wants to serve all n customers next day (and get more profit).
However, for that he needs to ensure that at each moment of time the number of working
cashes is no less than the number of clients in the cafe.

Help Valera count the minimum number of cashes to work at his cafe next day, so that they
can serve all visitors.

Input

The input contains several test cases. Each test case starts with a line containing an integer
n (1 ≤ n ≤ 105), that is the number of cafe visitors. Each of the following n lines has two
space-separated integers hi and mi (0 ≤ hi ≤ 23; 0 ≤ mi ≤ 59), representing the time when
the i-th person comes into the cafe. Note that the time is given in the chronological order.
All time is given within a 24-hour period.

The last test case is followed by a line containing a single zero.

Output

For each test case print a single integer — the minimum number of cashes, needed to serve
all clients next day.

Sample Input

4

8 0

8 10

8 10

8 45

3

0 12

10 11

22 22

0

Sample Output

2

1

Note

In the first sample it is not enough one cash to serve all clients, because two visitors will come
into cafe in 8:10. Therefore, if there will be one cash in cafe, then one customer will be served
by it, and another one will not wait and will go away.

In the second sample all visitors will come in different times, so it will be enough one cash.

2

B: Lucky Substring
File: lucky.[pas|c|cpp|java]

Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose
decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744,
4 are lucky and 5, 17, 467 are not.

One day Petya was delivered a string s, containing only digits. He needs to find a string that:

• represents a lucky number without leading zeroes,

• is not empty,

• is contained in s as a substring the maximum number of times.

Among all the strings for which the three conditions given above are fulfilled, Petya only
needs the lexicographically minimum one. Find this string for Petya.

Input

The input contains several test cases. Each test case contains a single line with a non-empty
string s whose length can range from 1 to 50, inclusive. The string only contains digits. The
string can contain leading zeroes.

The last test case is followed by a line containing a single zero. There will not be any test
case consisting of only one zero.

Output

For each test case print one line with the answer to Petya’s problem. If the sought string does
not exist, print “-1” (without quotes).

Sample Input

047

16

472747

0

Sample Output

4

-1

7

Note

The lexicographical comparison of strings is performed by the ≤ operator in the modern
programming languages. String x is lexicographically less than string y either if x is a prefix
of y, or exists such i (1 ≤ i ≤ min(|x|, |y|)), that xi ≤ yi and for any j (1 ≤ j ≤ i) xj = yj.
Here |a| denotes the length of string a.

In the first sample three conditions are fulfilled for strings “4”, “7” and “47”. The lexico-
graphically minimum one is “4”.

In the second sample s has no substrings which are lucky numbers.

In the third sample the three conditions are only fulfilled for string “7”.

3

C: Shifts
File: shifts.[c|cpp|java]

You are given a table consisting of n rows and m columns. Each cell of the table contains
a number, 0 or 1. In one move we can choose some row of the table and cyclically shift its
values either one cell to the left, or one cell to the right.

To cyclically shift a table row one cell to the right means to move the value of each cell, except
for the last one, to the right neighboring cell, and to move the value of the last cell to the
first cell. A cyclical shift of a row to the left is performed similarly, but in the other direction.
For example, if we cyclically shift a row “00110” one cell to the right, we get a row “00011”,
but if we shift a row “00110” one cell to the left, we get a row “01100”.

Determine the minimum number of moves needed to make some table column consist only of
numbers 1.

Input

The input contains several test cases. In each test case the first line contains two space-
separated integers: n (1 ≤ n ≤ 100) - the number of rows in the table and m (1 ≤ m ≤ 104) -
the number of columns in the table. Then n lines follow, each of them contains m characters
“0” or “1”: the j-th character of the i-th line describes the contents of the cell in the i-th
row and in the j-th column of the table. It is guaranteed that the description of the table
contains no other characters besides “0” and “1”.

The last test case is followed by a line containing two zeros.

Output

For each test case print a single number: the minimum number of moves needed to get only
numbers 1 in some column of the table. If this is impossible, print “-1” (without quotes).

Sample Input

3 6

101010

000100

100000

2 3

111

000

0 0

Sample Output

3

-1

Note

In the first sample one way to achieve the goal with the least number of moves is as follows:
cyclically shift the second row to the right once, then shift the third row to the left twice.
Then the table column before the last one will contain only 1s.

In the second sample one can’t shift the rows to get a column containing only 1s.

4

D: Magic Box
File: box.[c|cpp|java]

One day Vasya was going home when he saw a box lying on the road. The box can be
represented as a rectangular parallelepiped. Vasya needed no time to realize that the box
is special, as all its edges are parallel to the coordinate axes, one of its vertices is at point
(0, 0, 0), and the opposite one is at point (x1, y1, z1). The six faces of the box contain some
numbers a1, a2, . . . , a6, exactly one number right in the center of each face.

The numbers are located on the box like that:

• number a1 is written on the face that lies on the ZOX plane;

• a2 is written on the face, parallel to the plane from the previous point;a

• a3 is written on the face that lies on the XOY plane;

• a4 is written on the face, parallel to the plane from the previous point;

• a5 is written on the face that lies on the YOZ plane;

• a6 is written on the face, parallel to the plane from the previous point.

At the moment Vasya is looking at the box from point (x, y, z). Find the sum of numbers
that Vasya sees. Note that all faces of the box are not transparent and Vasya can’t see the
numbers through the box. The picture contains transparent faces just to make it easier to
perceive. You can consider that if Vasya is looking from point, lying on the plane of some
face, than he can not see the number that is written on this face. It is enough to see the
center of a face to see the corresponding number for Vasya. Also note that Vasya always
reads correctly the ai numbers that he sees, independently of their rotation, angle and other
factors (that is, for example, if Vasya sees some ai = 6, then he can’t mistake this number for
9 and so on).

5

Input

The input contains several test cases. In each test case the fist input line contains three
space-separated integers x, y and z (|x|, |y|, |z| ≤ 106) - the coordinates of Vasya’s position in
space. The second line contains three space-separated integers x1, y1, z1 (1 ≤ x1, y1, z1 ≤ 106)
- the coordinates of the box’s vertex that is opposite to the vertex at point (0, 0, 0). The third
line contains six space-separated integers a1, a2, . . . , a6 (1 ≤ ai ≤ 106) the numbers that are
written on the box faces.

It is guaranteed that point (x, y, z) is located strictly outside the box.

The last test case is followed by a line containing three zeros.

Output

For each test case print a single integer - the sum of all numbers on the box faces that Vasya
sees.

Sample Input

2 2 2

1 1 1

1 2 3 4 5 6

0 0 10

3 2 3

1 2 3 4 5 6

0 0 0

Sample Output

12

4

Note

The first sample corresponds to perspective, depicted on the picture. Vasya sees numbers a2
(on the top face that is the darkest), a6 (on the right face that is the lightest) and a4 (on the
left visible face).

In the second sample Vasya can only see number a4.

6

E: Spiders
File: spiders.[c|cpp|java]

One day mum asked Petya to sort his toys and get rid of some of them. Petya found a whole
box of toy spiders. They were quite dear to him and the boy didn’t want to throw them away.
Petya conjured a cunning plan: he will glue all the spiders together and attach them to the
ceiling. Besides, Petya knows that the lower the spiders will hang, the more mum is going to
like it and then she won’t throw his favourite toys away. Help Petya carry out the plan.

A spider consists of k beads tied together by k−1 threads. Each thread connects two different
beads, at that any pair of beads that make up a spider is either directly connected by a thread,
or is connected via some chain of threads and beads.

Petya may glue spiders together directly gluing their beads. The length of each thread equals
1. The sizes of the beads can be neglected. That’s why we can consider that gluing spiders
happens by identifying some of the beads (see the picture). Besides, the construction resulting
from the gluing process should also represent a spider, that is, it should have the given features.

After Petya glues all spiders together, he measures the length of the resulting toy. The
distance between a pair of beads is identified as the total length of the threads that connect
these two beads. The length of the resulting construction is the largest distance between all
pairs of beads. Petya wants to make the spider whose length is as much as possible.

The picture two shows two spiders from the second sample. We can glue to the bead number
2 of the first spider the bead number 1 of the second spider. The threads in the spiders that
form the sequence of threads of maximum lengths are highlighted on the picture.

7

Input

The input contains several test cases. In each test case the first line of input contains one
integer n (1 ≤ n ≤ 100) - the number of spiders. Next n lines contain the descriptions of each
spider: integer ni (2 ≤ ni ≤ 100) - the number of beads, then ni−1 pairs of numbers denoting
the numbers of the beads connected by threads. The beads that make up each spider are
numbered from 1 to ni.

The last test case is followed by a line containing a single zero.

Output

For each test case print a single number - the length of the required construction.

Sample Input

1

3 1 2 2 3

2

3 1 2 1 3

4 1 2 2 3 2 4

2

5 1 2 2 3 3 4 3 5

7 3 4 1 2 2 4 4 6 2 7 6 5

0

Sample Output

2

4

7

8

F: Watermelon
File: watermelon.[c|cpp|java]

One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the
biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the
scales showed w kilos. They rushed home, dying of thirst, and decided to divide the berry,
however they faced a hard problem.

Pete and Billy are great fans of even numbers, that’s why they want to divide the watermelon
in such a way that each of the two parts weighs even number of kilos, at the same time it is
not obligatory that the parts are equal. The boys are extremely tired and want to start their
meal as soon as possible, that’s why you should help them and find out, if they can divide
the watermelon in the way they want. For sure, each of them should get a part of positive
weight.

Input

The input contains several test cases. In each test case the first input line contains a integer
number w (1 ≤ w ≤ 100) - the weight of the watermelon bought by the boys.

The last test case is followed by a line containing a single zero.

Output

For each test case print “YES”, if the boys can divide the watermelon into two parts, each of
them weighing even number of kilos; and “NO” in the opposite case.

Sample Input

7

8

2

6

0

Sample Output

NO

YES

NO

YES

Note

For example, the boys can divide the 8 kg watermelon into two parts of 2 and 6 kilos respec-
tively (another variant — two parts of 4 and 4 kilos).

9

