ITC: Introdução à Teoria da Computação

Marcos Castilho

DInf/UFPR

19 de maio de 2021

Linguagens Regulares

Objetivo:

► Estabelecer relações entre ER's e AF's, Conjuntos Regulares e Linguagens Regulares

Autômatos Finitos e Conjuntos Regulares

Teorema: Todo conjunto regular é aceito por algum AFN- λ . Prova

- Conjuntos regulares são construídos a partir de \emptyset , $\{\lambda\}$ e conjuntos unitários constituídos de elementos do alfabeto;
- Aqui estão os diagramas de máquinas que aceitam estes conjuntos:

$$\mathsf{start} \, \boldsymbol{\raisebox{-.5ex}{$\scriptstyle{\backprime}$}} \left(q_0 \right) \qquad \mathsf{q}_1 \qquad \mathsf{start} \, \boldsymbol{\raisebox{-.5ex}{$\scriptstyle{\backprime}$}} \left(q_0 \right) \xrightarrow{\lambda} \left(q_1 \right) \qquad \mathsf{start} \, \boldsymbol{\raisebox{-.5ex}{$\scriptstyle{\backprime}$}} \left(q_0 \right) \xrightarrow{a} \left(q_1 \right)$$

Prova, continuação

Todas estas máquinas estão na forma:

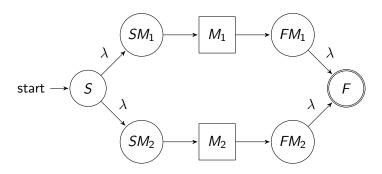
- contêm um único estado final;
- ightharpoonup o grau de entrada de q_0 é zero.

Logo, podemos aplicar o lema da aula anterior.

Prova, continuação

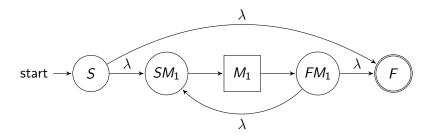
Sejam M_1 e M_2 dois AF's satisfazendo os critérios do lema. Assim, usando a mesma técnica do teorema, a partir da base, pode-se obter autômatos para qualquer conjunto regular.

$L(M_1) \cup L(M_2)$



$L(M_1)L(M_2)$

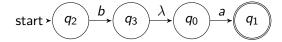
$L(M_1)^*$



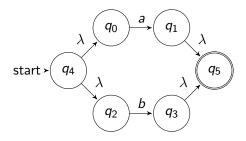
Exemplo

Obter um AFN- λ que aceita $(a + b)^*ba$: Primeiramente, AF's para as linguagens $\{a\}$ e $\{b\}$:

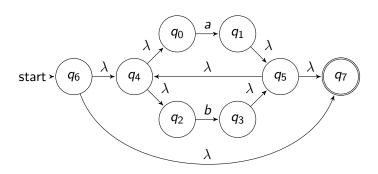
Aceita ba



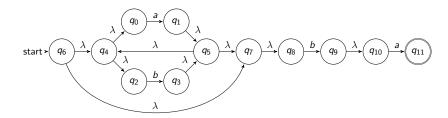
Aceita (a + b)



Aceita $(a + b)^*$



Aceita $(a + b)^*ba$



Grafos de expressão

Definição:

Um grafo de expressão é um grafo dirigido rotulado em que os arcos são rotulados por expressões regulares. Existe um nodo inicial e um conjunto de nodos finais.

Exemplo

Sejam u, v e w três expressões regulares. Então:

Aceitam respectivamente as expressões regulares u^* e u^*vw^*

Algoritmo

O algoritmo seguinte reduz qualquer grafo de AF's e produz uma expressão regular.

- O diagrama de estados pode ter qualquer número de estados finais;
- ➤ A linguagem da máquina é a união do conjunto de palavras aceitas em cada um desses estados finais;
- Assuma que os nodos são numerados e que os arcos de i até j sejam representado por u_{i,j}

Algoritmo AF para ER

Entrada: Diagrama de estados G de um AF com nodos numerados $1, 2, \ldots, n$.

1. Seja m o número de estados finais de G.

Faça cópias de G, cada um tendo um único estado final.

Sejam $G_1, G_2, \ldots G_m$ estes grafos.

Os estados finais de G (cada um) é o estado final de algum G_i .

- 2. FOR cada G_T DO
 - 2.1 REPEAT
 - 2.1.1 Escolha um nodo i em G_T direrente de um estado inicial ou final
 - 2.1.2 Remova i de G_T assim:

FOR todo $j, k \neq i$ (inclusive j = k) DO

i) IF $w_{j,i} \neq \emptyset$ e $w_{i,i} = \emptyset$ THEN

Ligue j a k rotulando com $w_{i,i}w_{i,k}$

ii) IF $w_{j,i} \neq \emptyset$ e $w_{i,k} \neq \emptyset$ e $w_{i,i} \neq \emptyset$ THEN

Ligue j a k rotulando com $w_{j,i}(w_{i,i})^*w_{i,k}$

iii) IF os arcos que ligam j e k são rotulados w_1, w_2, \ldots, w_s

THEN troque-os por um único rotulado $w_1 + w_2 + \ldots + w_s$

iv) Remova o nodo i e os arcos incidentes a ele em G_T

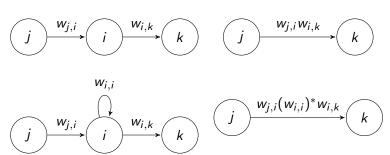
UNTIL os únicos nodos em G_T sejam os nodos inicial e final.

Determine a expressão regular que é aceita por G_T .

END.

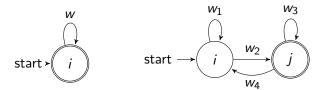
3. A expressão regular para G é a união das expressões regulares obtidas para cada $G_{\mathcal{T}}$

As figuras abaixo ilustram a parte principal do algoritmo:



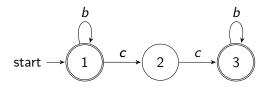
Após o algoritmo, temos dois casos:

Aceita $w_1^* w_2 (w_3 + w_4 (w_1)^* w_2)^*$

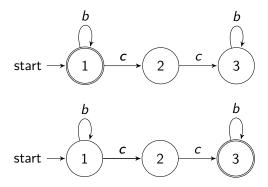


Exemplo

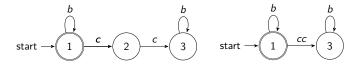
Seja o AFN:



Ele deriva dois grafos

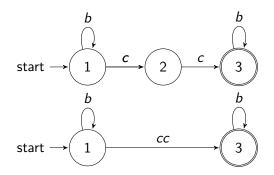


Trabalhando no primeiro:



Que deriva a ER: b*

Trabalhando no segundo:



Que deriva a ER: b^*ccb^*

Logo, temos a ER resultante: $b^* + b^*ccb^*$

Teorema (Kleene)

Uma linguagem L é aceita por um AFD com alfabeto Σ se, e somente se, L é um conjunto regular sobre Σ .

Licença

- Slides feitos em LaTEX usando beamer e tikz, editados com vim.
- Licença

Creative Commons Atribuição-Uso Não-Comercial-Vedada a Criação de Obras Derivadas 2.5 Brasil License.http://creativecommons.org/licenses/by-nc-nd/2.5/br/

Creative Commons Atribuição-Uso Não-Comercial-Vedada a Criação de Obras Derivadas 2.5 Brasil License.http://creativecommons.org/licenses/by-nc-nd/2.5/br/