Technical Report TR-ARP-15-95

Automated Reasoning Project
Research School of Information Sciences and Engineering
and Centre for Information Science Research
Australian National University

May 5, 1995 (last revised Sep12, 1997)

Rajeev Goré

Abstract: This document is a complete draft of a chapter by
Rajeev Goré on “Tableau Methods for Modal and Temporal
Logics” which is part of the “Handbook of Tableau Methods”,
edited by M. D’Agostino, D. Gabbay, R. Hihnle and J. Posegga,
to be published in 1998 by Kluwer, Dordrecht.

Any comments and corrections are highly welcome. Please email
me at rpg@arp.anu.edu.au

The latest version of this document can be obtained via my
WWW home page: http://arp.anu.edu.au/

Tableau Methods for Modal and

Temporal Logics

Rajeev Goré

Contents

1 Introduction
2 Preliminaries

2.1
2.2
2.3
24
2.5
2.6

w

Syntax and Notational Conventions
Axiomatics of Modal Logics
Kripke Semantics For Modal Logics
Known Correspondence and Completeness Results
Logical Consequence
Summary

History of Modal Tableau Systems

4 Modal Tableau Systems With Implicit Accessibility

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

Purpose of Modal Tableau Systems
Syntax of Modal Tableau Systems
Soundness and Completeness
Relationship to Smullyan Tableau Systems
Structural Rules
Derived Rules and Admissible Rules
Invertible Rules
Subformula Property and Analytic Superformula Property
Proving Soundness
Static Rules, Dynamic Rules and Invertibility
Proving Completeness Via Model-Graphs
Finite Model Property and Decidability
Summary oL
The Basic Normal Systems
Modal Logics of Knowledge and Belief
Modal Logics With Provability Interpretations
Monomodal Temporal Logics
Eliminating Thinning
Eliminating Contraction
Finite L-frames
Admissibility of Cut and Gentzen Systems

2 Rajeev Goré

5 Tableau Systems For Multimodal Temporal Logics 69
5.1 Linear Temporal Logics 70
5.2 Branching Temporal Logics 73
5.3 Bibliographic Remarks and Related Systems 76
6 Modal Tableau Systems With Explicit Accessibility 76
6.1 History of Explicit Tableau Systems 77
6.2 Labelled Tableau Systems Without Unification 79
6.3 Soundness of Single Step Tableau Rules 86
6.4 Fairness, Infinite Tableaux, Chains and Periodicity . . . 90
6.5 Completeness L. 94
6.6 Cycles, Termination and Decidability 96
6.7 Extensions and Further Work 97
Bibliographyo 101

1 Introduction

Modal and temporal logics are finding new and varied applications in Com-
puter Science in fields as diverse as Artificial Intelligence [MST91], Models
for Concurrency [Sti92] and Hardware Verification [NFKT87]. Often the
eventual use of these logics boils down to the task of deducing whether a
certain formula of a logic is a logical consequence of a set of other formula of
the same logic. The method of semantic tableaux is now well established in
the field of Automated Deduction [0S88, BHE95, BP95] as a viable alter-
native to the more traditional methods based on resolution [CL73]. In this
chapter we give a systematic and unified introduction to tableau methods
for automating deduction in modal and temporal logics. We concentrate
on the propositional fragments restricted to a two-valued (classical) basis
and assume some prior knowledge of modal and temporal logic, but give
a brief overview of the associated Kripke semantics to keep the chapter
self-contained.

One of the best accounts of proof methods for modal logics is the book
by Melvin Fitting [Fit83]. To obtain generality, Fitting uses Smullyan’s idea
of abstract consistency properties and the associated maximal consistent set
approach for proving completeness. As Fitting notes, maximal consistent
sets can also be used to determine decidability, but in general, they do
not give information about the efficacy of the associated tableau method.
Effectiveness however is of primary importance for automated deduction,
and a more constructive approach using finite sets, due to Hintikka, is more
appropriate. We therefore base our work on a method due to Hintikka
[Hin55] and Rautenberg [Rau83].

In Section 2 we give the syntax and (Kripke) semantics for propositional
modal logics, the traditional axiomatic methods for defining modal logics
and the correspondences between axioms and certain conditions on frames.

Tableau Methods for Modal and Temporal Logics 3

In Section 3 we give a brief overview of the history of modal tableau
systems.

Section 4 is the main part of the chapter and it can be split into two
parts.

In Section 4.1 we motivate our study of modal tableau systems. In Sec-
tion 4.2 we cover the syntax of modal tableau systems, explain tableau con-
structions and tableau closure. Section 4.3 covers the (Kripke) semantics
of modal tableau systems and the notions of soundness and completeness
with respect to these semantics. Sections 4.4-4.6 relate our tableau systems
to the well-known systems of Fitting and Smullyan, and then cover proof
theoretic issues like structural rules, admissible rules and derivable rules.
Section 4.8 covers decidability issues like the subformula property, the an-
alytic superformula property, and finiteness of proof search. Sections 4.9-
4.12 explain the technical machinery we need to prove the soundness and
completeness results, and their connections with decidability. The first half
of Section 4 concludes with a summary of the techniques covered so far and
sets up the specific examples of tableau systems covered in the second half.

The second half of Section 4 covers tableau systems for: the basic sys-
tems; modal logics with epistemic interpretations; modal logics with “prov-
ability” interpretations and mono-modal logics with temporal interpreta-
tions. Sections 4.18-4.19 cover proof-theoretic issues again by highlighting
some deficiencies of the tableau methods of Section 4. Section 4.20 closes
the loop on the Kripke semantics by highlighting the finer characterisa-
tion results that are immediate from our constructive proofs of tableau
completeness. Finally, Section 4.21 covers the connection between modal
tableau systems and modal sequent systems, and the admissibility of the
cut rule.

Section 5 is a very brief guide to tableau methods for multimodal log-
ics, particularly linear and branching time logics over discrete frames with
operators like “next”, “until” and “since”.

Section 6 gives a brief overview of labelled modal tableau systems where
labels attached to formulae are used to explicitly keep track of the possible
worlds in the tableau constructions.

2 Preliminaries

2.1 Syntax and Notational Conventions

The sentences of modal logics are built from a denumerable non-empty set
of primitive propositions P = {p1, p2, - - -}, the parentheses) and (, together
with the classical connectives A (“and”), V (“inclusive or”), = (“not”), —
(“implies”), and the non-classical unary modal connectives O (“box”) and
<& (“diamond”).

A well-formed formula, hereafter simply called a formula, is any se-
quence of these symbols obtained from the following rules: any p; € P is

4 Rajeev Goré

a formula and is usually called an atomic formula; and if A and B are
formulae then so are (=A4), (AAB), (AV B), (A — B), (OA) and (CA).
For convenience we use L to denote a constant false formula (p; A —p1)
(say) and then use T = (—.L1) to define a constant true formula.

Lower case letters like p and g denote members of P. Upper case letters
from the beginning of the alphabet like A and B together with P and @)
(all possibly annotated) denote formulae. Upper case letters from the end
of the alphabet like X,Y,Z (possibly annotated) denote finite (possibly
empty) sets of formulae.

The symbols =, A,V and — respectively stand for logical negation, log-
ical conjunction, logical disjunction and logical (material) implication. To
enable us to omit parentheses, we adopt the convention that the connec-
tives =, O, O are of equal binding strength but bind tighter than A which
binds tighter than V which binds tighter than — . So AV BAC — D
should be read as (((—=4) V (BAC)) — D). The symbols O and < can take
various meanings but traditionally stand for “necessity” and “possibility”.
In the context of temporal logic, they stand for “always” and “eventually”
so that OA is read as “A is always true” and © A is read as “A is eventually
true”.

2.2 Axiomatics of Modal Logics

The logics we shall study are all normal extensions of the basic modal logic
K and are traditionally axiomatised by taking the rule of necessitation
RN (if A is a theorem then so is OA) and modus ponens MP (if A and
A — B are theorems then so is B) as inference rules, and by taking the
appropriate formulae from Figure 1 as axiom schemas. Thus the rule of
uniform substitution US is built in so that any substitutional instance of
an axiom schema or theorem, is also a theorem.

If a logic is axiomatised by adding axioms Ay, Ay, -, A, to K then its
name is written as KAj Ao --- A,,. Sometimes however, the logic is so well
known in the literature by another name that we revert to the traditional
name. The logic KT4, for example, is usually known as S4.

For an introduction to these notions see the introductory texts by
Hughes and Cresswell [HC68, HC84] or Chellas [Che80], or the article by
Fitting [Fit93].

We write kA to denote that A is a theorem of an axiomatically for-
mulated logic L. As with classical logic, the notion of theoremhood can be
extended to the notion of “deducibility” where we write X Fy, A to mean
“there is a deduction of A from the set of formulae X”. However, some
care is needed when extending this notion to modal logics if we want to
preserve the “deduction theorem”: X tp (A — B) ifft X U {A} Fp B,
since it is well known that the deduction theorem fails if we use the notion
of deducibility from classical Hilbert system formulations (due to the rule
of necessitation). Fitting [Fit93] shows how to set up the notions of “de-

Tableau Methods for Modal and Temporal Logics 5

| Axiom | Defining Formula |
K 0O(A— B) —» (0A —» OB)
T 0A— A
D 04 —» OCA
4 0A —- 0O0A
5 CA— OCA
B A—-0O0A
2 COA —» OCA
M 004 —» O0OA
L O(AANDOA) - B)vVO(BAOB) — A)
3 O(0A — B)vO(OB — A)
X O0A - DA
F O(0A — B) Vv (OB — A)
R OOA — (A — OA)
G O(0A— A) »0A4
Grz OO0A—-04) - A) > A
Go O(0(A —-04) - A) » 04
Z O(0A — A) —» (OCOA — 0OA)
Zbr O(0A — A) — (OCOA — OA)
Zem | OOOA — (A — OA)
Dum | O(O(A - 0OA4) - A) —» (COA —» OA)
Dbr | O(O(A - TA) - A) - (OCOA —» OA)

Fig. 1. Axiom names and defining formulae.

ducibility” so that the deduction theorem holds, but since axiomatics are
of a secondary nature here, we omit details. The important point is that
the notion of theoremhood ty, A remains the same since it corresponds to
“deducibility” of A from the empty set viz: {} FprA. We return to this
point in Section 4.3.

2.3 Kripke Semantics For Modal Logics

A Kripke frame is a pair (W, R) where W is a non-empty set (of possible
worlds) and R is a binary relation on W. We write wRw' iff (w,w') € R and
we say that world w' is accessible from world w, or that w' is reachable
from w, or w' is a successor of w, or even that w sees w'. We also write
wRw' to mean (w,w') ¢ R.

A Kripke model is a triple (W, R, V') where V is a mapping from prim-
itive propositions to sets of worlds; that is, V : P + 2W. Thus V(p) is the
set of worlds at which p is “true” under the valuation V.

Given some model (W, R, V), and some w € W, we write w = p iff
w € V(p), and say that w satisfies p or p is true at w. We also write w £ p
to mean w ¢ V(p). This satisfaction relation |= is then extended to more

6 Rajeev Goré

complex formulae according to the primary connective as below:

wkEp it weV(p);

w E A iff w A

wEAAB it wl=AandwE B;

wEAVB iff wlEAorwf B;

wEA—-B iff wp Aorwf B;

w = OA ift forallve W, wRvorv | A;

wkECA iff there exists some v € W, with wRv and v |= A.

We say that w satisfies A iff w = A where the valuation is left as
understood. If w |= A we sometimes also say that A is true at w, or that
w makes A true.

A formula A is satisfiable in a model (W, R, V) iff there exists some
w € W such that w |= A. A formula A is satisfiable on a frame (W, R),
iff there exists some valuation V' and some world w € W such that w = A.
A formula A is valid in a model (W, R, V'), written as (W, R, V) = A, iff
it is true at every world in W. A formula A is valid in a frame (W, R),
written as (W, R) |= A, iff it is valid in all models (W, R,V (based on
that frame). An axiom (schema) is valid in a frame iff all instances of that
axiom (schema) are valid in all models based on that frame.

Given a class of frames C, an axiomatically formulated logic L is sound
with respect to C if for all formulae A:

if FrA then, F |= A for all frames F € C.
Logic L is complete with respect to C if for all formulae A:

if 7 = A for all frames F € C, then FyA.

A logic L is characterised by a class of frames C iff L is sound and
complete with respect to C.

2.4 Known Correspondence and Completeness Results

The logics we study are known to be characterised by certain classes of
frames because it is known that particular axioms correspond to particular
restrictions on the reachability relation R. That is, suppose (W, R) is a
frame, then a certain axiom A; will be valid on (W, R) if and only if the
reachability relation R meets a certain condition. Many of the restrictions
are definable as formulae of first-order logic where the binary predicate
R(z,y) represents the reachability relation, as shown in Figure 2, where
the correspondences between certain axioms and certain conditions are
also summarised. Some interesting properties of frames which cannot be
captured by any one axiom are given in Figure 3; see [Gol87]. But some

Tableau Methods for Modal and Temporal Logics 7

| Axiom | Condition | First-Order Formula |
T Reflexive Yw : R(w,w)

D Serial Ywdw' : R(w,w")

4 Transitive | Vs, t,u: (R(s,t) A R(t,u)) = R(s,u)
5

B

Euclidean | Vs,t,u: (R(s,t) A R(s,u)) = R(t,u)

Symmetric Vw,w' : R(w,w") = R(w', w)
9 Weakly- Vs, t,u du:

directed (R(s,t) A R(s,u)) = (R(t,v) A R(u,v))
I Weakly- Vs, t,u:

connected | (R(s,t)AR(s,u)) = (R(t,u) Vt =uV R(u,t))
X Dense Yu,v3Jw : R(u,v) = (R(u,w) A R(w,v))

Fig. 2. Axioms and corresponding first-order conditions on R.

quite bizarre axioms, whose corresponding conditions cannot be expressed
in first-order logic [vB84, vB83] are of particular interest precisely because
of this “higher order” nature. Some of these “higher order” conditions are
explained next.

Given a frame (W, R), an R-chain is a sequence of (not necessarily
distinct) points from W with wy RwaRwsR - - - Rw,,. An co-R-chain is an
R-chain where n can be chosen arbitrarily large. A proper R-chain is an
R-chain where the points are distinct. For example, a single reflexive point
gives an (improper) co-R-chain: wRwRwRw - - -.

Transitive frames are of particular interest when R is viewed as a flow of
time. Informally, if (W, R) is a frame where R is transitive, then a cluster
C' is a maximal subset of W such that for all distinct worlds w and w' in C
we have wRw' and w' Rw. A cluster is degenerate if it is a single irreflexive
world, otherwise it is nondegenerate. A nondegenerate cluster is proper
if it consists of two or more worlds. A nondegenerate cluster is simple if it
consists of a single reflexive world. Note that in a nondegenerate cluster,
R is reflexive, transitive and symmetric.

Because clusters are maximal we can order them with respect to R and

Property Property of
Name R
Irreflexive Yw : = R(w, w)
Intransitive Vs,r,t: (R(s,t) AN R(t,r)) = —~R(s,r)
Antisymmetric | Vs,t: (R(s,t) A R(t,s)) — (s =)
Asymmetric Ywy, we : R(wy,ws) = = R(wa, w)
Strict-order Y, wy 1 (wy # we) = (R(w,ws) exor R(wsy,w;))

Fig. 3. Names of some non-axiomatisable conditions on R.

8 Rajeev Goré

speak of a cluster preceding another one. Similarly, a cluster C is final
if no other cluster succeeds it and a cluster is last if every other cluster
precedes it. For an introduction to Kripke frames, Kripke models and the
notion of clusters see Goldblatt [Gol87] or Hughes and Cresswell [HC84].

Figure 4 encapsulates the known characterisation results for each of our
logics by listing the conditions on some class of frames that characterises
each logic. The breaks in Figure 4 correspond to the grouping of the tableau
systems for these logics under Sections 4.14-4.17. Thus we define a frame
to be an L-frame iff it meets the restrictions of Figure 4. Then, a model
(W,R,V) is an L-model iff (W, R) is an L-frame. A formula A is L-valid
iff it is true in every world of every L-model. An L-model (W, R, V) is an
L-model for a finite set X of formulae iff there exists some wy € W
such that for all A € X, wg = A. A set X is L-satisfiable iff there is an
L-model for X.

An axiomatically formulated logic L has the finite model property
if every nontheorem A of L can be falsified at some world in some finite
L-model. That is, if /1, A implies that {—A} has a finite L-model.

2.5 Logical Consequence

Suppose we are given some finite set of formulae Y, some formula A, and
assume that the logic of interest is L. We say that the formula A is a local
logical consequence of the set Y iff: for every L-model (W, R, V) and
for every w € W, if w Y then w = A. We write Y =, A whenever A
is a local logical consequence of Y in logic L; thus the subscript is for the
logic, not for the word “local”.

Since both Y and A are evaluated at the same world w in this definition,
it is straightforward to show that Y =y, Aiff {} = Y — A where {} is the
empty set, and Y is just the conjunction of the members of Y. Furthermore,
a semantic version of the usual deduction theorem holds for local logical
consequence viz: Y, A =1, Biff Y =1, A — B where we write Y, A to mean
Y uU{A}.

As we saw in Section 2.2, the traditional axiomatically formulated log-
ics obey the deduction theorem only if deducibility is defined in a special
way. Fitting [Fit83] shows that a stronger version of logical consequence
called global logical consequence corresponds to this notion of deducibil-
ity. Fitting also gives tableau systems that cater to both notions of logical
consequence. We concentrate only on the local notion since Fitting’s tech-
niques can be used to extend our systems to cater for the global notion.

2.6 Summary

The semantic notion of validity = A and the axiomatic notion of theorem-
hood F A are tied to each other via the notions of soundness and complete-
ness of the axiomatic deducibility relation F with respect to some class
of Kripke frames. These notions can be generalised respectively to logical

Tableau Methods for Modal and Temporal Logics

L AXIOIn'atIC L-frame restriction
Basis
K K no restriction
KT KT reflexive
KD KD serial
K4 K4 transitive
K5 K5 euclidean
KB KB symmetric
KDB KDB symmetric and serial
B KTB reflexive and symmetric
KD4 KD4 serial and transitive
K45 K45 transitive and euclidean
KD5 KD5 serial and euclidean
KD45 K D45 serial, transitive and euclidean
S4 KT4 reflexive and transitive
KB4 KB4 symmetric and transitive
S5 KT5 reflexive, transitive and symmetric
S4R KTAR reflexive, transitive and Vz,y, z :
’ (z # 2 AR(z,2)) = (R(z,y) = R(y,2))
S4F KTAF reflexive, transitive and Vz,y, z :
(R(z,z) A\~ R(z,2)) = (R(z,y) = Ry, 2))
S4.2 KT4.2 reflexive, transitive and weakly-directed
S4.3 KT4.3 reflexive, transitive and weakly-connected
KT4.3Dum | reflexive, transitive, weakly-connected and
S4.3.1
no nonfinal proper clusters
reflexive, transitive and no nonfinal
S4Dbr KT4Dbr]
proper clusters
K4DL KDAL serial, transitive and weakly-connected
K4DLX KDALY serial, transitive, weakly-connected and
dense
serial, transitive, weakly-connected and
K4DLZ KDALZ
no nonfinal non-degenerate clusters
serial, transitive and no nonfinal
K4DZbr | K4DZbr '
nondegenerate clusters
G KG transitive and no co-R-chains (irreflexive)
reflexive, transitive, no proper clusters
Grz KGrz .
and no proper oc-R-chains
transitive, no proper clusters and no
K4Go K4Go .
proper oo-R-chains
KGIL transitive, weakly-connected, no proper
GL clusters and no oco- R-chains (irreflexive)

Fig. 4. Axiomatic Bases and L-frames

10 Rajeev Goré

consequence Y = A and Y F A. By careful definition we can maintain the
soundness and completeness results intact for these generalisations. Unfor-
tunately, axiomatic systems are notoriously bad for proof search because
they give no guidance on how to look for a proof. Tableau systems also
give rise to a syntactic notion of theoremhood but have the added benefit
that they facilitate proof search in a straightforward way. Such systems
are the subject of the rest of this chapter.

3 History of Modal Tableau Systems

The history of modal tableau systems can be traced back through two
routes, one semantic and one syntactic.

The syntactic route began with the work of Gerhard Gentzen [Gen35]
and the numerous attempts to extend Gentzen’s results to modal logics.
Curry [Cur52] appears to be the first to seek Gentzen systems for modal
logics, soon followed by Ohnishi and Matsumoto [OM57b, OM59, OM57a.
Kanger [Kan57] is the first to use extra-logical devices to obtain Gentzen
systems and is the precursor of what are now known as prefixed or labelled
tableau systems. Once the basic method was worked out other authors tried
to find similar systems for other logics, turning modal Gentzen systems into
an industry for almost twenty years.

Not surprisingly, modal Gentzen systems involve a cut-elimination the-
orem. In many respects this early work on modal Gentzen systems was very
difficult because these authors had no semantic intuitions to guide them
and had to work quite hard to obtain a syntactic cut-elimination theorem.
As we shall see, the task is much easier when we use the associated Kripke
semantics.

The semantic route began with the work of Beth for classical propo-
sitional logic [Bet55, Bet53] but lay dormant for modal logics for almost
twenty years until the advent of Kripke semantics [Kri59]. From then on,
modal tableau systems, and in general modal logic, witnessed a resurgence.

The two routes began to meet in the late sixties when it was realised
that classical semantic tableau systems and classical Gentzen systems were
essentially the same thing. Zeman [Zem73] appears to be the first to give
an account of both traditions simultaneously, although he is sometimes un-
able to relate his tableau systems to his Gentzen systems (c.f. his tableau
system for S4.3 is cut-free, yet his sequent system for S4.3 is not). Raut-
enberg [Rau79] gives a rigorous account and covers many logics but has not
received much attention as his book is written in German. Fitting’s book
[Fit83] is the most widely known and covers most of the basic logics.

During the eighties the two traditions were seen as two sides of the same
coin, but more recently, the semantic tradition has assumed prominence in
the field of automated deduction, while the syntactic tradition has gained
prominence in the field of type theory [Mas93], [Bor93]. In automated

Tableau Methods for Modal and Temporal Logics 11

deduction, the primary emphasis is on finding a proof, whereas in type
theory, the primary emphasis is on the ability to distinguish different proofs
S0 as to put a computational interpretation on proofs.

Regardless of this historical basis, there are essentially two types of
tableau systems which we shall call explicit systems and implicit sys-
tems. Recall that tableau systems are essentially semantic in nature, hence
the reachability relation R plays a crucial part. In explicit systems, the
reachability relation is represented explicitly by some device, and we are
allowed to reason directly about the known properties of R, such as transi-
tivity or reflexivity. In implicit systems, there is no explicit representation
of the reachability relation, and these properties must be built into the rules
in some way since we are not allowed to reason explicitly about R. We shall
see that in some sense the two types of systems are dual in nature since
implicit systems can be turned into explicit systems by giving a systematic
method or strategy for the application of the implicit tableau rules.

Here is an outline of what follows. In the first few sections we introduce
the syntax of implicit modal tableau systems by defining the form of the
rules and tableau systems. These are all purely syntactic aspects of modal
tableau systems allowing us to associate a syntactic deducibility relation
with modal tableau systems. In the second part we introduce the semantics
of modal tableau rules, and systems, and define the notions of soundness
and completeness of modal tableau systems with respect to these semantics.
In the last part we introduce the mathematical structures that we shall need
to prove the soundness and completeness of the given tableau systems.

We then give tableau systems in decreasing detail for: the basic modal
logics; the monotonic modal logics used to define nonmonotonic modal log-
ics of knowledge and belief; modal logics with “provability interpretations”;
monomodal logics of linear and branching time; and multimodal logics of
linear and branching time.

In the later sections of this chapter we introduce explicit tableau sys-
tems since they are an extension of implicit tableau systems. The extra
power of explicit tableau systems comes from the labels which carry very
specific semantic information about the (counter-)model under construc-
tion. Consequently we see that explicit tableau systems are better for the
symmetric logics.

For the sake of brevity we do not consider quantified modal logics, but
see Fitting [Fit83] for a treatment of quantified modal tableau systems.

4 Modal Tableau Systems With Implicit Accessi-
bility
4.1 Purpose of Modal Tableau Systems

As stated in the introduction, we concentrate on the use of modal tableau
systems for performing deduction. In this context, modal tableau systems

12 Rajeev Goré

can be seen as refutation procedures that decompose a given set of formulae
into a network of sets with each set representing a possible world in the
associated Kripke model. Thus, our modal tableau systems are anchored
to the semantics of the modal logic although they can be used in sequent
form to obtain metamathetical results like interpolation theorems as well;
see [Fit83] and [Rau83, Rau85].

The main features of semantic tableau systems carry over from classical
propositional logic in that a set of formulae X is deemed consistent if and
only if no tableau for X closes. Furthermore, from these open tableaux,
we can construct a model to demonstrate that X is indeed satisfiable, thus
tying the syntactic notion of consistency to semantic notion of satisfiability.

Now, assume we are given some finite set of formulae Y = {4y, -+, A},
and some formula A. Tet YV = (Ay AN Ay A -+ A Ag) with Y = 1 when
k = 0. By definition, if the set Y U {—A} is not L-satisfiable, then, in
every L-model, each world that makes each member of Y true, must also
make A true. That is, if the set Y U {—=A} is not L-satisfiable, then, the
formula ¥ — A must be L-valid. Modal tableau systems give us a purely
syntactic method of determining whether or not some given formula is L-
valid. Thus, they give us a method of determining whether A is a local
logical consequence of a set of formulae Y.

4.2 Syntax of Modal Tableau Systems

The most popular tableau formulation is due to Smullyan as expounded
by Fitting [Fit83]. Following Hintikka [Hin55] and Rautenberg [Rau83,
Rau85], we use a slightly different formulation where formulae are car-
ried from one tableau node to its child because the direct correspondence
between sequent systems and tableau systems is easier to see using this
formulation. To minimise the number of rules, we work with primitive no-
tation, taking O, — and A as primitives and defining all other connectives
from these. Thus, for example, there are no explicit rules for V and — but
these can be obtained by rewriting AV B as =(-A A =B) and A — B as
—(A A =B). All our tableau systems work with finite sets of formulae.
We use the following notational conventions:

- L denotes a constant false proposition and (} denotes the empty set;
- p,q denote primitive (atomic) propositions from P;

- P,@, Q; and P; denote (well formed) formulae;

- X, Y, Z denote finite (possibly empty) sets of (well formed) formulae;
- (X;Y) stands for X UY and (X; P) stands for X U {P};

- OX stands for {OP | P e X};

- =0X stands for {—-OP | P € X}.

We use P and () as formulae in the tableau rules and use A and B in the
axioms to try to separate the two notions. Note that (X; P; P) = (X; P)

Tableau Methods for Modal and Temporal Logics 13

and also that (X; P;Q) = (X;@; P) so that the number of copies of the
formulae and their order are immaterial as far as the notation is concerned.

A tableau rule p consists of a numerator A above the line and a
(finite) list of denominators D1, Ds,... ,Di (below the line) separated
by vertical bars:

N
Dy | Dy |- | Dy

(p)

The numerator is a finite set of formulae and so is each denominator.
We use the terms numerator and denominator rather than premiss and
conclusion to avoid confusion with the sequent terminology. As we shall
see later, each tableau rule is read downwards as “if the numerator is L-
satisfiable, then so is one of the denominators”.

The numerator of each tableau rule contains one or more distinguished
formulae called the principal formulae. Each denominator usually con-
tains one or more distinguished formulae called the side formulae. Each
tableau rule is labelled with a name which usually consists of the main
connective of the principal formula, in parentheses, but may consist of a
more complex name. The rule name appears at the left when the rule is
being defined, and appears at the right when we use a particular instance
of the rule.

For example, below at right is a tableau rule with:

1. a rule name (V);
2. anumerator X; =(PAQ) with a X;=-(PAQ)
principal for‘mula =(PAQ); and v m
3. two denominators X;—-P and
X; =@ with respective side for-
mulae =P and —Q.

A tableau system (or calculus) CL is a finite collection of tableau
rules p1, p2, -+, pm identified with the set of its rule names; thus CL =
{p1,p2, -+, pm}. Figure 5 contains some tableau rules which we shall later
prove are those that capture the basic normal modal logic K; thus CK =

{(1), (A), (V), (), (K), (6)}-

14 Rajeev Goré

X:PAQ X;P;—P X;=(PAQ)
R 1)y ——— (\/) -
X;P;Q €L X;=P | Xi=Q

-) — 0) — K) ——
X;P X X:-P

Fig. 5. Tableau rules for CK where X, Y are sets and P, () are formulae.

A CL-tableau for X is a finite tree with root X whose nodes carry
finite formula sets. A tableau rule with numerator A is applicable to a
node carrying set Y if Y is an instance of A/. The steps for extending the
tableau are:

- choose a leaf node n carrying Y where n is not an end node, and
choose a rule p which is applicable to n;

- if p has k denominators then create k successor nodes for n, with
successor i carrying an appropriate instantiation of denominator D;;

- all with the proviso that if a successor s carries a set Z and Z has
already appeared on the branch from the root to s then s is an end
node.

A branch in a tableau is closed if its end node is {_L}; otherwise it is
open. A tableau is closed if all its branches are closed; otherwise it is
open.

The rule (L) is really a check for inconsistency, therefore, we say that
a set X is CL-consistent if no CL-tableau for X is closed. Conversely we
say that a formula A is a theorem of CL iff there is a closed tableau for
the set {—A}. We write k¢, A if A is a theorem of CL and write YV F¢p A
it Y U {—A} is CL-inconsistent.

Example 4.2.1. The formula O(p — ¢) — (Op — Og) is an instance
of the axiom K. Its negation can be written in primitive notation and
simplified to O(=(p A —q)) A Op A —=Ogq. Below at left is a closed CK-
tableau for the (singleton) set X = {O(=(p A =¢)) AOp A =Oq} where each
node is labelled at the right by the rule that produces its successor(s).
Below at right is a more succinct version of the same CK-tableau. Hence
O(p — q) — (Op — Oq) is a theorem of CK.

Tableau Methods for Modal and Temporal Logics 15

{O-~(pA—q) AOpA-Og} (n) T2(PA=) AOpA-Cg
| O=(p A —q) A Op; ~Oq

{O-(pA _‘Q)| A Op,—0g} (A) O-(p A =q); Op; ~Og
~(p AN —q);p;—q
{8=(p A —q), Op,-0q} (K) (V)
| -p;p;mg (L) | —=gip;—g (L)

{=(pA=q),p,~q} (V)

PO

{=p.p,—q} (L) {==¢,p,~q} (L)

L L

4.3 Soundness and Completeness

Tableau systems give us a syntactic way to define consistency, and hence
theoremhood. As with the axiomatic versions of these notions, the no-
tions of soundness and completeness relate these syntactic notions to the
semantic notions of satisfiability and validity as follows.

Soundness: We say that CL is sound with respect to L-frames (the
Kripke semantics of L) if: Yt A implies Y =1, A. In words, if there is
a closed CL-tableau for Y U {=A} then any L-model that makes Y true at
world w must make A true at world w.

Completeness: We say that CL is complete with respect to L-
frames (the Kripke semantics of L) if: Y |=r A implies Y FeA. In
words, if every L-model that makes Y true at world w also makes A true
at world w, then some CL-tableau for Y U {=A} must close.

We already know that axiomatically formulated L is also sound and
complete with respect to L-frames. If we can show that CL is also sound

16 Rajeev Goré

and complete with respect to L-frames then we can_complete the link be-
tween CL and L via: YV b, AT Y |, Aiff LY — Aiff FLY — Al
Thus our tableau systems, as given, capture axiomatically formulated theo-
remhood only. As stated previously, they can be easily extended to handle
the stronger notion of “deducibility” using techniques for handling global
logical consequence from Fitting [Fit83].

4.4 Relationship to Smullyan Tableau Systems

Tableau systems are often presented using trees where each node is labelled
by a single (possibly signed) formula [Fit83]. The associated tableau rules
then allow us to choose some formula on the current branch as the principal
formula of the rule, and then to extend all branches below this formula by
adding other formulae onto the end of these branches. For modal logics,
some of the tableau rules demand the deletion of formulae from the current
branch, as well as the addition of new formulae. In fact, the tableau rules
are often summarised using set notation by collecting into a numerator
all the formulae on the branch prior to a tableau rule application, and
collecting into one or more denominators all the formulae that remain after
the tableau rule application. Such summarised rules correspond exactly to
the tableau rules we use. In particular, the thinning rule (#) allows us to
capture the desired deletion rules.

4.5 Structural Rules

Tableau systems are closely related to Gentzen systems and both often
contain three rules known as structural rules; so called because they do not
affect a particular formula in the numerator but the whole of the numerator
itself.

4.5.1 Exchange

Since we use sets of formulae, the order of the formulae in the set is imma-
terial. Thus a commonly used rule called the “exchange” rule that simply
swaps the order of formulae is implicit in our formulation.

4.5.2 Contraction

The (A) rule is shown below left. Consider the two applications of the (A)
rule shown at right:

/\X;P/\Q p/\q() pAgq
S — (A ——
X;P;Q Diq PAGP;q

The left hand application is intuitive, corresponding to putting X = {J,
P = p, and @ = q giving a numerator

Tableau Methods for Modal and Temporal Logics 17

N=(X;PAQ)=D;pAq) ={pAq}

and hence obtaining the denominator

D= (X;P;Q) = (0;p;9) = {p. q}-

However, the right-hand derivation is also legal since we can put X =
{pAq}, P =p, and @ = q to give the numerator

N=(X;PANQ)=(pAgpAqg) ={pAq}

and hence obtain the denominator

D=(X;P;Q)=pAagp;q) ={pNa,pq}

Thus, although our tableau rules seem to delete the principal formulae
in a rule application, they also allow us to carry that formula into the
denominator if we so choose.

Now, in classical propositional logic, it can be shown that the deletion
of the principal formula does no harm. However, in certain modal logics,
the deletion of the principal formula leads to incompleteness. That is, a
tableau for X may not close if we always delete the principal formula, and
yet, a similar tableau for X may close if we carry a copy of the principal
formula into the denominator. For an example, see Example 4.14.1 on
page 31.

Completeness is essential if our tableau systems are to be used as deci-
sion procedures, thus we need a way to duplicate formulae. It is tempting
to add a rule called the contraction rule (ctn) as shown below left. And
below at right is an application of it where we duplicate the formula Op in

N ={pAq,Op}:

X;pP pAg;0Op
(ctn) ——— ————(ctn)
X;P; P pAq;Op;Op

But now we have a problem, for the definition of a tableau is in terms
of nodes carrying sets and the two nodes of the right-hand tableau carry
identical sets since (p A ¢;Op) = (p A ¢;0p; Op) = {p A ¢, Op}. Thus, any
explicit application of the contraction rule immediately gives a cycle and
stops the tableau construction. An explicit contraction rule is not what we
want.

In order to avoid these complexities we shall omit an explicit contrac-
tion rule from our tableau systems and make no assumptions about the
deletion or copying of formulae when moving from the numerator to the

18 Rajeev Goré

denominator. However, when we wish to copy the principal formula into
the denominator we shall explicitly show it in the denominator. So for
example, the rule below at left explicitly stipulates that a copy of the prin-
cipal formula P A () must be carried into the denominator, whereas the rule
below at right allows us to choose for ourselves:

X;PAQ N X;:PAQ
X;PAQ; P;Q X;P;Q

4.5.3 Thinning

The thinning rule (6) allows us to convert any tableau for a given set Y into
a tableau for a bigger set (X;Y) simply by adding (X;Y’) as a new root
node. It encodes the monotonicity of a logic since it encodes the principle
that if Y Feop, A then X UY Fep, A. In tableau systems for classical logic it
can be built into the basic consistency check by using a base rule like our
(L) (shown below right) since all formulae that are not necessary to obtain
closure can be stashed in the set X. Alternatively it becomes necessary if
we use a base rule like the one shown at below left:

P;-P X; P;—P

3

4 4

1)

Consequently, our tableau system CK is complete for classical proposi-
tional logic without (6) and the thinning rule is required only for the modal
aspects. The thinning rule can also be built into the modal rules as we shall
show, but we choose to make it explicit because it helps to keep the modal
rules simpler.

4.5.4 Cut

The cut rule shown below encodes the law of the excluded middle but suffers
the disadvantage that the new formulae P and —P are totally arbitrary,
bearing no relationship to the numerator X. To use the (cut) rule we have
to guess the correct P (although note that modal tableau systems based
on Mondadori’s system KE [DM94] can use cut sensibly):

X

(cut) ———
X;P| X;-P

The redundancy of the cut rule is therefore very desirable and can be
proved in two ways. The first is to allow the cut rule and show syntactically

Tableau Methods for Modal and Temporal Logics 19

that whenever there is a closed CL-tableau for X containing uses of the cut
rule, there is another closed CL-tableau for X containing no uses of the cut
rule. This is the cut-elimination theorem of Gentzen. The alternative is to
omit the cut rule from the beginning and show that the cut-free tableau
system CL is nevertheless sound and complete with respect to the semantics
of the logic L. For most of our systems, we follow this latter route.

A more practical version of the cut rule, known as analytical cut, is
one where P is a subformula of some formula in X. Thus the formulae that
appear in the denominator are not totally arbitrary. Some of our systems
require such an analytic cut rule for completeness. The use of analytic
cut is not as bad as it may seem since it can lead to exponentially shorter
proofs.

4.6 Derived Rules and Admissible Rules

Our rules are couched in terms of (set) variables like X, which denote sets
of formulae, and formulae variables like =0 P which denote formulae with
a particular structure. Thus our rules are really rule schemata which we
instantiate by instantiating X to a set of formulae, and instantiating -0OP
to a particular formula like —Og say. And up till now, we have always
applied the rules to sets of formulae. But if a sequence of rule applications
is used often then it is worth defining a new rule as a macro or derived rule.
And in defining a macro, we apply rules to set variables and to formula
variables, not to actual sets of formulae.

More formally, a rule (p) with numerator A" and denominators Dy, Da,
-+« Dy, is derivable in CL iff there is a finite CL-tableau that begins with
the schema A itself, and has leaves labelled with the schemata D;, D,
-+ Dy, but where the rules are applied to schema rather than to actual
sets of formulae. The addition of derived rules does not affect soundness
and completeness of CL since their applications can be replaced by the
macro-expansion.

For example, in order to apply the (K) rule, the numerator (schema)
0X;—-0P is not allowed to contain nonmodal formulae like p A g. Before
applying the (K) rule, these undesirable elements have to be “thinned out”
via the set Y as shown below left. But notice that here we have applied the
(#) rule, not to a set of formulae, but to a schema which represents a set, of
formulae. And similarly, the subsequent application of the (K') rule is also
applied to a schema rather than an actual set of formulae. Since such an
application of () may be necessary before every application of (K) it may
be worth defining a “derived rule” (K@) which builds in this thinning step
as shown below right. In fact, if we replace (K) by (K@) in CK then (0)
becomes superfluous since these are the only necessary applications of (6).

20 Rajeev Goré

Y, DX,—||:|P 0)
ox;-opP Y.O0X,;-0P
—(K) (Kf) ——
X;—=P X;=P

On the other hand, it is often possible (and useful) to add extra rules
even though these rules are not derivable. For example, the cut rule is
not derivable in CK since the denominators of each rule of CK are always
related to the numerator of that rule, whereas (cut) breaks this property
since the P in the denominator is arbitrary.

We can ensure that the new rules do not add to the deductive power of
the system as follows. Let (p) be an arbitrary tableau rule with a numerator
N and n denominators Dy, Ds, - -, D,, and let CLp be the tableau system
CL U {(p)}. Then the rule (p) is said to be admissible in CL if: X is
CL-consistent iff X is CLp-consistent. That is, if: a CL-tableau for X is
closed iff a CLp-tableau for X is closed.

Lemma 4.6.1. If CL is sound and complete with respect to L-frames and
(p) is sound with respect to L-frames then (p) is admissible in CL.

Proof: Since CL C CLp we know that if X is CLp-consistent then X
is CL-consistent. To prove the other direction suppose that CL is sound
and complete with respect to L-frames, that (p) is sound with respect to
L-frames, and that X is CL-consistent. By the completeness of CL, the
set X must be L-satisfiable. Since (p) is sound with respect to L-frames,
so is CLp. Suppose X is not CLp-consistent. Then there is a closed CLp-
tableau for X which must utilise the rule (p) since this is the only difference
between CL and CLp. But, by the soundness of CLp this implies that X
must be L-unsatisfiable; contradiction. Hence X must be CLp-consistent. ll

For example, there is no rule for A — B in our tableau system since we
always use primitive notation and rewrite A — B as =(A A =B). But the
following rules are clearly sound with respect to the semantics of classical
logic, and hence are admissible for CPC (the calculus CK minus the (K)
rule) since CPC is sound and complete with respect to the same semantics:

() X;P—Q (ﬁ_})X;—(P—)Q)

X;—|P‘X;Q X;P;=(Q
4.7 Invertible Rules

A tableau rule (p) is invertible in CL iff: if there is a closed CL-tableau
for (an instance of) the numerator A/ then there are closed CL-tableaux for
(appropriate instances of) the denominators D;.

Lemma 4.7.1.

Tableau Methods for Modal and Temporal Logics 21

The rules (A), (V) and (=) are invertible in CPC.

Proof: The assumption is that we are given a closed CPC-tableau for
some set X that matches the numerator NV of rule (p), where (p) is one of
(A), (V) and (=). We have to prove that there is a closed CPC-tableau for
the corresponding instantiations of the denominators of (p).

We prove this simultaneously for all three rules by induction on the
length of the given closed CPC-tableau for X. The induction argument
requires slight modifications to our CPC-tableaux: we assume that all
applications of the rule (L) are restricted to atomic formulae since every
closed CPC-tableau can be extended to meet this condition, and we also
ignore the rule () since any closed CPC-tableau that uses (f) can be
converted into one that does not use (6).

The base case for the induction proof is when the length of the given
closed CPC-tableau for X is 1; that is, there is some atomic formula p
such that {p, -p} C X. The corresponding denominators of (p) must also
contain {p, —p} since neither p nor —p can be the principal formulae of (p).
So these denominator instances are also closed.

The induction hypothesis is that the lemma holds for all closed CPC-
tableaux of lengths less than n. Suppose now that the given closed CPC-
tableau for X is of length n. We argue by cases, but only give the case for
the (A) rule in detail.

(A) The numerator is of the form A" = (Z; P A Q) and we have to provide
a closed CPC-tableau for the corresponding denominator (Z; P; Q).
Consider the actual first rule application (7) in the given closed CPC-
tableau for (Z; P A Q).
If P A @ is not the principal formula A of (7) then the denominators
of () are of the form (Z/; P AQ), 1 <i <2, since A must be some
formula from Z. The given CPC-tableau for (Z; P A Q) is closed, so
each (Z!; PAQ), 1 <i < 2, must have a closed CPC-tableau of length
less than n. Then, by the induction hypothesis, there are closed CPC-
tableaux of length less than n for each (Z}; P;Q), 1 <i < 2.
If we now start a separate CPC-tableau for (Z; P; Q) and use (1) with
the same A € Z as the principal formula, we obtain the sets (Z!; P; Q)
as the denominators of (7). Since we already have closed CPC-
tableaux for these sets, we have a closed CPC-tableau for (Z; P; @),
as desired. It is crucial that the length of the new CPC-tableau is
also n.
If P A Q is the principal formula A of () then (7) = (A) has only
one denominator (Z; P; @), and the CPC-tableau for it closes. But
this is the closed CPC-tableau we had to provide. In this case, the
length of the “new” CPC-tableau is actually n L 1.

(V) Similar to above.

(=) Similar to above.

22 Rajeev Goré

4.8 Subformula Property and Analytic Superformula
Property
For a formula A, the degree deg(A) counts the maximum depth of nesting

while the modal degree mdeg(A) counts the maximum depth of modal
nesting. Their definitions are:

mdeg(A A B) = max(mdeg(A), mdeg(B))
mdeg(0A) = 1+ mdeg(A)

For a finite set X:

deg(X) = max{deg(A) | A € X}
mdeg(X) = max{mdeg(A) | A € X}

The set of all subformulae of a formula, or of a set of formulae, is
used extensively. For a formula A, the finite set of all subformulae Sf(A)
is defined inductively as [Gol87]:

Sf(p) = {p} where p is an atomic formula Sf(-A4) = {-A} U Sf(A)
Sf(AANB)={AAB}USf(A)USf(B) Sf(OA) = {O0A} U Sf(A)

Note that under this definition, a formula must be in primitive notation to
obtain its subformulae; for example:

Sfovae) = Sf(=(-pA-q) = A{=(=pA-q),=pA-q,—p,—q,p,q}
Sf(op) = Sf(-O-p) {=0-p,0-p, —p, p}

For a finite set of formulae X, the set of all subformulae Sf(X) consists
of all subformulae of all members of X; that is, Sf(X) = [J,cx Sf(A). The
set of strict subformulae of A is Sf(A) \ {4}.

A tableau rule has the subformula property iff every formula in the
denominators is a subformula of some formula in the numerator. A tableau
system CL has the subformula property iff every rule in CL has it.

If CL has the subformula property then each rule can be seen to “break
down” its principal formula(e) into its subformulae. Furthermore, if the
principal formula is not copied into the numerator, then termination is

Tableau Methods for Modal and Temporal Logics 23

guaranteed without cycles since every rule application is guaranteed to give
a denominator of lower degree, eventually leading to a node with degree
Zero.

Notice that the rules of CK do not have the subformula property, for
both the (V) and (K) rule denominators contain formulae which are nega-
tions of a subformula of the principal formula. But clearly this is not a
disaster since the degree is not actually increased, but may remain the
same.

The modal tableau rules for more complex logics, however, introduce
quite complex “superformulae” into their denominators, thereby increasing
both the degree and the modal degree. Nevertheless, all is not lost, for every
tableau will be guaranteed to terminate, possibly with a cycle.

In order to prove this claim we need to introduce the idea of an analytic
superformula. The intuition is simple: rules will be allowed to “build up”
formulae so long as the rules cannot conspire to give an infinite chain of
“building up” operations.

A tableau system CL has the analytical superformula property iff to
every finite set X we can assign, a priori, a finite set Xy such that X5y
contains all formulae that may appear in any tableau for X.

Lemma 4.8.1. If CL has the analytic superformula property then there
are (only) a finite number of CL-tableaux for the finite set X.

Proof: Since CL has the analytical superformula property the only CL-
tableaux we need consider are those whose nodes carry subsets of the set
Xpy,- Since Xy is finite, the number of subsets of Xy is also finite. [|

For example, the calculus CK has the analytic superformula property
because for any given finite X we can put X = Sf(X)U-Sf(X)U{L}.

4.9 Proving Soundness

By definition, a tableau system CL is sound with respect to L-frames if
Y FeoAimplies Y =r A

Proof Outline: To prove this claim we assume that Y k. A; that is,
that we have a closed CL-tableau for X = (Y’; =A). Then we use induction
on the structure of this tableau to show that X is L-unsatisfiable; that is,
that Y |:L A.

The base case is when the tableau consists of just one application of the
(L) rule. In this case, the set X must contain some P and also =P and is
clearly L-unsatisfiable (since our valuations are always classical two-valued
ones).

Now suppose that the (closed) CL-tableau is some finite but arbitrary
tree. We know that all leaves of this (closed) tableau end in {L}. So all we
have to show is that for each CL-tableau rule: if all the denominators are
L-unsatisfiable then the numerator is L-unsatisfiable. This would allow us
to lift the L-unsatisfiability of the leaves up the tree to conclude that the

24 Rajeev Goré

root X is L-unsatisfiable. Instead, we show the contrapositive; that is, for
each CL-tableau rule we show that if the numerator is L-satisfiable then at
least one of the denominators is L-satisfiable. [|

Thus proving the soundness of a tableau system is possible on a rule
by rule basis. For example, the (A) rule is sound with respect to K-models
because if we are given some K-model (W, R, V) with some w € W such
that w = X;p A ¢, then we can always find a K-model (W', R, V') with
some w' € W' such that w' | X;p;q by simply putting (W,R,V) =
(W' R', V') and putting w = w'.

As another example the (K) rule is sound with respect to K-models
because if we are given some K-model (W, R, V) with some w € W such
that w |= OX; -0OP then we know that w has some successor w’ € W such
that wRw' and w' | =P (by the definition of w = —=0OP). Furthermore,
since w = OX and wRw' we know that w' = X (by the definition of
w |= OP). Thus we can find a w' € W such that w' |= X;-P. In this case,
although the underlying model has remained the same, the world w’ may
be different from w.

4.10 Static Rules, Dynamic Rules and Invertibility

The previous two examples show that, in general, the numerator and de-
nominators of a tableau rule either represent the same world in the same
model as in the (A) example, or they represent different worlds in the same
model as in the (K) example. We therefore categorise each rule as either
a static rule or as a transitional rule.

The intuition behind this sorting is that in the static rules, the nu-
merator and denominator represent the same world (in the same model),
whereas in the transitional rules, the numerator and denominator represent
different worlds (in the same model).

For example, the tableau rules for CK are categorised as follows:

CL Static Rules Transitional Rules

CK (), (1), (=), (A), (V) (K)

The division of rules into static or transitional ones is based purely
on the semantic arguments outlined above. But there is a proof-theoretic
reason behind this sorting as captured by the following lemma.

Lemma 4.10.1. The static rules of CL, except (0), are precisely the rules
that are invertible in CL.

Proof: We shall have to prove this lemma for each CL by extend-
ing Lemma 4.7.1. And it is precisely the requirement of invertibility that
sometimes requires us to copy the principal formula into the numerator;
see Section 4.14.3. [|

Tableau Methods for Modal and Temporal Logics 25

4.11 Proving Completeness Via Model-Graphs

By definition, CL is complete with respect to L-frames iff: Y =1, A implies
Y FeLA.

Proof Outline: We prove the contrapositive. That is, we assume
YtcrA by assuming that no CL-tableau for X = (Y;—-A) is closed. Then
we pick and choose sets with certain special properties from possibly dif-
ferent open tableaux for X, and use them as possible worlds to construct
an L-model M for X, safe in the knowledge that each of these sets is CL-
consistent. The model M is deliberately constructed so as to contain a
world wg such that wo E Y and wy E —A. Hence we demonstrate by
construction that Y % A. The basic idea is due to Hintikka [Hin55]. |

In order to do so we first need some technical machinery.

4.11.1 Downward Saturated Sets

A set X is closed with respect to a tableau rule if, whenever (an
instantiation of) the numerator of the rule is in X, so is (a corresponding
instantiation of) at least one of the denominators of the rule. A set X is
CL-saturated if it is CL-consistent and closed with respect to the static
rules of CL excluding (6).

Lemma 4.11.1. For each CL with the analytic superformula property and
each finite CL-consistent X there is an effective procedure to construct some
finite CL-saturated (and CL-consistent) X* with X C X* C X}y .

Proof: Since X is CL-consistent, we know that no CL-tableau for X
closes and hence that the (L) rule is not applicable.

Let Xo = X, let 4 = 0 and let (p) # (f) be a static rule of CL with
respect to which X is not closed. If there are none, then we are done.

Given a CL-consistent set X; which is not closed with respect to the
static rule (p) # (6), apply (p) to (the numerator) X; to obtain the cor-
responding denominators. At least one of these denominators must have
only open CL-tableaux. So choose a denominator for which no CL-tableau
closes and let Y; be the CL-consistent set carried by it.

Suppose that this application of (p) has a principal formula A € X; and
side formulae {B;,---,B;} C Y;. Put X;4; = (Y¥;; A) by adding A to V;,
thereby making X;y; closed with respect to this particular application of
(p)-

For a contradiction, assume that X;;; is CL-inconsistent; that is, as-
sume that there is a closed CL-tableau for (Y;; A). Since (p) was applicable
to A, putting N' = (V;; A) and D = (V;; By;---; By) gives a part of an in-
stance of (p); “part of” because (p) may have more than one denominator
and D is an instance of only one of them. But (p) is invertible in CL, so if
there is a closed CL-tableau for (Y;; A), then there is a closed CL-tableau
for (Y;; By;---;By). Since {Bj,---, By} C Y}, this means that there is a
closed CL-tableau for Y;. Contradiction, hence X;;1 is CL-consistent; that

26 Rajeev Goré

is, no CL-tableau for X;;1 closes.

Now repeat this procedure on X;;1. Since X;;; is closed with respect
to at least one more rule application, the number of choices for (p) is one
less. Furthermore, the resulting set X, is guaranteed to be CL-consistent.

By always iterating on the new set we obtain a sequence of finite CL-
consistent sets Xg C X;;11 C ---, terminating with some final X,, because
X, is closed with respect to every static rule of CL, except (6), and is
CL-consistent, as desired. Let X*® = X,,.

Since each rule carries subsets of Xy to subsets of X7, and we start
with X C X, we have X C X* C X3y, [|

In classic logic, such sets are called downward saturated sets and form
the basis of Hintikka’s [Hin55] method for proving completeness of classical
tableau systems. In the next section we introduce the technical machinery
necessary to extend this method to modal logics.

4.11.2 Model Graphs and Satisfiability Lemma

The following definition from Rautenberg [Rau83] is central for the model
constructions. A model graph for some finite fixed set of formulae X is
a finite L-frame (W, R) such that all w € W are CL-saturated sets with
w C X5y, and

(i) X C wp for some wy € W
(ii) if -OP € w then there exists some w' € W with wRw' and =P € w';

(iii) if wRw' and OP € w then P € w'.

Lemma 4.11.2. If (W, R) is a model graph for X then there exists an
L-model for X [Rau83].

Proof: For every p € P, let ¥(p) = {w € W : p € w}. Using simul-
taneous induction on the degree of an arbitrary formula A € w, it is easy
to show that (a) A € w implies w = A; and (b) -A € w implies w = A.
By (a), wo = X hence the model M = (W, R,9) is an L-model for X
[Rau83]. |

This model graph construction is similar to the subordinate frames con-
struction of Hughes and Cresswell [HC84] except that Hughes and Cress-
well use maximal consistent sets and do not consider cycles, giving infinite
models rather than finite models.

4.12 Finite Model Property and Decidability

In the above procedure, if M can be chosen finite (for finite X) then the
logic L has the finite model property (fmp). It is known that a finitely
axiomatisable normal modal logic with the finite model property must be
decidable; see Hughes and Cresswell [HC84, page 154]. Hence CL provides
a decision procedure for determining whether ¥ =1, A.

Tableau Methods for Modal and Temporal Logics 27

4.13 Summary

In the rest of this section we present tableau systems for many propositional
normal modal logics based on the work of Rautenberg [Rau83], Fitting
[Fit83], Shvarts [Shv89], Hanson [Han66], Goré [Gor92, Gor91, Gor94] and
Amerbauer [Ame93]. Most of the systems are cut-free but even those that
are not use only an analytical cut rule. Each tableau system immediately
gives an analogous (cut-free) sequent system. The presentation is based
on the basis laid down in the previous subsections and is therefore rather

repetitive. The procedure for each tableau system CL is:

1. define the tableau rules for CL ;

2. define Xy, for a given fixed X;

3. prove that the CL rules are sound with respect to L-frames;

4. prove that each CL-consistent X can be extended (effectively) to a
CL-saturated X* with X C X* C X7; ;

5. prove that the CL rules are complete with respect to L-frames by
giving a procedure to construct a finite L-model for any finite CL-
consistent X and hence prove that L has the finite model property,
that L is decidable and that CL is a decision procedure for deciding
local logical consequence (Y =y, A) in L.

4.14 The Basic Normal Systems

In this section we study the tableau systems which capture the basic normal
modal logics obtained from various combinations of the five basic axioms
of reflexivity, transitivity, seriality, euclideaness, and symmetry. We shall
see that implicit tableau systems can handle certain combinations of the
first four properties with ease, but require an analytic cut rule to handle
symmetry. In each case, we give the tableau calculi and prove them sound
and complete with respect to the appropriate semantics. We shall also
see that some of the basic logics have no known implicit tableau systems,
leaving an avenue for further work.

The following notational conventions are useful for defining Xp; for
each X and each CL. For any finite set X :

- let Sf(X) denote the set of all subformulae of all formulae in X ;
- let =Sf(X) denote {=P | P € Sf(X)};

- let X denote the set Sf(X)U—Sf(X)U{L};

- let O(X — OX) denote the set {O(P — OP) | P € X}.

We sometimes write SfX instead of Sf(X) whence X = (Sf-SfX) U {L1}.

4.14.1 Tableau Calculi

All the tableau calculi contain the rules of CPC and one or more logical
rules from Figure 6 on page 28. The tableau systems are shown in Figure 7
on page 29 and the only structural rule is (). The calculi marked with a

28 Rajeev Goré

0x;-0pP X;0OP X;0OP
(K) ——— (T) ——— D) ———
X;-P X;0P; P X;0P;-0-P
(KD) —————— where {=0OP,~P} may be empty
X;-P
(K4) ———— (S4) ——
X;0X;-P O0X;-P
DX;ﬁDY;—!DP
(45)

() DX;ﬁDY;—!DP
45D where Y U {P} U {—=P} may be empt

X;-0P X;0P;-0Q
(8) (10) ——
X;-0P;P| X;-0P;-P;0-0P X;0P; P;-0Q
X,—||:|P DX,-H:‘Y,—!DP
®) ————— (55)
X7—|DP, O-apP DX7_IDY,_|DP7_IP
X;apP
(sfed) ’

X;0P;P| X;0P;-P

X,—||:|P

&
(sfe)X;ﬁDP;P | X;-0P;-P

X;~(PAQ)

Y,
(sfe)X;ﬂP;ﬁQIX;ﬂP;QIX;P;ﬂQ

(sfe) = {(sfeD), (sfeO), (sfeV)} (sfeT) = {(sfev), (sfeO)}

Fig. 6. Tableau Rules for Basic Systems

Tableau Methods for Modal and Temporal Logics 29

CL Static Rules Transitional Rules XorL
CPC (@), (L), (=), (A), (V) X

CK CPC (K) X
CT CPC, (T) (K) X
CD CPC, (D) (K) Sf-SFOX
cD’ CPC (KD) X
CKB ? ? ?
CK4 CPC (K4) X
CK5 ? ? ?
CKDB ? ? ?
CKD5 7 ? ?
CK4D CPC, (D) (K4) Sf-SfFOX
CK45 CPC (45) X
CK45D (CPC (45D) X
CS4 CPC, (T) (S4) X
CSs57~ CPC, (T) (S5) X
C'K45 CPC, (sfc) (45) X
C'K45D CPC, (sfc) (45D) X
C'K4B CPC, (sfc), (To), (5) (K4) Sf-SFOX
cts4 CPC, (T), (sfcT) (54) X
CiB CPC, (T),(B),(sfcT) (K) Sf-SFOX
ctss CPC, (T),(5), (sfcT) (54) Sf-SfOxX
ctss’ CPC, (T), (sfeT) (S5) X

Fig. 7. Tableau Calculi for Basic Systems

superscript t require analytic cut whilst the others are cut-free. The entries
marked by question-marks are open questions.

The rules are categorised into two sorts, static rules and transitional
rules as explained on page 24. This sorting should become even clearer
once we prove soundness.

The semantic and sometimes axiomatic intuitions behind these rules
are as follows.

Intuitions for (K) : if the numerator represents a world w where OX
and —OP are true, then since -OP = =P, there must be a world w’
reachable from w such that w’ makes P false and makes all the formulae
in X true. The denominator of the (K) rule represents w'.

30 Rajeev Goré

Intuitions for (T') : if the numerator represents a world w where
X and OP are true, then every successor of w must make P true. By
reflexivity of R the world w itself must be one of these successors.

Intuitions for (D) : if the numerator represents a world w where X
and OP are true, then by seriality of R there must exist some w' such that
wRw'. Then the definition of OP forces P to be true at w’. Hence -O-P,
that is O P, must be true at w itself. Note that (D) is a static rule since its
numerator and denominator represent the same world, and also that (D)
creates a superformula -0-P.

Intuitions for (K D) : if the numerator represents a world w where
OX is true, then the seriality of R guarantees a successor w' for this world,
and the definition of OX forces X to be true at w'. So we can apply
the (K D) rule even when the numerator contains no formulae of the form
—0OP. Of course, if such a formula is present then the intuitions for the (K)
rule suffice. Note that (K D) is a transitional rule since the numerator and
denominator represent different worlds, and also that it has the subformula
property.

Intuitions for (K4) : if the numerator represents a world w where OX
and —OP are true, there must be a world w' representing the denominator,
with wRw', such that w' makes X true and makes P false. Then by
transitivity of R, any and all successors of w’' must also make X true,
hence w' makes OX true. If w’ does not have successors then it makes OX
true vacuously.

Intuitions for (S4) : if the numerator represents a world w where
0X and —OP are true, then by transitivity of R there must be a world
w' representing the denominator, with wRw', such that w' makes OX true
and makes P false.

Intuitions for (B) : if R is symmetric and reflexive and the numerator
represents a world w where X and —OP are true, we know that this world
either makes P true or makes P false. If w makes P true then we have the
left denominator. If w makes P false, then we have the right denominator
which also contains O-0OP since A — OO A is a theorem of B.

Intuitions for (5) : Suppose R is euclidean and the numerator repre-
sents a world w where X and —OP are true. Then we immediately have
that w also makes O-0OP true since -0A — O-0A is just another way of
writing the axiom 5 which we know must be valid in all euclidean Kripke
frames.

Intuitions for (sfc) : if the numerator represents a world w where
—(P A Q) is true, then we know that w either makes both P and @ false;
or makes P false and () true; or makes P true and () false. The other cases
use similar intuitions.

Intuitions for (sfcT) : as for the (sfe) rule except that by reflexivity
we cannot have both OP and —P true at w so one of the cases cannot
occur.

Tableau Methods for Modal and Temporal Logics 31

Example 4.14.1. The following example shows that copying the principal
formula into the denominator is crucial since the left CK'T-tableau, using
a non-copying application of a rule (7"), does not close but the right one,
using (7'), does close.

O(g A —8q) (T") O(g A —0Oq) (T)
| |
g A—0Oq (A) O(g A —08q); ¢ A —~Oq (A)
| |
q;—~Oq () O(g A —~Oq); g; ~0q (6)
| |
-0q (K) O(g A ~Oq); ~0Oq (K)
| |
—q ? g A —=Og;~q (N)
| |
? ¢;—0g; —q (L)
|
1L

Example 4.14.2. The following example shows that the order of the
modal rule applications is important, since the CKT-tableau below does
not close precisely because (K) (and hence (6)) is applied at the start. If
we apply the (V) rule first then the tableau can be closed:

Op; =~(p A =0q); =O(p A q) (0)

Op; ~B(p A q) (K)

|
pi-(pAq) (V)
/N
(L) ps—p P

1 open

32 Rajeev Goré

4.14.2 Soundness

Theorem 4.14.3 (Soundness). Each calculus CL and CTL listed in Fig-
ure 7 on page 29 (without question marks!) is sound with respect to L-
frames.

Proof Outline : For each rule in CL we have to show that if the numer-
ator of the rule is L-satisfiable then so is at least one of the denominators.
The CPC rules are obviously sound since each world behaves classically.
The rules (sfc) and (sfcT') are also sound for Kripke frames because any
particular world in any model either satisfies P or satisfies =P for any for-
mula P. For each modal rule we prove that it is sound with respect to some
known property of R as enforced by the L-frames restrictions. The proofs
are fairly straightforward and intuitive so we give a sketch only.

We often use annotated names like w; and w’ to denote possible worlds.
Unless stated explicitly, there is no reason why w; and w’ cannot name the
same world.

Proof for (K): We show that (K) is sound with respect to all Kripke
frames. Suppose M = (W, R, V) is any Kripke model, wy € W and that
wo satisfies the numerator of (K). That is, suppose wg |= OX;-0P. We
have to show that there exists some world that satisfies the denominator
of (K). By definition of the satisfaction relation, wo = —OP implies that
there exists a wy € W with woRw; and wy; = =P. Since wqy = OX and
woRwy, the definition of |= implies that w; = X, hence w; |= (X;-P)
which is what we had to show.

Proof for (T'): We show that (T') is sound with respect to all reflexive
Kripke frames. Suppose M = (W, R, V') is any Kripke model where R is
reflexive, wy € W and wq |= OX;0P. Then the reflexivity of R and the
definition of = implies that wq |= OX;0OP; P.

Proof for (D) : We show that (D) is sound with respect to all serial
Kripke frames. So suppose M = (W, R,V) is any Kripke model where
R is serial. That is, Vw € W,3w’ € W : wRw'. Suppose wy € W and
wo = X;OP. By seriality there exists some wy; € W with woRw;. And
since wg = OP we must have w; |= P. But then there is a world (namely
w1) accessible from wq that satisfies P, and hence wg = O P. By definition,
OP = —=0-P, hence wy |= -O-P, thus satisfying the denominator of (D).

Proof for (KD) : We show that (K D) is sound with respect to all
serial Kripke frames. So suppose M = (W, R, V') is any Kripke model where
R is serial. Suppose wg € W and wy = OX. By seriality there exists some
wy € W with woRw;, and since wy = OX we must have w; = X thus
satisfying the denominator of (K'D) when the —OP part is missing from
the numerator. On the other hand, if wy = OX; =OP for some P then, by
definition, there is a world ws accessible from wg with wy = X; —P.

Proof for (K4): We show that (K4) is sound with respect to all
transitive Kripke frames. So suppose M = (W, R, V) is any Kripke model

3

Tableau Methods for Modal and Temporal Logics 33

where R is transitive. Suppose wg € W and wo = OX;-0P. Thus there
exists wy € W with woRw; and wy = X;—P. Since R is transitive, all
successors of w; are reachable from wy, hence wg = OX implies that every
successor of wy, if there are any, must also satisfy X. By the definition of
= this gives w; | X;0X;—-P. If w; has no successors then it vacuously
satisfies A for any formula A, hence it vacuously satisfies 0X, and we are
done.

Proof for (S4): The proof for (K4) also shows that (S4) is sound with
respect to all transitive Kripke models.

Proof for (45): Let M = (W, R, V) be any Kripke model where R is
transitive and euclidean. Suppose that wy € W and wy | OX;-0Y; -0OP.
We have to show that there exists a w’' € W such that w' = X; 0X;-0Y;
—-OP;—=P.

We need only prove that there exists a w' € W such that w'
—-0Y; -~0OP; =P since the X;0X part will follow from the transitivity of
R. Since wy = -OP we know that there exists some w' with woRw' and
w' = = P. By the definition of euclideaness wo Rw' and woRw' (sic) implies
w'Rw'. Hence w' is reflexive and we have w' |= =0OP. Now, if Y is empty
then we are done; otherwise if Y = {Q1,Qa, --,Qn}, n > 1, there will
be worlds wy, wa, ...,w, (not necessarily distinct) where woRw; for each
1 < i < n and such that w; = —=@Q;. Since R is euclidean, woRw' and
woRw; implies that w'Rw; for each 1 < i < n. But then w' = -0OY and
we are done.

Proof for (45D): Let M = (W, R,V be any Kripke model where R
is serial, transitive and euclidean, and suppose that wy € W and wg E
O0X;-0Y;—-0P. We have to show that there exists a w' € W such that
w' | X;0X;-0Y;-0P; —P allowing for the case where the -OY; -OP
part is missing. Since R is transitive and euclidean the proof for CK45
applies when the —0OY; =0OP part is present. If there are no formulae of
the form =OP in wq then seriality guarantees that there is some world w’
with wRw', and then transitivity of R ensures that w' = X;0X.

Proof for (B): We show that (B) is sound with respect to all sym-
metric Kripke frames. Suppose M = (W, R, V') is any Kripke model where
R is symmetric, wyg € W and wy = X;—0OP. We show that wy = P or
wo | —P;0-0P. If wg = P then wy E X;—-0P; P and we are done.
Otherwise wo |= —P. In this latter case, suppose wy = O-OP. Then
wo | —O-0P, that is wy | <©OP, so there exists some w; € W with
woRw; and wy = OP. Since R is symmetric, woRw; implies wy Rwg which
together with w; |= OP gives wy = P. But this contradicts the supposition
that wo = —P. Hence wy |= X;-0P; P or wg = X;-0P;—-P;0-0P and
we are done.

Proof for (To): We show that (To) is sound with respect to all Kripke
frames that are symmetric and transitive. Suppose M = (W, R, V') is any
Kripke model where R is symmetric and transitive, wg € W and wg |

34 Rajeev Goré

X;0OP;-0Q. Then there exists some wy € W with woRw; and wy = —Q.
By symmetry, wo Rw; implies w; Rwy. By transitivity, woRw; and wq Rwg
implies woRwg. Therefore wy = P and we are done.

Proof for (5): We show that (5) is sound with respect to all euclidean
Kripke frames. Suppose M = (W, R, V') is any Kripke model where R is
euclidean, and suppose wy € W with wy = X;-0P. We have to show
that wy = O-0OP. Assume for a contradiction that wg = O-OP; that is,
wg | —O-0P, which is the same as wy = ¢OP. Thus there exists some
wy € W with woRw; and wy = OP. Since wy = —OP there is also some
wy with wogRwy and we = —P. Since R is euclidean, woRw; and wgRw-
implies wy Rws. And since wy |= OP we must have ws = P. Contradiction;
hence wg |= O-0OP as desired.

Proof for (55): We show that (S5) is sound with respect to all Kripke
frames that are transitive and euclidean. Suppose M = (W, R, V) is any
Kripke model where R is transitive and euclidean. Suppose wy € W and
wp = OX;-0Y;-0P. Thus there exists some world w' € W with wgRw'
and w' = —=P. Suppose Y = {Q1,Q2,--,Qn}, n > 1. Thus there exist
(not necessarily distinct) worlds wy,ws, - - -, w, such that wyRw; and w; =
=Q;, for 1 < i < n. Since R is euclidean, w' Rw' and w’ Rw; for each i. The
first gives w' = —0OP, and the second gives w' = -0Q);, 1 < i < n. Hence
w' E —P;-0P;-0Y. If Y is empty then we just get w' | —P;-0P.
Now choose any arbitrary world w” such that w' Rw' (there is at least one
since w' is a reflexive world). By transitivity of R, woRw", hence w" |= X.
Since w' was an arbitrary successor for w' this holds for all successors of
w'. Hence w' E OX as well giving w' = 0X; -P;-0P;-0Y.

|

4.14.3 Invertibility Again

Before moving on to completeness, we return to the relationship between
static rules and invertible rules.

Lemma 4.14.4. For every CL, the static rules of CL, except (6), are
invertible in CL.

Proof: We have to extend the proof of Lemma 4.7.1 to each CL. We
consider only the case of CKT since the proofs for other calculi are similar.
The main point is to highlight the need for copying the principal formula
OP of the (T') rule into the denominator.

Proof for CKT: As stated already, the induction argument requires
slight modifications to our CL-tableaux: we assume that all applications of
the rule (L) are restricted to atomic formulae since every closed CL-tableau
can be extended to meet this condition. The rule (#) interferes with the
induction argument so we proceed in two steps. We prove the lemma for
the calculus CKAT in which the (K) and (6) rules are replaced by the rule
(K#). We then leave it to the reader to prove that a finite set X has a

Tableau Methods for Modal and Temporal Logics 35

closed CKT-tableau iff it has a closed CK8T-tableau but give some hints
at the end of the proof.

The assumption is that we are given a closed CKfT-tableau for some
set X that matches the numerator AN of a static rule (p) of CKAT; that
is, (p) is one of (A), (V), (=) and (T'). Our task is to provide a closed
CK6OT-tableau for the appropriate instance of the denominators of (p).

We again proceed by induction on the length of the given closed CK#T-
tableau for X. The base case for the induction proof is when the length of
the given closed CK#T-tableau for X is 1; and the argument of Lemma 4.7.1
suffices. The induction hypothesis is that the lemma holds for all closed
CK6T-tableaux of lengths less than n. Suppose now that the given closed
CK60T-tableau for X is of length n. We argue by cases, but only give the
case (p) = (T) in detail since the cases for the static CPC rules are similar.

(p) = (T) The set X of the given closed CK#T-tableau of length n is of the
form N = (Z;0P) and we have to provide a closed CKfT-tableau
for (Z;0P; P), the denominator corresponding to (p) = (T).
Consider the first rule application (7) in the given closed CK#T-
tableau for (Z;OP). If OP is not the principal formula A of (1) then
there are two subcases:

(i) If (1) is a static (logical) rule of CKAT then the denominators

of (1) are of the form (Z;0P), 1 < i < 2, since A must be
some formula from Z. The given CKAT-tableau for (Z; OP) is
closed, so each (Z!;0P), 1 <4 < 2, must have a closed CK#T-
tableau of length less than n. Then, by the induction hypothesis,
there are closed CKAT-tableaux of length less than n for each
(Z:0P;P), 1<i<2.
If we now start a separate CK§T-tableau for (Z; OP; P) and use
(1) with the same A € Z as the principal formula, we obtain the
set (Z];0P; P). Since we already have closed CK#T-tableaux
for these sets, we have a closed CKAT-tableau for (Z;0P; P), as
desired. It is crucial that the length of the new CKéT-tableau
is also n.

(i) If () is (K@) then (Z;OP) is of the form (Y;0OW;-0Q;0OP)
and the denominator of () is (W;-Q; P). Furthermore, the
CK#T-tableau for (W;—Q; P) is closed.

In this subcase, (Z; OP; P) is of the form (Y; OW; -0Q; OP; P).
If we start a new CKAT-tableau for the set (Y; OW; -0Q; OP; P),
then we can obtain the same set (W;—Q; P) using (K#6). Since
we already have a closed CKfT-tableau for (W;—Q); P) this is
a closed CK#T-tableau for (Z; OP; P), also of length n. This is
the closed CK#T-tableau (of length n) we had to provide.

If OP is the principal formula of (7) then (7) = (T) and (7) has a de-

nominator (Z; OP; P). Furthermore, the CK6T-tableau for (Z; OP; P)

36 Rajeev Goré

closes. But this is exactly the closed CK#T-tableau we had to pro-
vide.

(p) = (N)y (p) = (V), (p) = (—): Similar to above.

In order to lift this proof to CK'T we have to show that X has a closed
CKT-tableau iff it has a closed CK#T-tableau. A closed CK#T-tableau
can be converted to a closed CKT-tableau simply by replacing the rule
(K8) with the appropriate application of (6) immediately followed by an
application of (K), see Section 4.6. Conversely, a closed CK'T-tableau can
be converted to a closed CK#T-tableau by first moving every application
of (8) so that it immediately precedes an application of (K), and then
replacing these pairs by an application of (K#). [|

In Example 4.14.1 we saw the importance of copying the principal for-
mula of the (T') rule into its denominator. We can now explain this in
more proof-theoretic terms: the rule (7') is invertible in CK'T, but the rule
(T") is not invertible in CK'T’. To see that (T") is not invertible in CKT'
consider the set (—=Op; Op):

- this set as the numerator of (T") has a corresponding denominator
(=Bp: p),

- (—Op; Op) has a closed CKT'-tableau, just apply the (K) rule once,

- but (=Op; p) has no closed CKT'-tableau (try it).

The curious reader may be wondering why the proof of Lemma 4.14.4
fails for CKT'. In the above example, N' = (=Op;Op) and (1) is the
transitional rule (K). If we had used CKAT' it would be (K#), so we en-
ter case (ii) of the proof with a known closed CKOT'-tableau for (—p;p).
Our task is to provide a closed CKT'-tableau for D = (—Op;p), the de-
nominator of the (T") rule corresponding to N. But if we start a new
CKHAT'-tableau for (-Op; p), we cannot use the (K6) rule to obtain the set

(—=p;p). In fact, there is no rule which allows us to do this in CK6T".

4.14.4 Completeness

As we saw in Subsection 4.11 (page 25) , proving completeness boils down
to proving the following: if X is a finite set of formulae and no CL-tableau
for X is closed then there is an L-model for X on an L-frame (W, R).

We call a formula =OP an eventuality since it entails that eventually
=P must hold. A world w is said to fulfill an eventuality ~OP when w =
—P. A sequence of worlds wy Rws R - - - Rw,, is said to fulfill an eventuality
—0OP when w; |= =P for some w; in the sequence.

As expected we shall associate sets of formulae with possible worlds and
use an explicit immediate successor relation < from which we will obtain
R. We abuse notation slightly by using w, w' and w; to sometimes denote
worlds in a model, and sometimes to denote sets of formulae (in a model
under construction). Thus, a set w is said to fulfill an eventuality —OP

Tableau Methods for Modal and Temporal Logics 37

when =P € w. A sequence w; < wy < --- < wy, of sets is said to fulfill an
eventuality =0OP when —P € w; for some w; in the sequence.

Recall that a set X is CL-saturated iff it is CL-consistent and closed
with respect to the static rules of CL (excluding (f)). We now have to
check that the X3, defined in Figure 7 on page 29 allow (the Saturation)
Lemma 4.11.1 (page 25) to go through.

Lemma 4.14.5. If there is a closed CL-tableau for X then there is a closed
CL-tableau for X with all nodes in the finite set X .

Proof: Obvious from the fact that all rules for CL operate with subsets
of X5y, only. [|

Lemma 4.14.6. For each CL-consistent X there is an effective procedure
to construct some finite CL-saturated X* with X C X* C X7 .

Proof: Same as on page 25. [|

A set X is subformula-complete if P € Sf(X) implies either P € X
or =P € X. Some of the completeness proofs make extensive use of the
following lemma.

Lemma 4.14.7 (sfc). If X is closed with respect to (the static rules) {

(l)’ (_')’ (/\)7 (V)’ (sfc) }7 OT{ (l)’ (_')’ (/\)7 (V)’ (sfc), (TQ) } OT’{
(L), (=), (A), (V), (T), (sfcT) } then X is subformula-complete.

Proof: The first case is obvious. The (sfcT') rule is just a special case
of (sfe) and always appears with (7). Thus, the lemma also holds if we
have both (sfcT) and (T) instead of (sfc). |

Theorem 4.14.8 (Completeness). If X is a finite set of formulae and
X is CL-consistent then there is an L-model for X on a finite L-frame.

Proof Outline: For each CL we give a way to construct a finite model
graph (Wy, R) for X. Recall that a model graph for some finite fixed set
of formulae X is a finite L-frame (Wy, R) such that all w € Wy are CL-
saturated sets with w C Xp; and

(i) X C wp for some wqy € Wpy;
(ii) if -OP € w then there exists some w' € Wy with wRw' and -P € w';
(iii) if wRw' and OP € w then P € w'.

The first step is to create a CL-saturated wqy from X with X C wy C
Xy, This is possible via Lemma 4.11.1 (page 25). So wq, and in general
w (possibly annotated) stands for a finite CL-saturated set of formulae
(that corresponds to a world of Wy). Since wg is CL-consistent, we know
that no CL-tableau for wq closes. We use this fact to construct a graph
of CL-saturated worlds, always bearing in mind that the resulting model
graph must be based on an L-frame. The construction is a meta-level one
since we are free to inspect all CL-tableaux for wg, choosing nodes at will,
since all such CL-tableaux are open. We use a successor relation < while

38 Rajeev Goré

building this graph and then form R from <. Also, if w is a set of formulae
in this construction then w" = {P : OP € w}.

By Lemma 4.11.2 (page 26), wo = X under the truth valuation ¥ : p —
{w e Wy : p€ w}, giving an L-model for X at wy as desired.

Proof for CK: If no =0OP occurs in wg then (W, R) = ({wo}, D) is the
desired model graph since this is a K-frame and (i)-(iii) are satisfied.

Otherwise, let 1, @2, - - -, @, be all the formulae such that -0Q); € wg.
Since wq is CK-consistent, no application of (f) can lead to a closed CK-
tableau; in particular, the set {0A4 : OA € wo} U {-0Q;} must be CK-
consistent for each 1 < i < m. Each of these sets matches the numerator of
(K) so (K) is applicable to each of them. But we know that an application
of (K) to any of these sets could not have led to a closed CK-tableau either,
so each of their respective denominators (wg'; =Q;) fori = 1,-- -, m must be
CK-consistent (by (§) and (K)). Note that these nodes come from different
CK-tableaux.

Create a CK-saturated v; C X5 from each (wg'; ~Q;) fori=1,---,m,
by using the static rules, and (the Saturation) Lemma 4.11.1. Put wg < v;
fori =1,---,m, giving the nodes of level 1. Continue to create the nodes
of further levels using (f) and (K) as above.

Note that the denominator of the (K) rule has a maximum modal degree
which is strictly less than that of its numerator, and that the CK-saturation
process does not increase the maximum modal degree. Hence a path wgy <
wy < wsy - - - must terminate (without cycles) because each successor created
by (K) has a maximum modal degree strictly lower than that of the parent
node.

Let R be < and let Wy consist of all the nodes created in this process,
then (Wy, R) is a finite, irreflexive and intransitive tree and a model graph
for X. Hence by Lemma 4.11.2, there is a K-model for X with root wy.

Proof for CT: If no -OP occurs in wg then (W, R) = ({wo}, {(wo,wo)})
is the desired model graph since (i)-(iii) are satisfied. Otherwise, let Q1,
Q2, -+, Q. be all the formulae such that —0Q; € wg and —-Q; € wq.
Proceed as for CK, noting that CT-saturation now involves (T') as well,
but ignoring the successor for -0Q € w if =Q) € w. Let R be the reflexive
closure of <; that is, put wRw for all worlds in the tree and also put wRw’
if w < w'. Termination is as for CK.

Proof for CD: If no ~OP occurs in wq then ({wo}, {(wg,wo)}) is the
desired model graph since (i)-(iii) are satisfied. Otherwise, proceed as for
CK, except that CD-saturation now involves (D) as well, and let W,,q4
be the nodes of (the resulting tree) Wy that have no successors. For each
w,w' € Wy, put wRw' if w < w' and put wRw if w € We,q. We have
to show that (i)-(iii) are satisfied by this R. The only interesting case is
to show that OP € w implies P € w for w € W,,q. This is true since
w € Wenq implies that w contains no OP, as otherwise, w would contain
—O=P by (D) and hence would have a successor node by (K), contradicting

Tableau Methods for Modal and Temporal Logics 39

that w € W,,4. Termination is as for CK.

Proof for CD’: If no -OQ occurs in wg and no OP occurs in wy then
({wo}, {(wo,wp)}) is the desired model graph. Otherwise, let Z = {Q1, - - -,
Qm} be all the formulae such that —-0Q; € wy, 1 < i < m, and let
Y ={P, P, -+, P,} be all the formulae such that OP; € wp, 1 < j < n.
We know m +n > 1. Since wy is CD'-consistent each —Q;;Y is CD'-
consistent, for i = 1,2,---,m by (f) and (K D). Also, YV itself is CD'-
consistent by (f) and (K D). If Z is non-empty then create a ();-successor
v; using (K D) containing (—=Q;;Y") for each Q;. But if Z is empty then
create a single P-successor y using (K D) containing Y. Put wq < v; for
each i = 1---m, or wy < y, as the case may be, giving the node(s) of level
one. Continuing in this way obtain the node(s) of level two etc. Again,
a sequence wy < w7 < ws--- must terminate since (K D) reduces the
maximum modal degree and CD’-saturation does not increase it. As in the
first proof for CD put wRw if w € We,q and put wRw' if w < w'. Property
(iii) holds for w € W,,4 as end nodes do not contain any OP, as otherwise,
w would have a successor by (K D), contradicting that w € Wena.

Proof for CK4: If no —~OP occurs in wg then ({wg},0) is the desired
model graph since it is an K4-frame and (i)-(iii) are satisfied. Otherwise,
let Q1, Q2, -+, Q. be all the formulae such that -0Q); € wy.

We can form the sets {04 : OA € wo} U-0OQ,; for 1 < i < m, by (),
each of which is a numerator for (K4). Hence by (K4) each denominator
X, ={A4: 04 € wp} U{OA : OA € wo} U-Q; for 1 <i < m, is also
CK4-consistent.

Clearly for each X; we can find some CK4-saturated v; O X;, with
v; C Xfpgq Put wg < w;, i =1,---,m and call v; the ();-successor of wyq.
These are the immediate successors of wg. Now repeat the construction
with each v; thus obtaining the nodes of level 2 and so on.

In general, the above construction of (Wy, <) runs ad infinitum. How-
ever, since w € Wy implies w C Xp4, (a finite set), a sequence wy < w; <

- in (W, <) either terminates, or a node repeats. If in the latter case
n > m are minimal with w, = w,, we stop the construction and identify
wy, and wy, in (Wy, <) thus obtaining a circle instead of an infinite path.
One readily confirms that (Wy, R) is a model graph for X where R is the
transitive closure of < . It is obvious that clusters in (Wp, R) form a tree.

Proof for CK4D: If no -OP occurs in wqy then ({wo}, {(wo,wo)})
is the desired model graph. Otherwise, proceed as for CK4, except that
CK4D-saturation also involves (D). A sequence either terminates or cycles
since Xjp4p 18 finite. Put w < w for all w € W,,q and let R be the
transitive closure of <. Property (iii) is satisfied by w € We,q just as in
the proof for CD.

Proof for CK45: Suppose X is CK45-consistent and create a CK45-
saturated superset wg C Xy 4 of X as usual. If no -0OP occurs in wy
then ({wp}, () is the desired model graph since (i)-(iii) are satisfied.

40 Rajeev Goré

Otherwise let Q;, @2, - -, @ be all the formulae such that =0OQ; € wg
and create a ();-successor for each @); using (6) and the (45) rule. Continue
construction of one such sequence S = wg < w; < --- always choosing a
successor that is new to the current sequence. Note that a successor may
be new either because it fulfills an eventuality that is not fulfilled by the
current sequence, or because it contains formulae that do not appear in
previous nodes that fulfill the same eventuality. Since X, is finite, we
must sooner or later come to a node w,, such that the sequence S = wg <
wy < --- < w,, already contains all the successors of w,,. That is, it is not
possible to choose a new successor.

Now, the (K45) rule guarantees that if -OP € wg then =OP € w;,
i > 0, so one of the successors of w,, must fulfill =0OP, and furthermore,
this successor must already appear in the sequence. However, there is no
guarantee that this successor is w;. So, choose the successor w, of w,,
that fulfills some eventuality in w,,, but that appears earliest in S and put
Wm < W, giving S = wg < wy < -+ < W, < -+ < Wy < w,. There are
two cases to consider depending on whether z = 0 or z # 0.

Case 1: If x = 0, put R as the reflexive, transitive and symmetric closure

of < over Wy = {wp, w1, -, wn}. This gives a frame (Wy, R) which is a
nondegenerate cluster.
Case 2: If # 0, put Wy = {wo, We, Wet1, -, W}, discarding w1, we,

-+, w,_1, and let R’ be the reflexive, transitive and symmetric closure of <
over Wy \ {wo}. That is, R' = {(w;,w;)|w; € Wy, w; € Wy,i > z,j > z}.
Now put R" = R' U {(wg,w,)} and let R be the transitive closure of R".
The frame (Wy, R) now consists of a degenerate cluster wy followed by a
nondegenerate cluster w, Rw, 1R -- - Rw,, Rw, where R is transitive and
euclidean.

Property (i) is satisfied by (Wp, R) by construction. We show that (ii)
and (iii) are satisfied as follows.

Proof of (ii): The (45) rule also carries all eventualities from the nu-
merator to the denominator, including the one it fulfills. Therefore, for all
w; € Wy we have: -OP € w; implies -OP € w,,. But we stopped the
construction at w,, because no new (Q;-successors for w,, could be found.
Hence there is a @;-successor for each eventuality of w,,. Since we have
a cycle, and eventualities cannot disappear, these are all the eventualities
that appear in the cycle. Furthermore, we chose w, to be the successor of
w,, that was earliest in the sequence S. Hence all of the eventualities of
wy, are fulfilled by the sequence w, R - -+ Rw,,. All the eventualities of wy
are also in w,,, hence (ii) holds.

Proof of (iii): The (45) rule carries all formulae of the form OP from
its numerator to its denominator. Hence OP € w and w < v implies that
P € vand OP € v. But we know that w, < --- < w,, < w, forms a cycle,
hence (iii) holds as well.

Proof for CK45D: Based on the previous proof. If the (45D) rule is

Tableau Methods for Modal and Temporal Logics 41

ever used with no eventualities present then this can only happen when wyq
contains no eventualities. For if wy contained an eventuality then so would
all successors.

So if wg contains no eventualities and no formulae of the form OP then
({wo}, {(wo,wo)}) is the desired model graph. This gives a frame which is
a simple (nondegenerate) cluster.

Otherwise, let @1, - - -, Qr be all the formulae such that -0O@; € wg and
let Py,---, Py, be all the formulae such that OP; € wg. Create a successor
wy for wg using (45D) for some @; or P; and continue creating successors
using (45D), always choosing a successor new to the sequence until no new
successors are possible. Choose w, as the successor nearest to wy giving a
cycle wg < -+ < wy < -+ < Wy, < w, and discard wy, wa, - -wz_1 as in
the previous proof.

Form R as in the proof for CK45 where 2z = 0 gives a frame which
is a simple cluster and z # 0 gives a frame which is a degenerate cluster
followed by a nondegenerate cluster.

Properties (i)-(iii) can be proved in a similar manner.

Note that the requirement to continually choose a new successor is tan-
tamount to following an infinite path in Shvarts’ formulation [Shv89]. That
is, the inevitable cycle that we encounter constitutes an infinite branch if
it is unfolded.

Proof for CS4: If no =OP occurs in wqy then ({wo}, {(wo,wo)}) is
the desired model graph. Otherwise proceed as for CK4 except create
a successor for eventuality ~OP € w only if =P ¢ w, and use (S4) to
create successors instead of (K4). Then, a successor for w will be based on
{0A :0A € w} U—P. Let R be the reflexive and transitive closure of <
(instead of the transitive closure of <). We can add reflexivity because of
closure with respect to (7).

Proof for CS577: see page 48.

Proof for CtK45: Suppose X is C'K45-consistent and create a CTK45-
saturated superset wg with X C wg C XETK45 as usual. If no -OP occurs
in wy then ({wg},) is the desired model graph since (i)-(iii) are satisfied.

Otherwise, let Q;, Q2, - - -, @ be all the formulae such that —0Q); € wy
and create a ();-successor v; for each @); using the (45) rule. This gives all
the nodes of level 1, so put wg < v;, for each i = 1---m, and stop!

Consider any two nodes v; and v; with ¢ # j. Using the facts that each
node is subformula-complete and there are no building up rules, we show
that

(a) OP € v; implies OP € wp implies P € v;, P € v; and OP € v;;
(b) =OP € wv; implies =OP € wq implies there exists a v such that
—-P € vy.

Proof of (a): Suppose OP € v;. Then OP € Sf(wq) since there are no
building up rules, and so OP € wy or =OP € wq since wy is subformula-

42 Rajeev Goré

complete. If =OP € wy then ~OP € v; by (45), contradicting the CTK45-
consistency of v;. Hence OP € wy. Note that this holds only because the
(45) rule carries ~OP into its denominator along with =0OY".

Proof of (b): As for (a) except uniformly replace =0OP by OP and vice-
versa. The crux of the proof is that (45) preserves all formulae of the form
OP and —OP.

Hence we can put v; Rv; Rv; for all v; and v; giving a reflexive, transitive
and symmetric nondegenerate cluster. If we also put wqgRwv; for all i =
1---m, and take the transitive closure, then we obtain a degenerate cluster
followed by a nondegenerate cluster. If some vy = wg then we obtain a
lone nondegenerate cluster. In each case the frame is a K45-frame.

In either case, (i)-(iii) are satisfied giving a model graph and hence a
K45-model for X.

Proof for C'K45D: Similar to the proofs for C'K45 and CKD.

Proof for C'KB4: Suppose no C'KB4-tableau for X is closed. Con-
struct a CtKB4-saturated wgy from X as usual. If no =OP occurs in wy
then ({wp}, ®) is the desired model graph as (i)-(iii) are satisfied. Other-
wise, create a successor v; for each eventuality in wg using (6) and (K4)
giving the nodes of level one, put wy < wv; and stop. Since wy contains
at least one eventuality, wg must be closed with respect to (T%), hence
0@ € wp implies @ € wg. We show that

(a) —OP € v; implies =OP € wy; and
(b) OP € v; implies OP € wy

from which properties (i)-(iii) follow.

(a) Suppose —=OP € v; and =OP ¢ wy. The only super-formulae are of
the form OA hence -OP € Sf(wg) or -OP € =Sf(wy) whence OP €
Sf(wg). Since wq is subformula-complete we must have OP € wqg and
hence OP € v; by (K4); contradiction.

(b) Suppose OP € v;.

(i) If OP € Sf(wp) then OP € wg or 0P € wy. The latter implies
O-0P € wq by (5) which implies =OP € wv;; contradiction.
Hence if OP € v; and OP € Sf(wg) then OP € wy whence
P € wv; by (K4) and P € wg by (To).

(ii) f OP ¢ Sf(wg) then OP = O-0(Q for some eventuality =0OQ of
v;. Hence =OQ € v;. By (a) we then have =0@ € wy, which by
(5) gives O-0Q € wy. But O-0¢) is OP, hence OP € Sf(wp);
contradiction. Hence case OP ¢ Sf(wp) is impossible.

Now let R be the reflexive, transitive and symmetric closure of <. Note
that reflexivity for wg comes from saturation with respect to (To) and
reflexivity for v; comes from property (b) via (K4). Thus when wy contains
at least one eventuality, we get an S5-frame (showing that K4B is “almost”
S5).

Tableau Methods for Modal and Temporal Logics 43

Proof for C'S4: If no ~OP occurs in wy then ({wo}, {(wo,wq)}) is
the desired model graph. Otherwise, let @1, Qs, - - -, @ be all the formulae
such that -0Q); € wy and =Q); & wy. Create a @Q;-successor v; of level 1 for
each @Q; using the (f) and (S4) rules, and continue in this way to obtain
the nodes of level 2 and so on with the following termination condition:

(*) ifwp < wy < -+ < w;—1 < w; is a path in this construction and i > 1
is the least index such that OA € w; implies OA € w;_1, then put
w; < w;—1 giving a cycle on this path and stop!

First of all, this termination condition is satisfactory since (S4) ensures
that OA € w; implies OA € w;4q so that O-formulae accumulate and we
eventually run out of new O-formulae since XETS4 is finite.

Second, note that CS4 contains (s fcT) and hence each w; is subformula-
complete. Since there are no building up rules, the only new formulae that
may appear by saturating with the (sfeT") rules are the negations of sub-
formulae from the predecessor. Therefore, each w,+1 C Sf(w,) where
w = Sf(w) U-=Sf(w).

Let R be the reflexive and transitive closure of <. It is obvious that
clusters of R form a tree. To prove that (W, R) is a model graph for X
we have to prove (i)-(iii).

(i) Clearly (i) holds by construction;

(ii) Suppose -OP € w; where w; is some arbitrary world of some arbi-
trary path of our construction. If the termination condition was not
applied to wj, then either =P € w; or w; has a P-successor fulfilling
—0OP by (S4) and so (ii) is satisfied. That is (ii) holds for any world
to which the termination condition was not applied.

If the termination condition was applied to w;, then it could not have
been applied to w;_;. Hence (ii) holds for w;_;. So all we have to
show is that =0OP € w;_; because, in this case, (ii) would then hold
for w; from the fact that w; Rw;_; and the transitivity of R.

Suppose to the contrary that —OP ¢ w;_q1. Since -OP € w; by
supposition, we must have OP € Sf(w;_1) by the second point we
noted above. Then OP € w;_; by (the subformula-completeness)
Lemma 4.14.7, and OP € w; by (S4) contradicting the CTS4-consistency
of w; since =OP € w;. Hence (ii) also holds.

(iii) Suppose OP € w;. If (*) was not applied to w; then (iii) holds as for
CS4 by (T) since (S4) preserves O-formulae. If (*) was applied to w;
then (iii) would follow from OP € w;_; by (S4) and (T'). But this is
exactly what (*) guarantees. Hence (iii) holds as well.

Proof for C'B: If no =0OP occurs in wq then ({wg}, {(wo,wo)}) is the
desired model graph as (i)-(iii) are satisfied. Otherwise, let Q1,Q2, -, Qm
be all the formulae such that =0Q; € wy and —~Q; & wy. Since wy is CTB-
saturated, wy is subformula-complete, hence Q; € wg for each @;. Create

44 Rajeev Goré

a ;-successor for each @); using (f) and (K) giving the nodes of level
one. Repeat this procedure to give the nodes of level two and so on. For
any node w in this construction let s(w) be the number of formulae with
P € wand -OP € w. Let t(w) = s(w) + mdeg(w). To quote Rautenberg
“It is easily seen that w < v — t(v) < t(w), so that Wy is finite.”, but
as shown in [Gor92] Rautenberg’s definition of mdeg is not sufficient. We
accept Rautenberg’s claim for the moment and return to this issue after
completing the model construction.

Let R be the reflexive and symmetric closure of < so that (W, R) is a
B-frame. We have to show that (i)-(iii) hold. The only difficulty is to show
symmetry: that is, OP € w;y; and w; < w;41 implies P € w;. So suppose
that w; < w;41 and OP € w; 1. We have to show that P € w;. There are
two cases: OP € Sf(w;) or OP ¢ Sf(w;).

Case 1: If OP € Sf(w;), then OP € w; or ~OP € w; since w; is
subformula-complete. If OP € w; then P € w; by (T) and we are done.
Otherwise, if -OP € w; and P ¢ w; then =P € w; and O-0P € w; by (B)
and so —~OP € w;4; contradicting the consistency of w; 1 since OP € w;41
by supposition. Hence =OP € w; also implies that P € w;.

Case 2: If OP ¢ Sf(w;) then OP = O-0¢ for some —0Q € w;t1
and =@ € w;y1. Hence —0Q € Sf(w;) or =0Q € —Sf(w;) whence OQ €
Sf(w;). By subformula-completeness we then have OQ € w; or —0Q € w;.
If 0OQ € w;, then @ € w; 1 contradicting the C'B-consistency of w;y1 since
=@ € wiy1. Hence —OQ € w;. But then P € w; since P is =0 and we
are done.

Now, we still have to show that this construction terminates. The crux
of the matter is to use a definition of a metric mdg say, which is like
our mdeg but where mdg(A A B) = mdg(A) + mdg(B) rather than maz{
mdg(A), mdg(B)} [Mas95a]. Similarly, for a set X, we use mdg(X) =
¥ aexmdg(A) rather than maxz{mdg(A) | A € X}. Then, a rather tedious
counting exercise, which we omit for brevity, suffices to show that if w < v
then #(v) < t(w), which is enough to show termination. We have retained
our version of mdeg because it is useful for other purposes.

Proof for C'S5: If no =0OP occurs in wy then ({wo}, {(wo, we)}) is the
desired model graph as (i)-(iii) are satisfied. Otherwise, let Q1,Q2, -, @m
be all the formulae such that =0Q; € wq. Since wy is CTS5-saturated,
O0-0@); € wq for each @; by (5). Create a @);-successor for each @); using
(f) and (S4) giving the nodes v; of level one, put wg < wv;, for each i =
1,2,---,m and stop! Let R be the reflexive, transitive and symmetric
closure of < . By construction, (Wy, R) is an S5-frame. We have to show
that (i)-(iii) hold.

For any k, with 1 < k < m, and wg < v, we show that:

(a) ~OP € vy implies ~O0P € wp; and
(b) OP € vy, implies OP € wq

Tableau Methods for Modal and Temporal Logics 45

from which (i)-(iii) follow.

(a) Suppose wy < vg, "OP € v, and =OP & wy. Since ~OP € Sf(wy),
and wq is subformula-complete, we have OP € wq. But then, by (S4),
OP € vg, contradicting the CtS5-consistency of vj,. Hence =OP € wy.

(b) Suppose wg < v and OP € vy, then OP € Sf(wp) or OP & Sf(wo).

(b1) If OP € Sf(wo) and OP ¢ wg, then -OP € wy since wy is
subformula-complete. Then O-0OP € wy by (5) and =OP € v by (S4),
contradicting the CTS5-consistency of v;. Hence, if OP € v, and OP €
Sf(wg) then OP € wy.

(b2) If OP ¢ Sf(wg) then OP = 0O-0Q for some 0@ € vy since
this is the only way that formulae from outside Sf(wp) can appear in vy.
By (a), =0@Q € vy implies =0@Q € wy which by (5) implies O-0Q € wy.
Since 0-0¢) is OP, we have OP € wy. But this is absurd since it implies
that OP € Sf(wg) and our supposition was that OP ¢ Sf(wg). Hence the
subcase (b2) cannot occur.

Proof for C'S5': For completeness suppose X is CS5'-consistent and
create a C1S5'-saturated superset wy with X C wg C Xc*ss’ as usual.

If no —=OP occurs in wy then ({wo}, {(wo,wo)}) is the desired model
graph. Otherwise, let Q1, @2, - -, @, be all the formulae such that -0Q); €
wo and =Q); & wg. Create a @;-successor v; of level 1 for each @; using the
(S5) rule and stop!

Let Wy = {wo, v1,v2, - -, vm }. Consider any two nodes v; and v; of level
1 so that wy < v; and wy < v; with i # j. We claim that:

(a) OP € v; implies OP € wyp implies OP € v;; and

(b) =OP € wv; implies —~OP € wq implies there exists a w € Wy with
—-P € w.

Proof of (a): Suppose OP € v;, then P € v; by (T). Also, OP €
Sf(wp) as there are no building up rules, hence OP € wg or =OP € wy by
(sfcT). If =OP € wy then either =P € v; or -OP € v; by (S5). The first
contradicts the CTSS’—consistency of v; since P € v; and so does the second
since OP € v;. Hence OP € wy. And then OP € v; by (S5) and P € v; by
(T).

Proof of (b): Suppose -OP € v;. Then as there are no building up
rules, -OP € Sf(wp). Hence OP € wy or =OP € wy since wy is subformula-
complete. If OP € wy then OP € v; by (S5), contradicting the CTS5'-
consistency of v; since =OP € v; by supposition. Hence =OP € wq. And
then either =P € wyq, or there is some vy such that =P € v by (S5). That
is, the w we seek is either wy itself, or one of the nodes of level 1.

Putting R equal to the reflexive, symmetric and transitive closure of <
gives an S5-model graph since (i)-(iii) follow from (a) and (b). [|

46 Rajeev Goré

4.14.5 Bibliographic Remarks and Discussion

The cut-free calculi CK, CT, CD, CD’, CK4, CK4D and CS4 can all be
traced back to Fitting [Fit73] via Fitting [Fit83] although our presentation
is based on the work of Hintikka [Hin55] and Rautenberg [Rau83]. The
system CK4D is an obvious extension of Rautenberg’s system CD, and
CD' is lifted straight from Fitting [Fit83]. The advantage of CD’ is that
it has the subformula property whereas CD does not. Clearly, the (K4)
rule can be extended to handle seriality as done in the (K D) rule to give a
(K4D) rule, but we omit details. The tableau systems CK45 and CK45D
are based on the work of Shvarts [Shv89] (also known as Schwarz), while
CK4B and the (Ts) rule come from the work of Amerbauer [Ame93].

Some of the desired properties of R can be obtained in two different
ways. For example, Rautenberg encodes the seriality of D-frames by the
static (D) rule which adds an eventuality © P for every formula of the form
OP. The transitional (K) rule then fulfills that eventuality. On the other
hand Shvarts [Shv89] and Fitting [Fit83] use the transitional rule (K D).
Similarly, the (S5) transitional rule due to Fitting builds in the effect of
Rautenberg’s static rule (5) by carrying -OP and —=0OY from the numerator
into the denominator.

Rautenberg [Rau83] does not explicitly distinguish transitional and
static modal rules. Hence his rules for (T"), (D), (B), (sf¢) and (sfeT)
do not carry all the numerator formulae into their denominators. For ex-
ample, Rautenberg’s (T) rule is shown below left whereas ours is shown
below right:

bl

X;0P (T X;O0P
X; P X;0P; P

Thus contraction is implicit in his systems and as we saw in Example 4.14.1
(page 31), contraction is necessary for some modal systems.

The C'S4 system is based on ideas of Hanson [Han66] where he gives
Kripke-like tableau systems for S4 and S5 using a form of (sfcT) as early
as 1966. The tableau system CTS4 is not exactly Hanson’s system but
the ideas are his. The advantage of adding (sfcT) is that the termination
condition in the completeness proof is much easier to check than the one
for CS4 where we have to look at all predecessors in order to detect a cycle.
However, the overheads associated with any sort of cut rule are significant,
and a more detailed analysis shows that CTS4 performs much useless work.
Hanson also suggests a tableau system for S5 along these lines, but in it
he uses a rule which explicitly adds a formula to the parent node to obtain
symmetry. This is forbidden for our tableau systems since we cannot return
to previous nodes.

The tableau systems of Heuerding et al [HSZ] are further refinements
of our tableau systems which allow for a more efficient check for cyclic

Tableau Methods for Modal and Temporal Logics 47

branches. However, they are nonstandard in that the denominators and
numerators carry extra sets to store the necessary information.

Notice that the effects of (sfcT) on wg when R is to be transitive and
there are no building up rules like (5) is to flush out all the eventualities
that could possibly appear in any successor. That is, if =0OP is going to
appear in a successor, it must be in Sf(wg). But then it must be in wq since
otherwise by (sfcT'), we would have OP € wy contradicting the appearance
of mOP in any consistent successor. Hence the number of eventualities
never increases as all the eventualities that will ever appear are already in
wq. Indeed this fact may actually make things worse since we will have to
fulfill =OP at the first level of the model construction as well as at deeper
levels where —OP reappears. The refinements of Heuerding et al [HSZ]
may be useful in such cases since one of their ideas addresses exactly this
point.

The idea behind (sfc¢) and (sfcT') is to put extra information into a
node before leaving it for good. That is, once we leave a node in our tableau
procedure, we can never return to it. Also, the transitional rules usually
lose information in the transition from the numerator to the denominator.
The (sfc) and (sfeT') rules are used to make up for this “destructive”
aspect of our transitional rules.

The completeness proofs in this section go through unchanged [Mas95a]
if we replace the (sfc) and (sfcT) rules by the “modal cut” rule (mc) shown
below:

(me) X where OP € Sf(X)

OP; X | -OP; X

Also, many of the rule combinations can be further refined. For exam-
ple, the (B) rule subsumes the modal aspects of the (sfcT) rule so that
only the non-modal part is necessary in CTB; see also [Ame93] for further
refinements.

The tableau systems C'B and CtS5 are due to Rautenberg while CtS5/,
C'K45 and CTK45D are an amalgamation of ideas of Fitting, Hanson and
Rautenberg. Note that in the latter, we add (sfc), not (sfeT') since K45-
frames and K45-frames are not reflexive. The advantage over the cut-free
counterparts CK45 and CK45D is that the completeness proofs, and hence
the satisfiability tests based upon them, are much simpler. Note that C'S5
does not have the subformula property, but C'S5’ does.

Fitting [Fit83, page 201] gives tableau calculi for the symmetric logics
KB, KDB, KTB, and S5 using a semi-analytic cut rule (sac), which
he attributes to Osamu Sonabe. The (sac) rule is allowed to cut on sub-
formulae of formulae that are in the numerator, and also on superformulae
obtained by repeatedly prefixing modalities O, =0, & and =<, to these
subformulae. Since the superformulae are not bounded, as they are in

48 Rajeev Goré

Rautenberg’s systems, the semi-analytic cut rule cannot give a decision
procedure.

Fitting’s semi-analytic system for S5 is essentially CT + (S5) + (sac).
Fitting [Fit83, page 226] replaces the semi-analytic cut rule with a (static)
building up rule of the form

() X; P
T X.oP. P

and proves that his system CS5m = CT + (S5) + (m) is sound and (weakly)
complete with respect to S5-frames. But note that the (7) rule is not “once
off” since it can lead to an infinite chain A € w,0A € w,00A € w,---
so this system cannot give a decision procedure for S5 either. That is, we
have merely traded one non-analytic rule for another.

Fitting then proves the curious fact that a single formula A is an S5-
theorem if and only if a CS57n-tableau for {=A} closes, and furthermore,
that the (7) rule needs to be used only once at the beginning of the CS5x-
tableau to lift = A to -0OA [Fit83, page 229]. That is, the system CS57~
without the (7) rule is (weakly) complete for S5 in the sense that A is an
S5-theorem if and only if a CS57~ -tableau for {=0A} closes. Fitting gives
a completeness proof in terms of maximal consistent sets, but a constructive
completeness for this system is also easy as given below.

Completeness Proof for CS57~: Suppose no CS57 -tableau for
the singleton set {~OA} closes. Construct some CS57~ -saturated set wq
from —OA by applying all the non-structural static rules; obtaining wq =
{-0A}! Now construct a tree of <-successors as in the CS4 completeness
proof except that we use the transitional rule (S5) instead of (S4) to create
<-successors. Let R be the reflexive and transitive closure of < to obtain a
finite tree of finite clusters as in the CS4 case. Consider some final cluster
C of this tree. Since C' is final, any eventuality in any of its sets must be
fulfilled by some set of C itself, as otherwise, C' could not be final. But
note that the (S5) rule carries all its eventualities from its numerator into
its denominator. Thus, in this case, =0A is in every member of C, and
hence some set wy € C has {-0A4,-A} C wy. But a final cluster is also
symmetric, hence C is an S5-frame and hence an S5-model for {—A, -0A}
at w; under the usual valuation ¥(p) = {w : p € w}. This completes
the unusual proof for CS57~ that: if there is no closed CS57~-tableau for
{-0OA} then —A is S5-satisfiable. That is, if |=g5 A then kg5, -0A.

For the logics with a symmetric R we seem to need analytic cut, either
as (sfc) or as (sfeT'). The subformula property can be regained for some
logics by changing the transitional rules to carry more information from
the numerator to the denominator. But note that a building up rule seems
essential for CB, so not all the systems are amenable to this trick.

Tableau Methods for Modal and Temporal Logics 49

X7—||:|P
(R)
X;-O0P;-P | X;-0OP;0-0P;P
U;DX;—||:|P;—|DY
(S4F)
X:;-0OP
(54.2) ’ —0OP not starred

X;-0P;0-0P | X;-0P;0(-=0-0P)*

Fig. 8. Tableau rules for S4R, S4F and S4.2.

4.15 Modal Logics of Knowledge and Belief

In this section we give a brief overview of tableau systems for the modal
logics S4R., S4F and S4.2. These logics, together with the logics K45
and K45D, have proved useful as nonmonotonic modal logics where the
formula OA is read as “A is believed” or as “A is known” [Moo85], [Sch92,
Tru, Tru9l, ST92, MST91]. In these logics, the reflexivity axiom, OA — A,
is deliberately omitted on the grounds that believing A should not imply
that A is true. The logic K45D is another candidate for such logics of belief
because its extra axiom, OA — O A, which can be written as 04 — —0O-A,
encodes the intuition that “if A is believed then —A4 is not believed”.

Figure 8 shows the tableau rules we require. The tableau calculi we
consider are shown below:

Static Transitional

X*
CL Rules Rules CL
CS4R CPC, (T), (R) (S4) Sf-SFOX
cts4.2 CPC, (sfcT), (T), (54.2) (S4) Sf-SfOXigar

CIS4F CPC, (sfcT), (T), (S4.2) (S4F),(S4) Sf-SfOXjgar

The (S4F) rule is odd in that its left denominator is static whilst its
right denominator is transitional. The (54.2) rule is the only potentially
dangerous rule since its denominator contains a formula to which the rule
can be applied in an endless fashion. To forbid this the new formula is
marked with a star and the (54.2) rule is restricted to apply only to non-
starred formulae. All other rules must treat starred formula as if they were
non-starred.

The soundness and completeness of these calculi is proved in detail by

50 Rajeev Goré

Goré [Gor91]. Goré actually proves soundness and completeness with re-
spect to a class of finite frames, each of which is an L-frame as defined here.
Consequently, these logics are also characterised by the classes of finite-L-
frames shown in Figure 13. Note that the values of X3; are different from
those in [Gor91] but it is easy to see that the new ones are the correct ones
due to the effect of (sfcT).

Tableau systems for the logics K4.2 and K4.2G can be found in Amer-
bauer’s dissertation [Ame93].

Example 4.15.1. The formula ¢Op — OCp is an instance of the axiom
2, and hence is a theorem of S4.2. The following closed C'S4.2-tableau
for its negation (OOp A =O<Cp) which in primitive notation is (=O-0p) A
(—=O-0-p) illustrates the use of starred formulae.

Tableau Methods for Modal and Temporal Logics 51

(=8-0p) A (=8-0-p) (A)

—||:|—||:|p; —||:|—||:|—|p (542)

/

(54) —||:|—||:|p; —||:|—||:|—|p; D—||:|—||:|p

(T) |:|—|p7 D—||:|—||:|p

(S4) O—p; ~0O-0Op; O-0-0p

(—|—|) |:|—|p’ —|—||:|p; D—||:|—||:|p

(T) |:|—|p7 Dp, |:|—||:|—||:|p

(T) =p; O=p; Op; O-0-0p

(L) —p; O=p; p; Op; O-0-0p

L

T~

Dp7 D(—||:|—||:|—||:|p)* (T)

Op; (—O0-0-0p)*; O(-0-0-0p)x (S4)

Dp7 —|—||:|—||:|p; D(—||:|—||:|—||:|p)>k (—|—|)

Op; ~Op; O-0Op; I:I(—|I:|—||:|—|I:|p)* (54)

Dp7 —-p; D-ﬂ:‘p, D(—||:|—||:|—||:|p)>k (T)

p; Op; —p; O=0Op; O(=0-0-0p)x (L)

1

4.16 Modal Logics With Provability Interpretations

In this section we give tableau calculi for the modal logics that have im-
portant readings as logics of “provability” where OA is read as “it is prov-
able in Peano Arithmetic that A holds”; see Fitting [Fit83, page 241] and
Boolos [Boo79]. These systems are obtained either by adding the axiom
G:0(0A — A) — OA, named after Godel-Loéb and sometimes called GL,
or adding the axiom Grz:0(0(A — OA) — A) — A, named after Grzegor-
czyk, or adding the axiom 4 and the axiom G,:0(0(A — 0OA4) — A) —» DA,
to K.

It is known that both G and Grz imply the transitivity axiom 4 when
they are respectively added to K [vB78]. But the logic K4G, whose frames
share some of the properties of G-frames and Grz-frames, explicitly con-

52 Rajeev Goré

ox;-opP ox;-opP
_— (Grz)
X;0X;-p;0OP X;0X;-P;0(P — OP)

Fig. 9. Tableau Rules for logics of provability

tains 4 as an axiom. It is also known that Grz implies reflexivity.
Once again, all the tableau calculi contain the rules of CPC and one or
more logical rules from Figure 9 on page 52 as shown below:

CL Static Rules Transitional Rules Xoy,
CG CPC (@) X
CK4G, C(CPC (Grz) SfO(X — OX)
CGrz CPC, (T) (Grz) SfO(X — 0OX)

The semantic and axiomatic intuitions behind these rules are more en-
lightening than any technical proof (of soundness) so we present these as
well.

Intuitions for (G) : We know that axiomatically formulated logic G
is characterised by G-frames. Therefore, axiom G must be valid on any
G-frame; hence true in any world of any G-model. The axiom G is

0O(0A4A — A) —» DA,
Its contrapositive is

-04 - —~(0(04 — A))

which is the same as
—0A4 —» O(OAA—A).

Thus, if the numerator represents a world w where =OP is true, then there
exists another world w’ where OP is true and P is false, and w' is reachable
from w. The denominator represents this world.

Intuitions for (Grz) : The axiom Grz is

O(0(A - 0A) - A) —» Al

It is known that 4 and T are theorems of Grz [HC84, page 111], hence
S4 C Grz. Segerberg [Seg71, page 107], and more recently Goré et al

[GHH95], show that Grz = S4Grz = S4G, where G, is
O(0(A—DA) - A) - 04

which gives the following (contraposed formulae) as theorems of Grz:

Tableau Methods for Modal and Temporal Logics 53

-04 — —-0O(0(A— O4) - A)
-04 — <O(0(A4A - O4) A-A).

Thus, if =OP is true at the numerator, then there exists some world
where O(P — OP) A =P eventually becomes true. The denominator of
(Grz) represents this world.

Theorem 4.16.1 (Soundness). The calculi CG, CGrz and CK4G, are
sound with respect to G-frames, Grz-frames and K4G,-frames respec-
tively.

Proof Outline : For each rule in CL we have to show that if the
numerator of the rule is L-satisfiable then so is at least one of the denomi-
nators.

Proof of CG : Suppose M = (W, R,V) is a G-model, wy € W and
wo |= OX;-0P. Thus there exists some w; € W with woRw; and w; E
X; 0X; =P by the transitivity of R. Since R is irreflexive, wy # w;. Suppose
wy = OP. Then w; |= —-OP and there exists some wy € W with wy Rws
and wy = X;0X; P by transitivity of R. Since R is irreflexive, wq # ws.
Since R is transitive, wy = wy would give wy RwgRw, implying wi Run
and contradicting the irreflexivity of R, hence wq # wy. Suppose wo = OP
then ... Continuing in this way, it is possible to obtain an infinite path
of distinct worlds in M contradicting the G-frame condition on M. Thus
there must exist some w; € W with wyRw; and w,; = X;0X;-P; 0P and
we are done.

Proof of (T) for CGrz : The (T) rule is sound for Grz-frames since
every Grz-frame is reflexive.

Proof of (Grz) for CK4G,: Suppose M = (W, R,V) is a K4G,-
model, then R is transitive, there are no proper clusters, and there are
no proper oo-R-chains. Suppose wy € W is such that wy |= OX;-0OP.
We have to show that there exists some w, € W with woRw,, and w, E
X;0X;-P;0(P — OP). Since R is transitive, wg = OX means that Yw €
W, woRw implies w = X;0X. Thus our task is reduced to showing that
there exists some w, € W such that woRw,, and w, = -P;0(P — OP).
Suppose for a contradiction that no such world exists in W. That is,

(a) Yw € W, woRw implies w £ -P;0(P — OP).

Since wy = —OP, there exists some wy € W with woRw; and wy |=
-P. By (a), wy £ O(P — OP) and hence w; = —-O(P — OP). Thus
there exists some wy € W with wy Rwy and we = —(P — OP), that is,
wy = P A=-OP. Since wy; = =P, wy # ws and since K4G-models cannot
contain proper clusters, wyg # wy. Since wy = —OP there exists some
ws € W with wy = —~P. Since wy = P, wy # wy. And ws # wp and
ws # w; as either would give a proper cluster. By (a), ws [~ O(P — OP)

54 Rajeev Goré

and hence ws = —-O(P — OP). Continuing in this way, we either obtain an
infinite path of distinct points, giving a proper oco-R-chain, or we obtain a
cycle, giving a proper cluster. Both are forbidden in K4G,-frames. Hence
(a) cannot hold and Jw € W, wopRw and w = —P; (P — OP). That is,
the desired w,, exists.

Proof of (Grz) for CGrz : Every Grz-frame is a K4G,-frame, hence
the proof above suffices. [|

As we saw in Subsection 4.11, proving completeness boils down to prov-
ing the following: if X is a finite set of formulae and no CL-tableau for X
is closed then there is an L-model for X on an L-frame (W, R).

Lemma 4.16.2. If there is a closed CL-tableau for X then there is a closed
CL-tableau for X with all nodes in the finite set X5y .

Proof: Obvious from the fact that all rules for CL operate with subsets
of X7y, only. [|

Lemma 4.16.3. For each CL-consistent X there is an effective procedure
to construct some finite CL-saturated X*° with X C X* C X7} .

Theorem 4.16.4 (Completeness). If X is a finite set of formulae and
X is CL-consistent then there is an L-model for X on a finite L-frame.

As usual we construct some CL-saturated wq from X with X C wq C
Xo1,

Proof for CG: If no —OP occurs in wg then ({wo},?) is the desired
model graph as (i)-(iii) are satisfied. Otherwise, let Q1,Q2, -, Qm be all
the formulae such that —0O@); € wy. Create a CG-saturated (Q;-successor
for each Q; using (A) and (G) giving the nodes v; of level one. Repeating
this construction on the nodes of level one gives the nodes of level two, and
so on for other levels. Consider any sequence w; < w;+1 < w42 ---. Since
w; has a successor, there is some -0@Q € w; and OQ € w;y; forall j > 1 by
(G). Thus w; # wi4; for any j > 1 and each such sequence must terminate
since X3¢ is finite. Let R be the transitive closure of <; that is put wRw'
if w < w' and put wRw if w < w' < v. The resulting tree is a model graph
(Wo, R) for X which is also a G-frame.

Proof for CGrz: If no ~OP occurs in wg then ({wp}, {(wg, wo)}) is the
desired model graph as (i)-(iii) are satisfied. Otherwise, let Q1,Q2, -, @m
be all the formulae such that —0Q; € wy and —=Q; &€ wy. Create a CGrz-
saturated @;-successor for each Q; using (6) and (Grz) giving the nodes v;
of level one, and so on for other levels. Consider any sequence w; < w;+1 <
wito - --. Since w; has a successor, there is some @ such that =0@Q € wy;,
-Q ¢ w;, and by (Grz), O(Q — 0Q) € w;y; for all j > 1. Suppose
w;4; = w;, then O(Q — 0Q) € w; and hence @ — OQ € w; by (T). Since
@@ — 0OQ is just abbreviation for —=(Q A =0Q), we know that =@ € w; or
—--0Q € w;. We created a successor w;11 for w; precisely because —Q & w;
and so the first case is impossible. And if =—0@Q € w; then OQ € w; by (—),

Tableau Methods for Modal and Temporal Logics 55

contradicting the Grz-consistency of w; since =0 € w; by supposition.
Thus each such sequence must terminate (without cycles). Let R be the
reflexive and transitive closure of < to obtain a model graph (W, R) for
X which is also a Grz-frame.

Proof for CK4G,: If no =OP occurs in wg then ({wo}, {0}) is the
desired model graph as (i)-(iii) are satisfied. Otherwise, let Q1,Q2, -, @m
be all the formulae such that —=0Q; € wg. A CK4G,-saturated set v is
reflexive iff DA € v implies A € v. If v is non-reflexive then there exists
some OB € v but B € v.

If wq is reflexive then create a CK4G,-saturated (Q;-successor for each
-0Q; with —=Q; € wy, otherwise if wy is non-reflexive then create a CK4G,-
saturated (Q;-successor for each =0Q);, 1 < i < m. This gives the nodes
of level one. Continue creating successors in this fashion for these nodes
using () and (Grz).

Consider any sequence w; < w;t1 < wiya - --. Since w; has a successor,
there is some =0 € w; that gives rise to w;41. Also, 0(Q — 0Q) € w;y;
for all j > 1.

If w; is reflexive then =Q ¢ w;, and yet =@ € w,;11 by (Grz); hence
w; # wip1. Suppose w;y; = w;, j > 2. That j > 2 is crucial!l Then
0(Q — 0Q) € w; and @ — OQ € w; by (Grz). Since @ — OQ is just
abbreviation for =(Q A—0Q), we know that =@ € w; or =—0Q € w;. Since
w; is reflexive, we created a successor w; 1 for w; precisely because =Q ¢ w;
and so the first case is impossible. And if =—0Q € w; then OQ € w; by (=),
contradicting the K4G,-consistency of w; since =0 € w; by supposition.

If w; is non-reflexive then there is some OB € w;, with B € w;, and
yet both OB and B are in w;1; by (Grz), for all j > 1; hence w; # w;y;,
i>1

Thus each such sequence must terminate (without cycles). Let R be
the transitive closure of < and also put wRw if w is reflexive to obtain a
model graph (Wy, R) for X which is also a K4G,-frame.

As Amerbauer [Ame93] points out, this means that K4G, is charac-
terised by finite transitive trees of non-proper clusters refuting the conjec-
ture of Goré [Gor92] that K4G, is characterised by finite transitive trees
of degenerate non-final clusters and simple final clusters.

4.16.1 Bibliographic Remarks and Related Systems

The tableau system CG is from Fitting [Fit83] who attributes it to [Boo79),
while CGrz is from Rautenberg [Rau83]. Rautenberg gives a hint on how
to extend these to handle CK4G, but Goré [Gor92] is unable to give an
adequate system for CK4G,, leaving it as further work. The given CK4G,
is due to Martin Amerbauer [Ame93] who following suggestions of Rauten-
berg and Goré also gives systems for KG.2 and KGL (which Amerbauer
calls K4.3G).

Provability logics have also been studied using Gentzen systems, and ap-

56 Rajeev Goré

propriate cut-elimination proofs have been given by Avron [Avr84], Bellin
[Bel85], Borga [Bor83], Borga and Gentilini [BG86], Sambin and Valentini

[SV80, VS83, SV82], and Valentini [Val83, Valg6).

4.17 Monomodal Temporal Logics

In this section, which is based heavily on [Gor94], we give tableau systems
for normal modal logics with natural temporal interpretations where OA
is read as “A is true always in the future” and O A is read as “A is true
some time in the future”. All logics are “monomodal” in that the reverse
analogues of these operators, namely “always in the past” and “some time
in the past”, are not available. That is, the reachability relation R is taken
to model the flow of time in a forward direction, and each possible world
represents a point in this flow with some point deemed to be “now”. We are
allowed to look forwards but not backwards. In all cases time is taken to be
transitive and the variations between the logics comes about depending on
whether we view time as linear or branching; as dense or discrete; and as
reflexive or non-reflexive (which is not the same as irreflexive). We explain
these notions below.

4.17.1 Reflexive Monomodal Temporal Logics

The logics S4.3, S4.3.1 and S4Dbr are all normal extensions of S4 and
are axiomatised by taking the appropriate formulae from Figure 1 as axiom
schemas. Their respective axiomatisations are: S4 is KT'4; S4.3 is KT'43,;
S4.3.1 is KT43Dum; and S4Dbr is KT4Dbr.

The Diodorean modal logics S4.3 and S4.3.1 have received much at-
tention in the literature because of their interpretation as logics of dense
and discrete linear time [Bul65]. That is, it can be shown that (Z,<) = A
iff Fg4.34 where 7 is either the set of real numbers or the set of rational
numbers and < is the usual (reflexive and transitive) ordering on numbers
[Gol87, page5T7]. Consequently, between any two points there is always a
third and S4.3 is said to model linear dense time. It can be shown that
(w,<) E Aiff Fga31A where w is the set of natural numbers [Gol87].
Hence, between any two points there is always a finite number (possibly
none) of other points and S4.3.1 is said to model linear discrete time.
The formal correspondence between (Z, <) and S4.3-frames, and between
(w,<) and S4.3.1-frames can be obtained by using a technique known
as bulldozing and defining an appropriate mapping called a p-morphism
[Gol87] [HC84].

The logics S4 and S4Dbr can be given interpretations as logics of
dense and discrete branching time. That is, it can be shown that S4 is also
characterised by the class of all reflexive transitive (and possibly infinite)
trees [HC84, page 120]. That is, by bulldozing each proper cluster of an S4-
frame we can obtain an infinite dense sequence so that S4 is the logic that
models branching dense time. The axiomatic system S4Dbr is proposed

Tableau Methods for Modal and Temporal Logics 57

by Zeman [Zem73, page 249] as the temporal logic for branching discrete
time, but Zeman and Goré [Gor94] call this logic S4.14.

Therefore, the logics S4, S4.3, S4.3.1 and S4Dbr cover the four pos-
sible combinations of discreteness and density paired with linearity and
branching.

Figure 10 on page 58 shows the rules we need to add to CS4 in order
to obtain tableau systems for S4.3, S4.3.1 and S4Dbr. The tableau
calculi CS4.3, CS4.3.1 and CS4Dbr are respectively the calculi for the
logics S4.3, S4.3.1 and S4Dbr as shown below:

CL Static Rules Transitional Rules Xoy,
CS4.3 CPC, (T) (54.3) X
CS4.31 CPC, (T) (54),(84.3.1) Sf(O(X - 0X);0X)
CS4Dbr CPC, (T) (S4),(S4Dbr) Sf(O(X — OX);OX)

Note that CS4.3 does not contain the rule (S4) and that CS4.3.1 does
not contain the rule (54.3) but does contain the rule (S4). Also note that
the (S4.3.1) rule contains some static denominators and some transitional
denominators.

Lemma 4.17.1. If there is a closed CL tableau for the finite set X then
there is a closed CL tableau for X with all nodes in the finite set X5y .

Proof: Obvious from the fact that all rules for CL operate with subsets
of X7y, only. [|

Lemma 4.17.2. For each CL-consistent X there is an effective procedure
to construct some finite CL-saturated X* with X C X* C X7} .

Proof: As on page 25. |
Theorem 4.17.3. The CL rules are sound with respect to L-frames.

Proof: We omit details since the proofs can be found in [Gor94], al-
though note that there, the definition of L-frames is slightly different.

The intuition behind the (54.3) rule is based on a consequence of the
characteristic S4.3 axiom 3. Adding 3 to S4 gives a weakly-connected
R for S4.3 so that eventualities can be weakly-ordered. If there are k
eventualities, one of them must be fulfilled first. The (S4.3) rule can be
seen as a disjunctive choice between which one of the k eventualities is
fulfilled first and an appropriate “jump” to the corresponding world.

The intuition behind the (54.3.1) rule is that each eventuality is either
“eternal”, because it is fulfilled an infinite number of times in the sequence
of worlds that constitute an S4.3.1-model, or “non-eternal”. If the even-
tuality —OP is “eternal” then it can be stashed away (statically) as O-0OP
and ignored until “later”. Otherwise it must be dealt with immediately by
fulfilling it via a transition. But there may be many such eventualities and

58

Rajeev Goré

DX;—\DP
ox;0-0pP | OX;-P;0(P—OP)

(S4Dbr)

DX;_‘D{Pl,"',Pk}
ox; _‘Df; -P, ‘ L | ox; _‘D?k; - P

(54.3)

where Y = {P,,---, P} and Y; = Y \ {P;}

U;DX;_'D{le" '7Qk}

S4.3.1
() St | So | oo | Sk [Skr | Skg2 | o | S

where

Y ={Q, . Q}:

Vi =V \{Q;};

Sj = U;0X;-0Y;;0-0Q);

Sey; = 0X;=Q;;0(Q; — 0Q;); ~0Y;

for1<j<k

Fig. 10. Tableau rules (S4Dbr), (S4.3) and (S4.3.1).

Tableau Methods for Modal and Temporal Logics 59

since R is weakly-connected, they must be ordered.

Theorem 4.17.4. If X is a finite set of formulae and X is CL-consistent
then there is an L-model for X on a finite L-frame (W, R).

Again we omit details since they can be found in [Gor94] but note
that there we used S4.14 for S4Dbr. However, the proof for CS4.3 is
reproduced below to give an idea of how to handle linearity.

Proof sketch for CS4.3: The completeness proof of CS4.3 is similar to
the completeness proof for CS4. The differences are that only one sequence
is constructed, and that in doing so, the (S4.3) rule is used instead of
the (S4) rule. Note that the (S4.3) rule guarantees only that at least
one eventuality gives a CS4.3-consistent successor whereas (S4) guarantees
that every eventuality gives a CS4-consistent successor. And this crucial
difference is why thinning seems essential. The basic idea is to follow one
sequence, always attempting to choose a successor new to the sequence.
Sooner or later, no such successor will be possible giving a sequence S =
wog < Wy < Wy < -+ < Wy < W1 < -+ < Wp_1 < Wy, containing a cycle
C=wn < Wnt1 <+ < Wyp_1 < W,y which we write pictorially as

S=wyg < w1 <wy <+ < Wy, < W1 < Wp_1-

The cycle C fulfills at least one of the eventualities in w,_1, namely the
—0@ that gave the duplicated @Q-successor w,, of w,_;. But C may not
fulfill all the eventualities in w,,_1.

Let Y = {P |-0OP € w,_; and =P € w;, m < j < n L 1}, so that
—0Y is the set of eventualities in w,_; that remain unfulfilled by C. Let
w' = {P |OP € wy_1}. Since (Ow'; -OY) C w,_; is CS4.3-consistent by
(#), so is at least one of

X; =0w' U{=-P;}u-0y;, forj=1,---k

by (S4.3). As before, choose the CS4.3-consistent X; that gives a S4.3-
saturated P;-successor for w,,_; which is new to S to sprout a continuation
of the sequence, thus escaping out of the cycle. If no such new succes-
sor is possible then choose the successor w,,: that appears earliest in S.
This successor must precede w,,, as otherwise, C' would already fulfill the
eventuality that gives this successor. That is, we can extend C by putting
Wp_1 < Wy. Recomputing Y using m’ instead of m must decrease the
size of Y since w,_1 has remained fixed. Repeating this procedure will
eventually lead either to an empty Y or to a new successor. In the latter
case we carry on the construction of S. In the former case we form a final
cycle that fulfills all the eventualities of w,,_; and stop.

Sooner or later we must run out of new successors since Xg, 5 is finite
and so only the former case is available to us. Let R be the reflexive
and transitive closure of < so that the overlapping clusters of < become

60 Rajeev Goré

maximal disjoint clusters of R. It should be clear that (W, R) is a linear
order of maximal, disjoint clusters that satisfies properties (i)-(iii), and
hence that (W, R) is a model-graph for X.

Note that thinning seems essential. That is, in computing Y, we have
to exclude the eventualities that are already fulfilled by the current cycle
C in order to escape out of the cycle that they cause. We return to this
point later. [|

4.17.2 Non-reflexive Monomodal Temporal Logics

The logics S4.3 and S4.3.1 respectively have counterparts called K4DLX
and K4DLZ [Gol87] that omit reflexivity where the new axiom schemata
are D, L, X, Z, and Zbr; see Figure 1 on page 5.

It is known that <I, <> ‘: Aiff FgaprLxA and (w, <> |: Aiff FgaprzA
where 7 is either the set of real numbers or the set of rational numbers and
w is the set of natural numbers [Gol87]. Hence these logics model transitive
non-reflexive linear dense, and transitive non-reflexive linear discrete time
respectively. I am not aware of a proof of completeness for the non-reflexive
counterpart of S4Dbr but it seems reasonable to conjecture that K4DZbr
is this counterpart.

The simplest way to handle the seriality axiom D is to use the static
(D) rule of Rautenberg even though it breaks the subformula property. But
(D) and (K4Zbr) can conspire to give an infinite sequence of building up
operations,! so we use the transitional (K D4) and (K D4L) rules instead;
see Figure 11.

Another minor complication is the need for an explicit tableau rule
to capture density (no consecutive degenerate clusters, see [Gol87]) for
K4DLX but this is handled by the transitional rule (K4DX), which is
sound for K4DLX-frames.

The non-reflexive analogue of the (54.3) rule becomes very clumsy since
it is based on the K4LX-theorem:

OPACQR = O(PACQ)VO(QAOP)VO(PVQ)

and it is easier to use the rule (K4L) which makes explicit use of subsets.
The (K4L) rule is similar to a rule given by Valentini [Val86]. By using rules
from Figure 11 it is possible to obtain cut-free tableau calculi possessing
the analytic superformula property for these logics as:

CL Static Rules Transitional Rules X,
CK4DLX CPC (K4DX), (K4L) X
CK4DLZ CPC (K4D), (K4LZ) Sf-SfoX
CK4DZbr CPC (K4D), (K4Zbr) Sf-SfOX

1T missed this aspect in [Gor94]

Tableau Methods for Modal and Temporal Logics

D)(, —||:|P
(K4D) ———— where {=0OP,—P} may be empty
X;0X;-P

(K4DX) ————— where =0Y may be empty
X, DX, —-ay

X;0X;0-0P | X;0X;-P;0OP

(K4Zbr)

DX;_‘D{P]7"'7PL:}

KA4L
() 51182 || Sm

wherem =2 11, 1<i<m;

Y' ..., Y™ is an enumeration of the non-empty subsets of V;
Yi=Y\Y?

S = (X;0X; ﬂDW; ﬂYi')

U;DX;_'D{Q]W":QA:}
St | So | oo | Sk | Sk+1 | Sk+2 | - | Sk4m

(KALZ)

where :

Y ={Q, -, Qe}ym =21 1;

Y' ..., Y™ is an enumeration of the non-empty subsets of V;
V; =Y \{Q;} for 1 <j <k

Yi=Y\Y'for1l<i<m;

S; = U;0X;-0Y;;0-0Q; for 1 <j < k;

Spyei = X;0X;-Y:0OYV-0OYifor 1<i<m

Fig. 11. Tableau rules for non-reflexive Diodorean logics

61

62 Rajeev Goré

First of all note that (K4DX) is a transitional rule, not a static rule.

Now, it may appear as if the explicit subset notation would allow us
to dispense with (6) but this is not so. For (6) allows us to ignore certain
eventualities, whereas (K4L) and (K4LZ) only allow us to delay them.
Thus using the reflexive analogues of these rules for S4.3 and S4.3.1 does
not help to eliminate (6).

The Saturation Lemma (Lemma 4.11.1 on page 25) will go through as
for the other logics since the tableau systems have the analytic superformula

property.
Theorem 4.17.5. The CL rules are sound with respect to L-frames.

Proof: We omit details since the proofs are similar to the ones for the
reflexive temporal logics and are not difficult.

Theorem 4.17.6. If X is a finite set of formulae and X is CL-consistent
then there is an L-model for X on a finite L-frame (W, R).

Again we omit details since they are similar to the proofs given in
[Gor94] but note that there we used the name Z;4 for the axiom we here
dub Zbr. However, the proof for CK4DLX is reproduced below to give an
idea of how to handle the density requirement.

Proof sketch for CK4DLX: The construction of the model graph
is similar to the construction for CS4.3 except that we now know that
every eventuality gives rise to two CK4DLX-consistent successors; one
from (K4DX) and at least one from (K4L) (and (f)). We again construct
just one sequence but with the following twist.

A CK4DLX-saturated set v is reflexive iff OA € v implies A € wv.
If v is non-reflexive then there exists some OQ € v but Q@ ¢ v. If v is
non-reflexive then create a successor v for v using (K4DX). If v; is non-
reflexive then create a successor vy for vy using (K4DX). Repeating this
procedure must eventually give a (K4DX)-successor v,, that is reflexive.
Note that v C vy C vy C --- C v, hence the sole purpose of v, is to carry
v and be reflexive; thus it need not fulfill any eventualities. Now discard
V1,02, -, Un_1 and put v < v,.

So in the general CK4DLX construction, if we are constructing a suc-
cessor for w and w is reflexive then create a possibly non-reflexive (K4L)-
successor, else create a reflexive (K4DX)-successor (like v,) as shown
above. In either case the sequence produced using < satisfies the following
criterion: there are no consecutive non-reflexive sets in the sequence.

Once again, this procedure may produce a cycle, and we may need thin-
ning to escape from the cycle if it does not fulfill all its own eventualities as
in the case for CS4.3. Nevertheless, eventually we will produce a sequence,
possibly containing cycles, that fulfills all its eventualities, and furthermore
that has no consecutive non-reflexive worlds in the sequence. Let R be the
transitive closure of < but also put wRw if w is reflexive. The resulting

Tableau Methods for Modal and Temporal Logics 63

{-p}

{p} w1

w2

{-p}

Dum can be written as: O(=p = O(p A O=p)) A OOp — p;
wp = <©0p because ws = Op;

wp = —p = O(p A O—p) because of wy and wo;

wo [= O(=p = S(p A O-p))

but wop = p.

Fig. 12. A finite reflexive-and-transitive model in which all but the final
clusters are simple in which Dum is false at wyq.

model is a finite reflexive and transitive linear sequence of R-clusters with
no consecutive degenerate R-clusters. The density condition is met because
if we have wi Rws then one of them must be reflexive, as otherwise they
would form two consecutive degenerate R-clusters. Hence between any wq
and ws we can always put a third world w which is a copy of the one that
is reflexive.

The observation that we can detect reflexive worlds is due to Martin
Amerbauer [Ame93].

4.17.3 A Note on S4Dbr

In a chapter on modal logic by Segerberg and Bull [BS84, page 51], it is
claimed that the logic S4Dum “is characterised by the finite reflexive-
and-transitive frames in which all but the final clusters are simple”. We
show that this second claim is not correct by giving a finite reflexive-and-
transitive model in which all but the final clusters are simple, but in which
Dum is false. The model is pictured in Figure 12.

The explanation rests on the fact that O(O(P — OP) — P) can be

64 Rajeev Goré

written as O(=P — O(P A<$=P)). Thus Dum can be written as: O(—P —
O(=PACOP))AOOP — P.

This is just as well because we have just shown that S4Dbr charac-
terises this class and Dum and Dbr are different. But note that the extra
O modality in Dbr is exactly what is needed since, in the counter-example
of Figure 12, wy [= O<COp. That is, the counter-example does not falsify
Dbr because the extra modality handles the branching inherent in S4Dbr-
models which is absent in S4.3.1-models.

4.17.4 Related Work and Extensions

Zeman [Zem73] appears to have been the first to give a tableau system for
S4.3 but he is unable to extract the corresponding cut-free sequent system
[Zem73, page 232]. Shimura [Shi91] has given a syntactic proof of cut-
elimination for the corresponding sequent system for S4.3, whereas we give
a semantic proof. Apparently, Serebriannikov has also obtained this system
for S4.3 but I have been unable to trace this paper. Rautenberg [Rau83]
refers to “a simple tableau” system for S4.3 but does not give details since
his main interest is in proving interpolation, and S4.3 lacks interpolation.
In subsequent personal communications I have been unable to ascertain the
S4.3 system to which Rautenberg refers [Rau90]. Bull [Bul85] states that
“Zeman’s Modal Logic (XLII 581), gives tableau systems for S4.3 and
D in its Chapter 15, ...”. The D mentioned by Bull is S4.3.1 but Zeman
[Zem73, page 245] merely shows that his tableau procedure for S4.3 goes
into unavoidable cycles when attempting to prove Dum. Zeman does not
investigate remedies and consequently does not give a tableau system for
S4.3.1. In fact, Bull [Bul65] mentions that Kripke used semantic tableau
for S4.3.1, in 1963, but he gives no reference and subsequent texts that use
semantic tableau do not mention this work [Zem?73]. Presumably Kripke
would have used tableaux where an explicit auxiliary relation is used to
mimic the desired properties (like linearity) of R as is done in the semantic
diagrams of Hughes and Cresswell [HC68, page 290]. Note that no such
explicit representation of R is required in our systems where the desired
properties of R are obtained by appropriate tableau rules. I know of no
other (cut-free) sequent or tableau systems for the logics S4.3.1 and S4Dbr
or their non-reflexive counterparts K4DLZ and K4DLZbr.

Finally, these techniques extend easily to give a cut-free tableau system
for S4.3Grz = KGrz.3 [vB78] which is axiomatised as KGrz.3 where
Grz is the Grzegorczyk axiom schema Grz:0(0O(A — 0O4) —» A) —» A.
This logic is characterised by finite linear sequences of simple clusters but
note that Shimura [Shi91] has already given a sequent system for this logic,
and it is easy to turn his system into a tableau system.

The non-reflexive counterpart of S4.3Grz is KLG (sometimes called
G.3 or GLjin, or K4.3W) where L is as above and G is the Godel-Lob
axiom O(0OA — A) — OA. Rautenberg [Rau83] shows that KG is char-

Tableau Methods for Modal and Temporal Logics 65

acterised by the class of finite transitive trees of irreflexive worlds. Thus
KLG is characterised by finite linear sequences of irreflexive worlds, but
note that Valentini [Val86] has already given a cut-free sequent system for
this logic.

4.18 Eliminating Thinning

The structural rule () corresponds to the sequent rule of weakening which
explicitly enforces monotonicity; see page 18. From a theorem proving
perspective, (f) introduces a form of nondeterminism into each CL since
we have to guess which formulae are really necessary for a proof. It is
therefore desirable to eliminate (f). There are two places where we resort
to applications of () in our completeness proofs. We consider each in turn.

The main applications of () in our completeness proofs are the ones
used to eliminate the formulae that do not match elements of the numer-
ator, prior to an application of a transitional rule; see page 19. These
applications of (f) can be eliminated by building thinning in a determin-
istic way into the transitional rules. For example, we can change the (S5)
rule shown below left to the (S56) rule shown below right:

(S5) (556)
ox,;-0v;-0P;-P X’;—|P

where X' = {0A: 04 € X} U {-0OB : -0OB € X} U {-0OP}; see Fitting
[Fit83]. The new transitional rule (S56) does the work of () and (S5). The
crucial point is that we can specify X' exactly because we know exactly
which formulae to throw away: namely, the ones that do not match the
numerator of (S5).

In some completeness proofs we also avoid creating a successor for
0@ € w if =@ € w, thus pre-empting the reflexivity of R. This is not an
application of (§) when the transitional rule in question is non-branching
like (S4), because a consistent successor also exists for these eventualities,
it is just that we are not interested in these successors.

However, () appears essential for some of the branching transitional
rules like (54.3), (K4L) and (S4.3.1) etc. even though we can also build
thinning into these rules as well. For in the counter-model construction for
(CS4.3, we may reach a stage where all CS4.3-consistent successors already
appear in S but no such cycle fulfills all the eventualities of the last node.
At this stage it is essential to invoke applications of (6) on subsets of the
eventualities. That is, we must be able to ignore some of the eventualities
in w,_1 using () and this means that (¢) is now an essential rule of CS4.3.

The crucial difference between the branching transitional rules like
(54.3) and the non-branching transitional rules like (S4) is that the for-
mer guarantee only that at least one denominator is consistent, whereas

66 Rajeev Goré

the non-branching rules guarantee that every denominator is consistent
(since they only have one denominator). But note that not all branching
transitional rules are bad, for the (S4Dbr) rule also branches, but the com-
pleteness proof (see [Gor94]) goes through without recourse to (#) because
we can make a second pass of the initial model graph to obtain the desired
frame.

It may be possible to eliminate thinning by using cleverer completeness
proofs. For example, an alternate proof for CS4.3 may be possible by con-
sidering all (54.3)-successors for every node, giving a tree of nondegenerate
clusters, and then showing that any two worlds in this tree can be ordered
as is done by Hughes and Cresswell [HC84, page 30-31]. Note however that
this seems to require a cut rule since Hughes and Cresswell use maximal
consistent sets rather than saturated sets as we do.

Clearly the intuitions inherent in our semantic methods are no longer
sufficient to prove that weakening is eliminable. We have obtained a syntac-
tic proof of elimination of weakening in the sequent system containing the
sequent analogues of the modified tableau rule (S4.36), but this is beyond
the scope of this chapter.

4.19 Eliminating Contraction

As we have seen, contraction is built into our tableau rules by the ability to
carry a copy of the principal formula into the denominator. But we believe
it can be limited to the explicit contractions we have shown in our modal
rules. Unfortunately, our set-based rules and completeness proofs are not
sophisticated enough to prove this since (the saturation) Lemma 4.11.1 on
page 25 requires that we copy the principal formula into the denominator.
It is possible to rework all of our work using multisets instead of sets, but
the proofs become very messy. For a more detailed study of contraction in
modal tableau systems see the work of Hudelmaier [Hud94] and Miglioli et
al [MMO95].

4.20 Finite L-frames

In all our completeness proofs we construct finite model graphs, hence our
logics are also characterised by the finite frames shown in Figure 13. The
frames in Figure 13 are all based on trees of clusters or trees of worlds where
we assume that clusters immediately imply transitivity. Consequently, each
logic has the finite model property, and is decidable. These finer-grained
results are not always obtainable when using other tableau methods.

4.21 Admissibility of Cut and Gentzen Systems

The cut rule is sound with respect to all our L-frames and each CL is sound
and complete with respect to the appropriate L-frames. Thus, putting (p)
equal to (cut) in Lemma 4.6.1 (page 20) gives:

Tableau Methods for Modal and Temporal Logics

L finite-L-frames
K finite intransitive tree of irreflexive worlds
T finite intransitive tree of reflexive worlds
finite intransitive tree of worlds with reflexive
D
final worlds
K4 finite tree of finite clusters
KDB a single reflexive world; or a finite intransitive
and symmetric tree of at least two worlds
finite tree of finite clusters with finite
K4D
nondegenerate final clusters
K45 a single finite cluster; or a degenerate cluster
followed by a finite nondegenerate cluster
a single finite nondegenerate cluster; or a
K45D degenerate cluster followed by a finite
nondegenerate cluster
S4 finite tree of finite nondegenerate clusters
KB4 single finite cluster
S5 single finite nondegenerate cluster
B finite symmetric tree of reflexive worlds
a single finite nondegenerate cluster; or a simple
S4R .
cluster followed by a finite nondegenerate cluster
S4.3Zem
SAF a sequence of at most two finite nondegenerate
clusters
S4.2 a finite tree of finite nondegenerate clusters with
) one last cluster
S4.3 finite sequence of finite nondegenerate clusters
finite sequence of finite nondegenerate clusters
S4.3.1 .
with no proper non-final clusters
finite tree of finite nondegenerate clusters with
S4Dbr
no proper non-final clusters
K4L finite sequence of finite clusters
finite sequence of finite clusters with a
K4DL N
nondegenerate final cluster
finite sequence of finite clusters with a
K4DLX nondegenerate final cluster, and no consecutive
degenerate clusters
finite sequence of degenerate clusters with a final
K4DLZ ; q &
simple cluster
finite tree of degenerate clusters with final
K4DLZbr | .. &
simple clusters
G finite transitive tree of irreflexive worlds
Grz
S4Grz finite transitive tree of reflexive worlds
S4MDum
K4G, finite transitive tree of worlds
GL finite transitive sequence of irreflexive worlds

Fig. 13. Definition of finite-L-frames.

67

68 Rajeev Goré

X,P 15 PY (Ax)

X,P,Q 1> Y A=) X 1+ PY XL—>Q7Y(_>/\)
X,PAQ 1> Y X 15 PAQ,Y

X 15 PY - =) X,P 1Y ()
X,-P1l>Y © X 15 -pPYy '

X 1-Y X 1P
_ _— apP:
xoovy @ ax 5 op (PP K

Fig. 14. Sequent rules for GK

Theorem 4.21.1. The rule (cut) is admissible in each CL.

Tableau systems are (upside down) cousins of proof systems called
Gentzen systems or sequent systems; see Fitting [Fit83]. For example,
the Gentzen system GK shown in Figure 14 is a proof system for modal
logic K. That is, a formula A is valid in all K-frames (and hence a theorem
of K) iff the sequent 1— A is provable in GK. Each of our tableau rules
has a sequent analogue so it is possible to convert each tableau system CL
into a sequent system GL. Then, GL is cut-free as long as CL does not
use (sfc) or (sfcT'). By induction it is straightforward to show that the
sequent X 1— Y is provable in GL iff there is a closed CL-tableau for
X;=Y.

Our sequent systems do not possess all the elegant properties usually
demanded of (Gentzen) sequent systems. For example, not only do some
of our systems break the subformula property, but most do not possess
separate rules for introducing modalities into the right and left sides of
sequents.

Elegant modal sequent systems respecting these ideals of Gentzen have
proved elusive although the very recent work of Avron [Avr94], Cerrato
[Cer93], Masini [Mas92, Mas91] and Wansing [Wan94] are attempts to re-
dress this dearth. However, some of these methods have their own disadvan-
tages. The systems of Cerrato enjoy the subformula property and separate
introduction rules but do not enjoy cut-elimination in general (although
the systems for K do so). The systems of Masini enjoy cut-elimination
and give direct proofs of decidability but (currently) apply only to the log-
ics K and KD. The systems of Wansing enjoy cut-elimination and clear
introduction rules but do not immediately give decision procedures, and

Tableau Methods for Modal and Temporal Logics 69

cannot handle logics like S4.3.1 and S4Dbr [Kra96]. The hypersequents
of Pottinger [Pot83] and Avron [Avr94] seem to retain most of the desired
properties since they give cut-free systems with the subformula property
for most of the basic modal logics including S5. It would be interesting to
see if they can be extended to handle the Diodorean or provability logics.

5 Tableau Systems For Multimodal Temporal Log-
ics

In this section we briefly survey tableau systems for multimodal temporal
logics with future and past time connectives which have proved useful in
Computer Science. The brevity is justified since the survey by Emerson
[Eme90] covers tableau methods for these logics. Here we just try to show
how these logics and their tableau methods relate to the methods we have
seen so far.

In Computer Science the term “temporal logic” is used to describe logics
where the frames are discrete in the sense of S4.3.1-frames and S4Dbr-
frames. The term “linear temporal logic” is used when the frames are linear
(discrete) sequences and the term “branching temporal logic” is used when
the frames are (discrete and) branching. If we wish to refer to the past
then we can use a multimodal tense logic where BA is read as “A is true
at all points in the past” and A is read as “A is true at some point in
the past” [Bur84]. However, certain binary modal connectives have proved
more useful.

The impetus for studying linear binary modal operators started with
the seminal results of Kamp [Kam68]. Kamp showed that linear tense
logic equipped with monomodal tense connectives like B, ¢, & and O are
“expressively incomplete” because there are simple properties of linear or-
ders that cannot be expressed using only these connectives together with
the usual boolean connectives. One example is the property “A is true
now and remains true until B becomes true”. Kamp then showed that
certain binary modal connectives are “expressively complete” in that they
capture any property expressible in the first-order theory of linear orders;
that is, expressible using time point variables like ¢1, ¢5, the quantifiers
V, 3, the boolean connectives and the predicate < familiar from number
theory. Wolper then showed that even these connectives could not express
all desirable properties of sequences [Wol83]; for example, properties that
correspond to regular expressions from automata theory like “A is true in
every second state”. Wolper introduced extra connectives corresponding
to regular expressions but these are beyond the scope of this article; see
[Wol83].

70 Rajeev Goré

5.1 Linear Temporal Logics
5.1.1 Syntax of Linear Temporal Logics

We add the unary modal connectives @, O, 4 and B, and the binary modal
connectives U, W, S and Z. Any primitive proposition p is a formula,
and if A and B are formulae, then so are: (—A), (AA B), (AV B), (OA),
(CA), (MA), (#4), (OA), (@A), (AUB), (AWB), (ASB) and (A ZB).

Intuitively, OA means “A is true in the next state”, ® A means “A is
true in the previous state”, A U B means “A is true until B becomes true”,
and A SB means “A has been true since B became true”. The others are
explained shortly.

5.1.2 Semantics of Linear Temporal Logics

For brevity we concentrate on the linear temporal logic with future con-
nectives only and dub it PLTL for propositional linear temporal logic, and
follow Goldblatt [Gol87].

A state sequence is a pair (S,0) where ¢ is a function from the
natural numbers w onto S enumerating the members of S as an infinite
sequence gg, 01, ,0, -+ (with repetitions when S is finite). A model
M = (S,0,V) is a state sequence together with a valuation V' that maps
every primitive proposition onto a subset of S as usual. A model satisfies
a formula at state o; according to:

(M,0i) = p iff oi€V(p)

(M,0;) E-A iff (M, 0;) £ 4;

(M,0) EAAB iff (M,0;) = A and (M, 0;) = B
(M,0))EAVB iff (M,0;) = Aor (M,0;) = B;
(M,o:) EOA iff (M,o:41) E A;

(M,0;) E DA iff Vj,j>i,(M,0;) = 4

(M,0i) | OA iff 35,5 >, (M,0;) | 4

(M,U’i) |: AUB iff Ek,kZZ’,(/\/LUk) |:Band
V]77 S] < k (Maai) ‘: Aa

M,0)) EAWB iff (M,0;) = AUB or (M,0;) |= DA.

Intuitively imagine the states og,o01, -+ to form an infinite sequence
where o;Ro; iff j = i+ 1 and R is functional. Now if we let < be the

Tableau Methods for Modal and Temporal Logics 71

reflexive and transitive closure of R, then O is interpreted using < while O
is interpreted using R. For example, the formula O A is true at some state
o; if A is true at the successor state ;1. Note that the clause for AUB
demands that there is some future state o, where B becomes true but does
not specify a value for A at this state. A weaker version of U called W
(for weak until) drops the first demand by allowing for the possibility that
there is no future state where B is true as long as OA is true at o;.

Note that we could also obtain O and < by defining OA as A W1 and
OAas TUA, and still maintain that OA is =O-A.

If we wish to allow reasoning about the past we can also allow backward
looking operators. The function ¢ must now map the set of integers onto
S. Some care is needed to ensure the correct behaviour of the definitions
below if time does not extend ad infinitum in the past [Fis91]:

(M,0;) = @A iff (M,0,1) |= 4
(M, 0:) |- BA iff V), <i,(M,o;) E A
(M,0;) = $A iff 35,5 <i,(M,0;) |= 4;

(M,o:) = ASB iff 3k, k <i,(M,04) E B and

M,0))EAZB it (M,0;) = ASB or (M,0;) |= RA.

5.1.3 Axiomatisations
A Hilbert system for PLTL taken from Goldblatt [Gol87] is given below:

K:O0(A— B)— (0A— OB)
K,: O(A— B)—» (OA - OB)
Fun: O—-A < -0A
Miz : OA — (AN OOA)
Ind:0(A - OA) —» (A - OA)
Ul:AUB — OB

U2: AUB + BV (ANO(AUB))

We also need the inference rules of universal substitution US, modus
ponens MP and an extended rule of necessitation RN viz: if A € L then
both OA € L and OA € L; see page 4.

The recursive nature of the Miz and U2 axioms gives rise to a fix-
point characterisation of these operators which is the key to the tableau
procedures for these logics; see [Wol83], [BB87]. Notice also that the axiom

Ind encodes an induction principle: if it is always the case that A being

72 Rajeev Goré

true now implies A is true in the next state, then A being true now implies
A is true always in the future. It is this property that makes Gentzen
systems for these logics difficult to obtain; see Section 5.1.6.

5.1.4 Finite Model Property, Decidability and Complexity

Wolper [Wol83] shows that although our models are infinite state sequences,
linear temporal logic is also characterised by a class of finite frames. In
fact, it is characterised by our finite-S4.3.1-frames; see [Gol87]. A tableau
procedure is given by Wolper where he also shows that the problem of
deciding satisfiability in PLTL is PSPACE-complete. Further complexity
results for linear and branching time logics can be found in [ES84, SC85].
Decidability and incompleteness results for first-order linear temporal logics
have been studied by Merz [Mer92].

5.1.5 Tableau Systems

Tableau systems for the fragment of linear temporal logic containing only
future connectives have been studied by Wolper. He gives a tableau-based
decision procedure for this logic, and extensions involving regular operators;
see [Wol83, Wol85].

The linear temporal logic including both future and past modalities has
been extensively studied by Gough [Gou84]. Gough uses (the appropriately
defined analogues of downward saturated) Hintikka sets to build a model
graph for a given formula of this logic. A second phase then prunes nodes
from this model graph to check that all eventualities can be fulfilled on a
linear sequence. If this is not possible then the graph is pruned by remov-
ing the nodes that contain unfulfillable eventualities. If the initial node is
removed by this pruning procedure then the initial formula is unsatisfiable
on a linear model hence its negation is a theorem of this logic. The proce-
dure has been automated and the resulting prover called dp is available by
anonymous ftp from Graham Gough (gdg@cs.man.ac.uk) at the University
of Manchester, England.

A system for temporal logic has also been implemented in the MGTP
theorem prover by Koshimura and Hasegawa [KH94].

The (informal) gist of any tableau procedure for linear temporal logics
involving next-time modalities is to use the fix-point nature of the modal-
ities to create a cyclic graph of (state) nodes. This graph is then pruned
by deleting nodes that contain unfulfillable eventualities. For example, the
following logical equivalences hold in linear temporal logic:

(AUB) = (BV O(AUB)) ©OB=(TUB)
(AWB) = (AUB)VOA 0OA=(AWL)

Suppose we are given an initial node n node containing a set of formulae

Tableau Methods for Modal and Temporal Logics 73

X. For every formula in n that is an instance of the left hand of the above
equivalences, we can add the appropriate instance of the right-hand side
formula and mark the left hand instance as “processed”. We can use the
usual boolean rules for =— and A to saturate this node by adding the
appropriate subformulae to node n, again marking all parent formulae as
“processed”. For V we put one disjunct in n and create a copy of the old n
containing the other disjunct giving a branch in the tableau. Repeating this
process on the new formulae means that n contains “processed” formulae
and unprocessed formulae. But all unprocessed formulae begin with O since
these are the only formulae not touched by the above procedure. That is,
all unprocessed formulae are in outermost-O-form. For each node z we
then create a successor node y and fill it with {4 : OA € z}. Repeating
this procedure on such successors produces a graph because the number of
different formulae that can be generated from this process is finite, hence
some nodes reappear. Note that we now allow arbitrary cycles whereas in
the completeness proofs of Section 4 we confined cycles to nodes on the
same branch. Some of these nodes contain eventualities like OB or AUB
since each of these demands the existence of some node that fulfills B. Now
we make a second pass and delete nodes that contain both P and —P for
some formula; delete any node s whose eventualities cannot all be jointly
fulfilled by some linear path through the graph beginning at s; and delete
any nodes without successors. If the initial node ever gets deleted by this
procedure then it can be shown that the initial set of formulae cannot be
satisfied on a linear discrete model [Wol83, Wol85]. Otherwise there will
be a linear sequence of nodes that satisfies all the formulae in the initial
node, thus demonstrating a linear discrete model for X.

5.1.6 Gentzen Systems

Gentzen systems for temporal logics have been given by various authors but
almost all require either a cut rule or an infinitary rule for completeness
[Kaw87, Kaw88]. The exceptions appear to be the work of Gudzhinskas
[EG82] and Pliuskevicius [Pli91] but these articles are extremely difficult
to read.

5.2 Branching Temporal Logics

Just as S4Dbr and S4.3.1 are branching and linear respectively, there are
branching analogues of the linear temporal logics we have seen using O,
U and even S§. We briefly cover the syntax and semantics of one of the
most powerful of these branching time logics called CTL*, and point to
the abundant literature for tableau methods for these logics.

5.2.1 Syntax of Branching Temporal Logics

We again concentrate on the future fragment only and follow Emerson and
Srinivasan [ES88] using new modal connectives F and X in addition to U.

74 Rajeev Goré

The syntax of branching time logics is given in terms of “state” formulae
and “path” formulae where “state” formulae are true or false at some state
(world) and where “path” formulae are true or false of (rather than on) a
linear sequence of states (worlds). More formally:

any atomic formula p is a state formula;

if P and @ are state formulae then so are P A) and —P;
if P is a path formula then EP is a state formula;

any state formula P is also a path formula ;

if P and @ are path formulae then so are P A () and —P;
if P and @ are path formulae then so are X P and (P UQ);

The other boolean connectives are introduced in the usual way while
AP abbreviates ~E-P, and F'P abbreviates T P, and GP abbreviates
—F-P. Note the absence of O, ®, O, O, B, and ¢.

5.2.2 Semantics of Branching Temporal Logics

The semantics of CTL* are again in terms of a Kripke structure M =
(S, R, L) where S is a non-empty set of states or worlds; R is a binary
relation on S such that each state has at least one successor; and L is a
function which assigns to each state a set of atomic propositions (those that
are intended to be true at that state). Note that L is a slight variation on
our usual V since the latter assigns atomic propositions to sets of worlds,
but the two are equivalent in our classical two-valued setting.

A fullpath =z = sg,s1,89,... in M is an infinite sequence of states
such that s;Rs;y1 for each i, i > 0. By (M,s) = P and (M,z) = P
we mean that the state formula P is true at state s in model M, and the
path formula P is true of the path x in model M, respectively. If M is
understood then we just write s = P or x = P. The formal definition of
is as below where s is an arbitrary state of some M, where = sq, s1, s2, . . .
is a fullpath in M, and where ' denotes the suffix fullpath s;, 5,41, Si42 - . .
of :

|

sEPAQIiff sEPands|=Q ;

s =P iff s £ P;

s = EP iff for some fullpath y starting at s, y = P;

x = P iff sg = P for any state formula P;

zE=PAQiffzEPandz=Q ;

x |: -Piff l# P;

r | XPiff 2! = P;

rEPUQIF I >0,2' = Q and Vj,0 < j < i, 2’ |= P.

These definitions are enough to give a semantics for the modalities

obtained via definitions: AP is true at state s if P is true of all paths
beginning at s; F'P is true of a path z if P is true of some suffix fullpath

Tableau Methods for Modal and Temporal Logics 75

z' (i > 0) of z; and G P is true of a path z if P is true of all suffix fullpaths
zt, (i > 0).

The notions of satisfiability and validity are the same as before for
state formulae. A path formula P is satisfiable if there is some model M
containing some path z such that z |= P, and is valid if for every model
M and every fullpath path z in M we have z |= P.

As Emerson and Srinivasan note, a menagerie of branching time tem-
poral logics can be obtained by restricting or extending these definitions
[ES88].

Note that path formulae cannot be evaluated at states since there are
no clauses in the definition of |= for evaluating X P or P U() at a state. But
a state formula P can be evaluated on a fullpath simply by checking if the
first state of the fullpath satisfies P. Hence, if P is a state formula, then
formula X P cannot be evaluated at some state s, it must be evaluated with
respect to a path x. Once a path is chosen however, it is just the same as
the linear time formula OP since X P is true on path z if the second state
of the path satisfies (state formula) P. Similarly, if P is a state formula,
then FP and GP are just OP and OP, except that they are evaluated over
a linear sequence. But note that CTL* is strictly more expressive than
PLTL.

5.2.3 Tableau Systems

The logic CTL* is known to have the finite model property, in fact, it
is characterised by finite-S4Dbr-frames, but once again, note the pres-
ence of the extra modalities. Emerson and Srinivasan [ES88] compare the
expressiveness of various such branching time logics. Tableau methods
for branching time logics can be found in Emerson [Eme85]. Once again,
these tableau methods are based on the appropriate analogues of Hintikka-
structures (see [EH85]) and use the following logical equivalences to expand
formulae that match the left hand sides into an “outermost- EX-normal”
or “outermost-AX-normal” form [ES88]:

E(PVQ)=EPVEQ A(PAQ) = AP A AQ
EGP = P A EXEGP AGP = P A AXAGP
EFP =PV EXEFP AFP =PV AXAFP

E(PUQ)=QV (PAEXE(PUQ))
APUQ)=QV (P NAXAPUQ))

There are no clauses to “expand” formulae beginning with EX or AX
in some given set w. Each formula of the form EX P; gives us reason to
create a successor state w; containing P; just as —-OFP € w gave rise to
a successor v containing —P in the modal tableau completeness proofs of
Section 4. Now any formula of the form AXQ € w allows us to put @ into

76 Rajeev Goré

each next state since X () must be true of all paths that begin at w.

Again the procedure gives a cyclic graph since only a finite number of
different sets can be built in this manner and some set reappears. Again,
we form arbitrary graphs, not cyclic trees. And once again, a second phase
prunes nodes that are inconsistent, that contain unfulfillable eventualities,
or have no successor.

Note that all these tableau methods break the subformula property in
a weak way since they introduce superformulae of the form OP or AX P
or EXP where P is built from subformulae of the initial set. But we
never apply an expansion rule to these superformulae, thus, EX and AX P
act like “wrappers” to keep this building up procedure in check, just as
O acted as a wrapper for the PLTL procedure. These “wrappers” are re-
moved by creating successor state(s) and filling these with the “unwrapped”
(sub)formulae.

5.2.4 Gentzen Systems

Once we start to use graphs rather than trees, the connection with Gentzen
systems becomes very tenuous. Gentzen systems for some branching time
logics (without A and E) have been studied by Paech [Pae88]. Unfortu-
nately, these systems require a (partly hidden) cut rule which means that
they are not the proof-theoretic analogues of the tableau procedures men-
tioned above.

5.3 Bibliographic Remarks and Related Systems

The complexity of the decision problem for branching time logics has been
studied by Emerson and Sistla [ES83]. Temporal logics are known to be
related to Biichi automata [VW86] and so their decision problems can be
studied from an automata-theoretic perspective as well [MSS88].

All these branching time logics exclude past-time operators, but they
can be added. The work of Gabbay [Gab87] and Gabbay et al [GHR94] is
particularly interesting because many temporal logics have the “separation
property”: that is, any complicated formula A has a logically equivalent
form A’ where A’ is a conjunction B A C A D such that B involves only
past-time modalities, C' involves no modalities, and D involves only future-
time modalities. Thus the decision problems for these logics can often be
handled by separate routines for just past-time modalities, just future-time
modalities and just pure propositional reasoning.

6 Modal Tableau Systems With Explicit Accessi-
bility

We now turn to tableau systems where the reachability relation R is repre-

sented explicitly. There are essentially two ways to represent R. One is to

Tableau Methods for Modal and Temporal Logics v

maintain a network of named nodes, where each node contains a set of for-
mulae, and also maintain a separate relation R(x,y) to represent that the
node named y is reachable from the node named xz. The names z and y are
merely indices to allow cross-reference between these two “data-structures”.
The second is to incorporate complex or structured world names into the
syntax, attaching the label [; to every formula that belongs to the world
named [; and attaching [, to every formula that belong to the world named
l>. No separate reachability relation is kept since the reachability relation
is built into the structure of the labels.

6.1 History of Explicit Tableau Systems

The most celebrated work is of course that of Kripke [Kri59] where possible
worlds related by an accessibility relation are first proposed as a semantics
for modal logics. Bull and Segerberg [BS84] give an account of the genesis of
the possible worlds approach and suggest that credit is also due to Hintikka
and Kanger. Zeman [Zem73] even credits C. S. Pierce with the idea of “a
book of possible worlds” as far back as 1911!

Kripke follows Beth [Bet55] and divides each tableau into a left hand
side and a right-hand side where the left side is for formulae that must
be assigned “true” and the right side is for formula that must be assigned
“false”; see [Fit93] for examples using this style of tableau. Thus it is
clear that this is a refutation procedure and we are attempting to obtain
a falsifying model of possible worlds for the given formula. To handle
the added complexities of modal formulae like OA and —-OA, Kripke uses
auxiliary tableaux, where a new tableau is used for each possible world
and these auxiliary tableaux are interrelated by an auxiliary reachability
relation R. Auxiliary tableaux may have tableaux auxiliary to them and
so on, obtaining a complex web of tableaux.

Kripke uses two basic rules to handle modal formulae: one to handle
OA on the left of a tableau and one to handle OA on the right of a tableau.
They are,

Y1: If OA appears on the left of a tableau ¢, then for every tableau ' such
that tRt', put A on the left of #';

Yr: If OA appears on the right of a tableau ¢, then start out a new tableau
t', with A on the right, and such that tR#'.

Different constraints on this auxiliary relation give different tableau sys-
tems. That is, the definition of the auxiliary relation R changes with each
logic, so that the auxiliary relation directly mimics the required accessi-
bility relation. For example, the auxiliary relation R for S4 is defined to
be reflexive and transitive, so for any tableau ¢ we have tRt by definition.
These constraints form an extra theory about R that must be taken into
account at each rule application.

Note also that the application of the YI rule can have delayed con-

78 Rajeev Goré

sequences. For example, if a new auxiliary tableau t" is created and it
happens to be auxiliary to the tableau ¢ in which the Y1 rule has already
been applied, then we have to keep track of this previous application of Y1
and add A to the left of ¢"”. Thus, the meaning of “every tableau # such
that tRt"” includes tableaux that may come into existence via the Yr rule at
any later point of the construction. The rules are therefore like constraints
that may be activated at a later time.

This is essentially a way to keep track of all worlds in the counter model
being sought. When a new world comes into existence, it is immediately
linked into this counter-model according to the constraints on R. That is,
Kripke’s method is a refutation procedure where extra modal information
is kept in the auxiliary relation between tableaux. The construction is
on a global level in that we can return to previous nodes of the tableau
construction at will. In our tableau systems CL we cannot return to nodes
higher up in the tree.

The semantic diagrams of Hughes and Cresswell [HC68] and the tableau
systems of Zeman [Zem73] use essentially the same ideas except that Hughes
and Cresswell use annotations of ones and zeros instead of using a left and
right side. Slaght [S1a77] goes one step further than usual and adds rules
for quantifiers and also incorporates a form of negated normal form by
translating -0OP into &-P, =OP into O-P, =3z(---) into Yz—(---) and
—0x(---) into Jz—(---).

These ideas have been implemented by Catach in his TABLEAUX the-
orem prover [Cat91, Cat88]. Although labels are used in the TABLEAUX
prover, they are used only as indices into an ezplicit and separate represen-
tation of the reachability relation. Indeed, Catach even laments the lack of
modularity in this method [Cat91, page 503].

Kanger’s spotted formulae [Kan57], which precede Kripke’s work, are
the precursors of the second explicit approach which we call the labelled
tableau method. In this method, each formula is prefixed with a label to
retain its modal context and the reachability relation is encoded in the
structure of the labels. Given two labels we can tell whether they are
related by the reachability relation simply by inspecting their structure.
Fitting’s prefixed tableaux are direct applications of Kanger’s idea to han-
dle many different modal logics [Fit83, chapter 8]. And as we shall soon see,
Massacci [Mas94, Mas95b] has refined these ideas even further to give mod-
ular prefixed tableau systems for many modal logics. If we permit labels to
contain variables then specialised “string unification” methods can be used
to detect closed tableau branches as is done by Wallen [Wal89], and Ar-
tosi and Governatori [AG94]. The principle of using labels to “bring some
of the semantics into the syntax” is also the basis of Gabbay’s Labelled
Deductive Systems [Gab9x].

Prefixes are one way to separate the modal component from the clas-
sical component. Another is to explicitly translate the modalities into a

Tableau Methods for Modal and Temporal Logics 79

restricted subset of first-order logic. Specialised routines for first-order
deduction, like resolution, can then be applied to this restricted subset.
Such “translation methods” have been investigated by Morgan [Mor76],
Ohlbach [Oh190, Ohl93], Auffray and Enjalbert [AE89], Frisch and Scherl

3

[FS91], and Gent [Gen91b, Gen93, Gen91al.

In all these translational methods, the modal logics K, T, K4, S4 and
S5 are easily handled and Gent has also obtained systems for B and S4.3.
The most striking feature of Gent’s work is that he is unable to give a
system for S4.3.1 and this is essentially due to the fact that the reacha-
bility relation R for S4.3.1-frames is not first-order definable. It is known
that a formula of second order logic is required to express the reachability
relation for S4.3.1 [vB83]. This deficiency of translational methods is also
mentioned by Auffray and Enjalbert [AE89] while the method of Frisch
and Scherl [FS91] is limited to serial logics.

The biggest disadvantage of the translational methods is that first-order
logic is known to be only semi-decidable, thus the translated system may
not be decidable even though the original modal logic is decidable. Clearly
it must be possible to identify decidable classes of first-order logic into
which these translations will fall, but I am not aware of any such detailed
investigations.

In all fairness, it must be mentioned that the translational methods
seem to be much better for automated deduction in first-order modal logics
where various domain restrictions can complicate matters for the first-order
versions of our implicit tableau systems CL; see [Ohl90]. At the first-order
level, all modal logics are only semi-decidable since they all include classical
first-order logic. Then, decidability is no longer an important issue.

There is a subtle but deep significance to the use of labels which ex-
plains their increased power over implicit tableau methods. Our implicit
tableaux were local in that, at all times, we worked with a set of formulae
(denoting one particular world), with no explicit reference to the particular
properties of the reachability relation since these properties were built into
the rules. Labelled tableaux are global in that the labels allow us to “see”
the reachability relation and hence allows us to keep a picture of the whole
model under construction.

6.2 Labelled Tableau Systems Without Unification

As stated previously the idea of labelled tableau systems goes back to
at least Kripke and Kanger. The most attractive feature of labels for
modal tableau systems is the ability to handle the symmetric logics like
S5 which require some form of analytic cut rule in the implicit systems we
have studied so far, and also logics like KB for which I know no implicit
tableau system formulation. We now review in some detail recent work of
Massacci [Mas94] which gives simple labelled tableau systems for all the
15 distinct basic normal modal logics obtainable from K by the addition

80 Rajeev Goré

of any combination of the axioms T, D, 4, 5, and B in a modular way.
The prefixed tableaux of Fitting can be obtained as derived rules in this
method. Hence our labelled tableau systems are a mixture of the methods
of Fitting and Massacci.

The irony is that this method is essentially Kripke’s “reformulated
method” based on his observation [Kri63, page 80] that:

“These considerations suggest that the rules, which we have
stated in terms of R, could instead be stated in terms of the
basic tree relation S defined in the preceding paragraph (letting
R drop out of the picture altogether).”

Using trees it is possible to isolate the individual atomic aspects of reflexiv-
ity, transitivity, symmetry etc. To model combinations of these properties
both Kripke and Fitting merge the respective atomic aspects into new rules.
Fitting goes one step further by building in the closure of these properties
as side-conditions, thereby requiring explicit reference to the underlying
reachability relation. Massacci, on the other hand, merely adds the in-
dividual atomic rules as they are, and thereby obtains modularity. The
closure is obtained by repeated applications of the atomic rules.

As an aside, note that [Mas94] contains some minor errors; for exam-
ple, the system given there for K5 is incomplete. Massacci has reworked,
corrected, and extended his work into a journal version [Mas95b], but most
of this section was written independently of [Mas95b]. Thus there is a
lot of overlap between this section and [Mas95b], but there are also some
subtle differences. In particular, we do not use an empty label at any
stage, whereas Massacci sometimes uses an empty label to capture the
L-accessibility conditions between labels.

We now switch to the tableau formulation of Fitting and Smullyan
[Fit83] rather than sticking to the formulation of Rautenberg because the
labels allow us to distinguish formulae that belong to one world (label)
from those that belong to another (label), so there is no need to delete
formulae when “traversing” from one world to another. Consequently, we
can work with a single set of labelled formulae.

A label is a nonempty sequence of positive integers separated by dots.
We use lowercase Greek letters like o, 7 for labels and often omit the dots
using on instead of o.n if no confusion can arise. We use 7 to denote a set
of labels. The length of a label ¢ is the number of integers it contains (or
the number of dots plus one), and is denoted by |o|. For example, 1, 1.21,
and 1.2.1 are three labels respectively of lengths 1, 2 and 3. A label 7 is
a simple extension of a label o if 7 = o.n for some n > 1. A label 7 is
an extension of a label o if 7 = 0.n.ny. - - - .ng for some k > 1 with each
n; Z 1.

A set of labels ? is strongly generated (with root p) if:

1. there is some (root) label p € 7 such that every other label in 7 is an

Tableau Methods for Modal and Temporal Logics 81

extension of p; and

2. o.n € 7 implies 0 € 7.

In what follows, we always assume that p = 1 as it simplifies some technical
details.

As we shall soon see, the labels capture a basic reachability relation
between the worlds they name where the world named by o.n is accessible
from the world named by o. A set of strongly generated labels can be
viewed as a tree with root p where o.n is an immediate child of ¢ (whence
the name “strongly generated”).

A labelled formula is a structure of the form o :: A where ¢ is a label
and A is a formula. A labelled tableau rule has a numerator and one or
more denominators as before, except that each numerator is comprised of a
single labelled formula, and each denominator is comprised of at most two
labelled formulae. There may be side conditions on the labels that appear
in the rule. A labelled tableau calculus is simply a collection of labelled
tableau rules.

A labelled tableau for a finite set of formulae X = {4y, As,---, A,}
is a tree, where each node contains a single labelled formula, constructed by
the systematic construction described in Figure 15. A tableau branch is
any path from the root downwards in such a tree. A branch is closed if it
contains some labelled formula ¢ :: P and also contains o :: =P. Otherwise
it is open. A tableau is closed if every branch is closed, otherwise it is
open.

A label o is used on a branch if there is some labelled formula o :: P
on that branch. A label o is new to a branch if there is no labelled formula
o :: P on that branch.

If X is a set of labelled formulae then we let lab(X) = {o|o :: P € X'}
be the set of all labels that appear in X'. Although a branch B of a tableau
is defined as a set of nodes, each of which contains a formula, we often drop
this pedantic distinction and use B to mean the set of labelled formulae on
the branch. Then lab(5) is just the set of labels that are used on branch
B.

In Figure 16 we list the rules we need, and in Figure 17 we show how
they can be used to give labelled tableau systems for many basic modal
logics including some symmetric logics that proved elusive using implicit
tableau systems. All are based on those of Massacci [Mas94].

The rules are categorised into three types: the PC-rules are just the
usual ones needed for classical propositional logic; the v-rules are all the
rules applicable to formulae of the form ¢ :: OP (such formulae are called
v-formulae in many tableau formulations); and the single w-rule is the only
rule applicable to formulae of the form ¢ :: =OP (such formulae are called
w-formulae in many tableau formulations).

As expected, there is no modal aspect to the PC-rules since the labels in

82

Rajeev Goré

Stage 1: Put the labelled formulae 1 :: A;, 1 < i < n, in a
vertical linear sequence of nodes, one beneath the other, in
some order and mark them all as awake.

While the tableau is open and some formula is awake do:

Begin Stage n+1: Choose an awake labelled formula o :: A as
close to the root as possible. If there are several awake for-
mulae at the same level then choose the one on the leftmost
branch. If o :: A is atomic then mark this formula as fin-
ished and stop stage n + 1. Otherwise update the tableau
as follows where “updating a branch with a labelled for-
mula” means adding the formula to the end of the branch
and marking it as awake if it does not already appear on the
branch (with any mark), but doing nothing if the formula
already appears on the branch (with any mark). For every
open branch B which passes through o :: A, do:

(A) if 0 0 A is of the form o :: P A @ then update B with
o :: P and then update the new B with o :: Q;

(V) if o 2 A is of the form o :: =(P A Q) then split the end
of B and update the left fork with ¢ :: =P and update
the right fork with o :: =Q. If any of these updates
fails to add the corresponding formula then delete that
fork, possibly leaving B unaltered or with no fork;

(=) if o :: A is of the form o :: == P then update B with
o: P;

(v) if o :: Aisof the form o :: OP then, for every v-rule rule
in the calculus which is applicable to ¢ :: OP, update
B with the corresponding denominator;

(w) if o =z A is of the form ¢ :: —OP then let k£ be the
smallest integer such that the label ok is new on branch
B, update B with ok :: =P, and mark all formula on B
of the form o :: 0@ as awake;

End Stage n+1: Once this has been done for every open branch
that passes through o :: A4, if o :: A is of the form ¢ :: OP
then mark it as asleep, otherwise mark o :: A as finished,
and terminate Stage n+1.

Fig. 15. Systematic tableau construction for X = {A;, Ao, -, A, }.

Tableau Methods for Modal and Temporal Logics 83

In PAQ
) o P (IN) -) og:=(PAQ)
l o= P o:Q l o:—-Plo:-Q
lm) ———— where o.n 1S new to the current branc
] o P h . h b h
on o
a | O
(1K) o P (D) o P (1) o P
a.n g -0-P g P
O » O
(IB) o.n P (14) o P (15) 1.n P
o P o.n::0OP 1..:00P
n O n 0
(147) o.n P (147) o.n P
o gdP on.m :: OP

Note: except for on in the rule (I7), each label in the numerator and
denominator must already exist on the branch.

Fig. 16. Single Step Rules for the Basic Modal Logics

the numerator and denominator(s) are identical. The m-rule is a “successor
creator” since it is the only rule allowed to create new labels. Each v-rule
is a licence to add the formula in the denominator to the already existing
world named by the label of the denominator. It is the power to look
backwards along the reachability relation (in rules like (IB) and (14") that
allows us to handle the symmetric and euclidean logics with such ease.

Notice that none of the rules explicitly mention the reachability relation
between labels in their side-conditions. Furthermore, in all rules, the world
named by the label in the denominator is at most one step away from the
world named by the label in the numerator. For example, the (IT) rule
adds the formula P to the same world, whereas the (IK) and (IB) rules
add P to a successor and predecessor respectively.

At first sight, the “single step” nature of the v-rules seems a drawback
since we know that a v-formula can affect all successors, regardless of how
many primitive steps it takes to reach them. One is immediately tempted
to add side conditions that explicitly mention the reachability relation to
capture this notion as is done by Fitting [Fit83]. But it is precisely this
“single step” nature that allows the rules to ignore the reachability relation
and which gives us the modularity apparent in the calculi of Figure 17.

84 Rajeev Goré

LCL PC-Rules v-Rules m-Rule

LCPC (I-), (IA), (V)

LCK £CPC (IK))
£cT £CPC (IK), (IT) (i)
£CD £CPC (IK), (ID) (i)
LCKB LCPC (1K), (IB) (ir)
LCK4 £CPC (1K), (14) (ir)
LCK5 LCPC (1K), (14%), (147), (15) (ir)
LCKDB LCPC (1K), (IB), (ID) (ir)
LCKD5 LCPC (1K), (ID), (149), (147), (I5) (ir)
LCKAD LCPC (1K), (ID), (14) (ir)
LCK45 LCPC (1K), (14), (147), (15) (ir)
LCK45D LCPC (1K), (14), (147), (I5), (ID))
LCK4B LCPC (1K), (IB), (14), (147 (i)
LCB LCPC (1K), (iT),(IB) (ir)
£CS54 LCPC (1K), (IT), (14) (ir)
£CS5 £CPC (1K), (IT), (14), (147) (ir)

Fig. 17. Labelled Tableau Systems for the Basic Logics

A particular rule may not capture a property of accessibility completely,
but some combination of the rules will do so. For example, for transitivity
we require o :: OP to be able to give 0.6 :: P, for any |#| > 1, assuming that
both these labels (worlds) o and 0.6 exist. As Massacci [Mas94] points out,
instead of building this transitive closure property into a side condition for
(14), it is obtained by the combination of (I14) and (1K), one step at a time,
as shown below extreme left where we assume that & = n.m. That is, we
cannot derive Fitting’s actual rule for transitivity since that rule captures
the closure of the transitivity property by referring to L-accessibility in the
side condition. But we can derive every instance of transitivity, thereby
computing the closure by repeated applications of the single step rules.
We can also derive other useful rules. For example, the rule of “delayed
reflexivity” (IT'?) below centre says something like “all worlds (o.n) that
have a predecessor (o) are reflexive”. It can be derived in LCK5 and
LCK4B as shown below extreme right:

| o.n::OP ,
TP aop)
o.n 0O g
— (IK (IK)
onm: P (L) on:: OP on:: P

ey Z2iE8

derivation of transitivity on: P derivation of (IT?)

Tableau Methods for Modal and Temporal Logics 85

As an aside, note that in a symmetric frame, like those for K4B, any
world that has a predecessor also has a successor, hence (IT?) captures the
essence of the (To) rule of C'K4B on page 28.

The systematic construction is based on the one given by Fitting [Fit83,
page 402] for his prefixed tableau, and the one given by Massacci [Mas94],
except that we have amalgamated two of Fitting’s procedures in one here.
Fitting first works with occurrences of labelled formulae in order to mark
them as finished, adding fresh unfinished occurrences to handle necessary
repetitions. Later he refines the procedure to stop explicit repetitions since
this is just a form of contraction where such formulae may have to be used
more than once for completeness.

We work with labelled formulae per se, avoiding repetitions right from
the beginning, and mark most formulae as finished once we have dealt with
them. But we do not mark v-formulae as finished since they may need to be
used again and again. Because we always start a stage at the highest awake
formulae, these formulae get considered over and over again as desired.

Notice that the systematic procedure constructs only one tableau and
that it traverses this tableau in a breadth-first manner (except that some
formulae may change from asleep to awake and temporarily interrupt this
traversal). Massacci [Mas94] gives an alternative systematic procedure
where the formulae on a branch are processed using a different strategy;
all formulae of the form ¢ :: =0OP on a branch are processed before all for-
mulae of the form 7 :: OQ for example. Space forbids us from comparing
these strategies in more detail.

86 Rajeev Goré

Example 6.2.1. Below we show a closed systematic £CK-tableau for
X = {0(p — q),~(0p — Oq)}. We assume that A — B is written as
—(A A =B) and that =(A — B) is rewritten and simplified to A A ~B.
We use “a”, “s” and “f” for awake, asleep and finished respectively. The
notation s/a indicates that the formula was asleep but was woken up during
the stage.

Systematic LCK-tableau for X = {O(p — ¢),~(0Op — Og)}

Extant Tableau at Marks at
Stage End Stage End
1 2 3 4 5 6 7 8 9
1: 0O>p—gq) als|s|s|s/a|s|s|s]|s
1:-(0p—>0g) alal|f|f|f ff(f|f
1 Op als |sfalal|s|s|s
1 :: —-0Oq alal|f f|f|f]|f
1.1 :: —q a alal|f|f
1.1 p—>gq alalalf
1.1 = p alala
1.1:—p a
1.1:: —q a
(closed) (closed)

Example 6.2.2. The formula (OCp) A (Op) can be written in primitive
notation as (O-O-p) A (=O-p). As the reader can verify, the systematic
S4-tableau for X = {(O0-0-p) A (-O-p)} neither terminates nor closes.

6.3 Soundness of Single Step Tableau Rules

The soundness of the tableau rules is proved using a method from Fitting
[Fit83], but modified to cater for the strongly generated property. We first
extend the primitive notion of reachability between labels o and o.n into
a general notion of L-accessibility between labels o and 7, and show that it
captures the conditions on L-frames.

Recall that label p is the root of a strongly generated set of labels if
every other label in the set is an extension of p.

A set X of labelled formulae is strongly generated if lab(X) is strongly
generated. For any two labels o and 7 from some strongly generated set ?
of labels with root p = 1 we define an L-accessibility relation > according
to Figure 18. These conditions are calculated by taking the appropriate
closure of the underlying basic reachability relation between o and o.n.
(Thanks to Nicolette Bonnette for many simplifications.) For example, the
condition on K45-frames is calculated by computing the transitive and
euclidean closure of the basic reachability relation. It is here that our

Tableau Methods for Modal and Temporal Logics 87

Definition of o > 7 where ¢ and 7 are nonempty and drawn
from a strongly generated set of labels 7 with root p =1

Logics for all 7,0 € 7, 7 is L-accessible from o iff
K T = o.n for some n > 1

KT T=0NorT=a0

KB T=0.n0rc=Tm

K4 T=o0.6and |0 >1

K5 T=omnor (Jo] >2and |7] > 2)

K45 (r=0.0and |§] > 1) or (Jo| > 2 and |7]| > 2)
KD K-condition or (o is a K-deadend and ¢ = 1)
KDB | KB-condition or (|?|=1and o0 =7 = 1)
KD4 | K4-condition or (o is a K-deadend and ¢ = 7)
KD5 | K5-condition or (|7|=1and o =7 =1)
KD45 | K45-condition or (|?| =1and o =7=1)
KB4 | |[7|>2

B T=0O0rT=0.10r0=T.IM
S4 (r=o0.6and |8 > 1) or (1 =0)
S5 7] >1

Fig. 18. Definition of L-accessibility >.

assumption that the root p = 1 simplifies the conditions for L-accessibility,
but there is still a slight complication for the serial logics.

For any nonserial logic L1 we say that o is an Li-deadend if there is no
7 that is Lj-accessible from 0. Now we can express the seriality condition
for the serial counterpart L = L1 D by demanding that all L;-deadends be
reflexive. In particular, we say that o € 7 is a K-deadend if no label in
? is a simple extension of ¢. In Figure 18 we have computed the forms of
the Li-deadends and added an extra condition to make them reflexive for
each logic L;D. The notation |?| means the number of labels in 7.

We leave it to the reader to generalise these conditions to account for
the case where p is an arbitrary label. Note that the conditions on L-
accessibility in Figure 18 and the conditions on accessibility in the finite-L-
frames of Figure 13 on page 67 are closely related. We return to this point
later.

But first we relate L-accessibility to the L-frames of Figure 4 on page 9.

Theorem 6.3.1. If 7 is a strongly generated set of labels with root p =1
then F = (?,>) is an L-frame.

Proof: Tt is obvious that K'T-accessibility, K4-accessibility and KB-
accessibility forces F to be respectively reflexive, transitive and symmetric.
We consider only the case for K45 in detail.

We have to show that K45-accessibility forces F to be euclidean and

88 Rajeev Goré

transitive. K45-accessibility > is euclidean if og > 01 and o¢ > 09 implies
o1 > 09, where K45-accessibility > is defined as:

o> 1iff (r=0.0and |§| > 1) or (o] > 2 and |7| > 2)

By substitution we get:

Hypotheses Expanded Hypothesis

og > o (01 = 00.61 and |61]| > 1) or (Joo] > 2 and |oy| > 2)
and and
og D> o2 (02 = 00.02 and |02‘ > 1) or (|Uo| > 2 and |02| > 2)

Goal Expanded Goal

o1 D> oo (02 = 01.03 and |03] > 1) or (|o1]| > 2 and |o2| > 2)

Now, we know that o(is nonempty, hence |og| > 1. But this together
with (o4 = 09.61 and |#1| > 1) in the left disjunct of the first hypothesis
immediately gives |o1| > 2. Thus both disjuncts of the first line of the
hypothesis imply || > 2.

Similarly, |og| > 1 together with (oo = 0¢.0> and |63] > 1) in the left
disjunct of the second hypothesis gives |o2| > 2. Thus both disjuncts of
the second hypothesis imply |o2| > 2).

And the conjunction of these two gives the second disjunct of the goal
showing that K45-accessibility relation > is indeed euclidean.

To show that K45-accessibility is also transitive, we must show that
oo > o1 and o1 > 09 implies g9 > 02. The same expansions can be used
but the roles of hypotheses and goal are slightly altered. The argument
is almost identical, except for one subcase which relies on the fact that
|oo| = 1 implies o¢ = 1. |

Let X be a strongly generated set of labelled formulae, let lab(X) be
the set of labels that appear in X and let M = (W, R, V') be some L-model
where L is any one of the 15 distinct basic normal modal logics obtainable
by adding any combination of the axioms 7', D, B, 4 and 5 to logic K.
Call a world in M idealisable iff it has an R-successor in M.

An L-interpretation of (a strongly generated set of labelled formulae)
X in M is a mapping I : lab(X) — W that satisfies: if o > 7 and (o)
is idealisable then I(o)RI(7), where > is the appropriate L-accessibility
relation from Figure 18 [Fit83].

A strongly generated set X’ of labelled formulae is L-satisfiable under
the L-interpretation [if I(0) E A for each ¢ :: A in X; and is L-

Tableau Methods for Modal and Temporal Logics 89

satisfiable if it is L-satisfiable under some L-interpretation. A branch of
a labelled tableau is L-satisfiable if the set of labelled formulae on it is
L-satisfiable, and a tableau is L-satisfiable if some branch of the tableau is
L-satisfiable.

Proposition 6.3.2. The set of labelled formulae lab(B) from any branch
B of a labelled tableau is a strongly generated set.

Proof: By the fact that the initial label is always p = 1, and the fact
that the only new labels that may be created are labels of the form o.n,
n > 1, which are all simple extensions of some o € lab(B). |

We now prove soundness of some of the rules leaving the others to
the reader. Since the systematic procedure updates all branches that pass
through the chosen formula, the soundness theorem states the following: if
a tableau 7 is L-satisfiable and we apply rule (Ip) to get tableau 7', then
T’ is also L-satisfiable. Since every rule has at most two denominators, a
rule can cause a given branch to split into at most branches. Consequently
we have to prove that if a branch B is L-satisfiable, and applying rule (Ip)
causes it to be updated into branches C and D, then at least one of the
new branches is also L-satisfiable.

Soundness of (I7) for L-frames: Suppose B is an L-satisfiable branch
and that we apply the (I7) rule to some awake o :: =0OP on B to obtain
branch C containing on :: =P where on is a simple extension of ¢ that is
new to B. We have to show that C is L-satisfiable.

Since B is L-satisfiable, there is some L-model M = (W, R, V') and some
L-interpretation [in M such that I(c) € W and I(0) = -OP. Hence I(0)
is idealisable as there is some w € W with I(0) Rw and w = =P. Since on
is new, it does not appear in B and hence has no image under I. Extend I
by putting I(on) = w. We then have o>on, I(0)RI(on), and I(on) = P
meaning that C is indeed L-satisfiable under the extended I in M. [|

Soundness of (I4?) for K5-frames: Suppose B is a K5-satisfiable
branch and that we apply the (14%) rule to some on :: OP to get a branch
C containing onm :: OP. We have to show that C is also K5-satisfiable.

Since B is K5-satisfiable and the labels on and onm must already exist
on B, there is some K5-model M = (W, R, V) and some K5-interpretation
I'in M such that I(on) € W, I(onm) € W and I(on) |= OP. The label on
can exist on B only if ¢ also exists on B since B is strongly generated. Hence
there is some I(¢) € W. The configuration o > on > onm immediately im-
plies I(0)RI(on)RI(onm) by the definition of I. Because R is euclidean we
know that I(on)RI(on); that is I(on) is reflexive. Then I(on)RI(onm)
and I(on)RI(on) gives I(onm)RI(on). Hence I(onm) | <©OP. Eu-
clidean frames must validate axiom 5 (COA — OA) hence I(onm) = OP.
We have not altered I in any way, so by definition, C is K5-satisfiable under
I in M. [|

Soundness of (I5) for K5-frames: Suppose B is a K5-satisfiable

90 Rajeev Goré

branch and that we apply the (I5) rule to some 1.n :: OP to get a branch
C containing 1 :: OOP. We have to show that C is also K5-satisfiable.

As before there is some K5-model M = (W,R,V) and some K5-
interpretation I in M such that I(1.n) € W and I(1.n) = OP. Since
1is used on B and 11> 1.n, there must be some I(1) € W with I(1)RI(1.n).

Now suppose for a contradiction that I(1) = =OO0P; then there is some
w € W such that I(1)Rw and w = —OP, which in turn implies that there
is some w' € W such that wRw' and w' = —P. Since R is euclidean,
I(1)RI(1.n) and I(1)Rw gives wRI(1.n), and then wRw' gives I(1.n)Rw'.
But then I(1.n) = OP implies w' = P; contradiction. Hence I(1) |= OOP
and C is K5-satisfiable under [in M.

Theorem 6.3.3. If the systematic tableau for X closes then X is L-
unsatisfiable.

Proof: For a contradiction, suppose the tableau for X is closed and
that X is L-satisfiable. The latter means that there is some L-model M =
(W, R,V) and some world w € W such that w = X. Our tableau begins
with nodes 1 :: A;, for each A; € X so define an L-interpretation I in M
such that 7(1) = w. Then the initial tableau comprising the linear sequence
of these nodes 1 :: A; is L-satisfiable (under I in M). Since each of our
tableau rules is sound, any tableau obtained from this initial tableau by
these rules is also L-satisfiable. Hence our tableau is L-satisfiable.

Suppose B is some branch of this closed tableau. Then B itself is closed
and hence contains some labelled formula ¢ :: P and also contains o :: = P.
Now any L-interpretation I’ for B in any L-model M’ would entail that
I'(6) = P and also that I'(¢) = =P, which is clearly impossible. Hence
B is not L-satisfiable. Since B was an arbitrary branch this must be true
for all branches of this closed tableau. Then, by definition, our tableau is
not L-satisfiable. Contradiction, hence if the tableau for X closes then X
is L-unsatisfiable. [|

Corollary 6.3.4 (soundness). If the systematic tableau for {—A} is closed
then A is L-valid.

6.4 Fairness, Infinite Tableaux, Chains and Periodicity

The systematic tableau construction may go on ad infinitum in some cases.
We now prove some useful properties of our systematic labelled tableau
procedure giving some insight into its behaviour.

We have already noted that the systematic procedure is essentially a
breadth-first traversal of the tableau under construction except that certain
formulae may awaken to interrupt this traversal. In what follows we refer to
the uninterrupted sequence of node traversal as the visit sequence. That
is, the visit sequence is the sequence in which the systematic procedure
would visit the nodes if no v-formula is reawakened. It has little to do with
the sequence of nodes on a particular branch.

Tableau Methods for Modal and Temporal Logics 91

The systematic tableau is a finitely generated tree in that each node
has at most two immediate children (since branches are caused only by the
(V) rule). By Konigs lemma, an infinite but finitely generated tree must
contain an infinite branch (see Fitting [Fit83, pages 404-407]). Hence there
are four ways in which the systematic procedure can go on ad infinitum:

1. by constructing an infinite branch containing a sequence of distinct
labelled formulae o :: Py,0 :: Py,0 :: P3,---,0 :: P,,--- all with the
same label o;

2. by constructing an infinite branch containing a sequence of labelled
formulae 0.1 :: Py,0.2 :: Py,0.3 :: P3,---,0.n :: P,,--- all simple
extensions of some common o;

3. by constructing an infinite branch containing a sequence of labelled
formulae oy :: Py,09 :: Py,03 :: P3,---,0, :: P,,--- all with different
labels ; and

4. by traversing a set of formulae that repeatedly switch from asleep to
awake and vice-versa on the wisit sequence.

We show that items (1), (2) and (4) cannot occur.

Lemma 6.4.1. In any branch of a systematic tableau for the finite set of
formulae X, the maximum number of formulae with some given label o is
finite.

Proof: By induction on the length of . If |o| = 1 then ¢ = 1 and
the only possible formulae with this label are either subformulae of X,
negations of a subformula of X, or are obtained from some subformulae
of X by the building up rules (15) and (/D). But no infinite sequence of
building up rules is possible. If |o| > 1 then ¢ must have been created by
(Ir) which adds only the negation of a subformula of its numerator. For
details see Fitting [Fit83, page 411]. |

Item 1 above is then impossible since any branch has but a finite num-
ber of formulae with label o and we do not permit the branch to contain
repetitions. We leave it to the reader to compute actual bounds noting the
presence of the “building up rules” (ID) and (15); see Massacci [Mas94]

Lemma 6.4.2. In any branch of a systematic tableau for the finite set of
formulae X, the number Ny, of different labels of length k is finite.

Proof: Proof by induction on k and the fact that the systematic tableau
construction avoids repetitions. See Fitting [Fit83, pages 410-412] and
Massacci [Mas94] for more exact bounds but once again beware that these
need to be adjusted for the “building up rules”. [|

Thus no branch can contain an infinite number of labels all of the same
length £ for any k, and item 2 above is also impossible.

We now turn to item 4 in some detail since these details cannot be found
elsewhere. First note that although a branch does not contain repetitions,

92 Rajeev Goré

the visit sequence may do so.

Lemma 6.4.3. A particular labelled formula occurrence o :: OQ on the
visit sequence can be awakened only a finite number of times.

Proof: The only way to awaken a v-formula occurrence ¢ :: 0O() is to
visit some 7-formula occurrence ¢ :: =0OP that appears on the same branch
as ¢ :: OQ. Since the systematic tableau is finitely branching, the number
of such branches is finite. A branch can contain ¢ :: =OP at most once,
hence the number of occurrences of o :: =OP on the visit sequence is (also)
finite. Since ¢ must be of finite length, Lemma 6.4.1 guarantees that there
are only a finite number of formulae with label ¢ on any branch of the
tableau. Hence there are a finite number of w-formulae occurrences that
can awaken o :: 0Q.

If none of these w-formulae occurrences is visited then o :: O() is never
awakened. On the other hand, whenever one of these w-formulae occur-
rences is visited, it is marked as finished, and 7-formulae are never reawak-
ened, hence ¢ :: 0@ can be awakened only a finite number of times. Since
this formula occurrence was an arbitrary v-formula occurrence we know
that every v-formula occurrence can be awakened only a finite number of
times. [|

Lemma 6.4.4 (fairness). If a labelled formula occurrence o :: A on the
visit sequence is awake at the end of Stage n, the systematic procedure is
guaranteed to visit it at some later stage.

Proof: By induction on the number of w-formulae occurrences that
precede o :: A in the visit sequence. Clearly, if o :: A is the root then it
is immediately visited at Stage n + 1. Similarly, if there are no m-formulae
occurrences between the root and o :: A on the visit sequence then every
subsequent stage will visit the next intervening formulae occurrence in the
visit sequence and mark it as asleep or finished. The absence of intervening
m-formulae occurrences means that no formulae occurrences can awaken
until after o :: A is visited. Hence there must come a stage that visits
o A

Suppose the lemma holds for any labelled formula occurrence with j
m-formulae occurrences preceding it in the visit sequence.

Consider some o :: A occurrence that is awake at the end of stage n but
that has j + 1 w-formulae occurrences preceding it in the visit sequence.
Let 7 :: =OB be the last w-formula occurrence in the visit sequence that
precedes o :: A.

If 7 :: =OB is not awake at the end of stage n then it must be finished,
meaning that all 7-formula occurrences preceding o :: A in the visit se-
quence must be finished. Each subsequent stage must visit one of the awake
v-formulae occurrences preceding o :: A and mark each one as asleep. No
v-formulae occurrences can awaken during this process since there are no

Tableau Methods for Modal and Temporal Logics 93

awake m-formula occurrences preceding o :: A. Hence there must come a
stage that visits o :: A.

If 7 :: OB is awake at the end of stage n then it satisfies the induction
hypothesis, so it will eventually be visited at some later stage, and marked
as finished, meaning that no w-formula occurrences preceding o :: A in the
visit sequence are awake. Some v-formulae occurrences preceding o :: A
may be awakened by the visit to 7 :: “0B but each of these will be visited
in turn and put to sleep in the stages that follow. Again, no formulae
occurrences will be awakened in this process. Hence there must come a
stage when we visit the formula occurrence immediately after 7 :: =0OB in
the visit sequence. If this is o :: A then we are done. Otherwise this stage
and subsequent stages must bring us closer and closer to o :: A since none
of these intervening formulae occurrences is a w-formula. [|

Lemma 6.4.5. No labelled formula occurrence on the visit sequence can
remain awake for ever.

Proof: Suppose the occurrence o :: A is awake at stage n. Lemma 6.4.4
guarantees that o :: A will be visited at some later stage m with m > n.
If 0 :: A is not a v-formula then it will be marked as finished and will
remain so hereafter. Else o :: A is a v-formula and it will be marked as
asleep at the end of stage m. If o :: A ever awakens at some later stage k
then Lemma 6.4.4 again guarantees that it will be visited and put back to
sleep. But this can happen only a finite number of times since Lemma 6.4.3
guarantees that o :: A can awaken only a finite number of times. Hence
there must come a stage when o :: A is put to sleep, never to awaken again.

|

Thus the systematic procedure is “fair” in that item 4 is also impossible.
The only way the systematic procedure can go ad infinitum is for some
branch to have at least one infinite sequence of longer and longer labels
of the form o, o.ny, o.n1.ns --- where each label is a simple extension of
its predecessor. In fact, since every label starts with a 1 we can be more
precise as below (again following Fitting [Fit83]).

A chain is a sequence of labels 1, o1 , 02 -+ where each label in the
sequence is a simple extension of its predecessor [Fit83]. A chain of labels
1, 01 , 09 -+ from branch B is periodic if there exist distinct labels o; and
o; in the chain (i < j) such that o; :: Ais on B iff g; :: A is on B; that is
if {Alo; :: Aon B} = {Blo; : Bon B }. A branch is periodic if every
infinite chain (of labels) on B is periodic.

Lemma 6.4.6. If any branch of a systematic tableau for the finite set of
formulae X is infinite, then it must be periodic [Fit83].

Proof: Basically, given a finite X, there is a limit to the number of
different (unlabelled) formulae we can play with, even with the building
up rules. Thus any infinite chain of prefixed formulae from any one branch

94 Rajeev Goré

must repeat formulae at some stage. Since this is true for every chain on
an infinite branch, the branch must become periodic. [|

We thus have a handle on the systematic construction since an infinite
branch is not as bad as it first seemed. If we could keep track of cycles
then we could obtain a decision procedure. We briefly return to this point
later.

6.5 Completeness

Again we follow Fitting [Fit83, pages 408-410] but make adjustments for
the strongly generated property. A strongly generated set X of labelled
formulae is L-downward-saturated if it satisfies the following conditions,
where > is the appropriate L-accessibility relation between labels from
Figure 18 (page 87):

0) there is no formula A such that both o :: A and ¢ :: =A are in X;

1) ifo::-—A€Xtheno:Ae X

2) ifo: ANBe X theno:: A€ X and o :: B € X;
3)ifo:-(AAB)e X theno::-Ae€Xoro::-BeAX,

4) if o : OA € X then 7:: A € X for every 7 € lab(X) such that o > 7;
5) if 0 :: "0A € X then 7 :: =A € X for some 7 € lab(X) such that o > 7.

Lemma 6.5.1. If X is a strongly generated set of labelled formulae that is
L-downward-saturated and lab(X) has root p = 1, then X is L-satisfiable
in a model whose possible worlds are the labels that appear in X .

Proof: Suppose X is L-downward-saturated and let lab(X) be the set
of labels that appear in X. Since X is strongly generated, so is lab(X).
Now define a model (W, R, V') as follows:

1. let W = lab(X);
2. let oRr iff 0 > 7 (that is, iff 7 is L-accessible from o);
3. for each primitive proposition p let V(p) = {o|o = p € A'}.

It is then easy to show by induction on the degree of a formula A
and the L-downward-saturated property that: if o :: A € X then o = A
in the model (W, R, V). The identity mapping I(c) = o is then an L-
interpretation for X' in the model (W, R, V).

Once again, the condition that p = 1 is forced upon us by our reliance
on this condition in the definitions of L-accessibility. [|

We have already noted that the systematic procedure is essentially a
breadth-first traversal of the tableau under construction. We have also
identified the mode in which this procedure can go ad infinitum. Keeping
these in mind, we say that an open tableau is completed if it is infinite
or if no formulae in it is awake. But before we can prove the completeness
theorem we need to show that our systematic procedure “does everything
that is necessary” in the following sense.

Tableau Methods for Modal and Temporal Logics 95

Lemma 6.5.2. If B is an open branch of a completed systematic tableau
then B is closed with respect to every tableau rule in the calculus in that:
every rule that could have been applied to a formula in B must have been
applied at some stage.

Proof: By fairness, every formula is visited at least once. Thus the PC-
rules and the 7-rules must have been applied whenever it was possible. For
the v-rules, suppose o :: OP is some v-formula on B and suppose some
instance of a v-rule (Ip) is applicable to it because some label 7 of the
required form is used on B.

Now, when ¢ :: OP was first visited, if 7 was used on the extant part
of B then we are done for the given instance of rule (Ip) must have been
applied then.

Else, 7 must be o.n and must have been created at some later stage
by some awake m-formula ¢ :: =0@ on B. The creation of o.n must have
awakened o :: OP. Since B is completed, and our systematic procedure is
fair, the procedure must have visited o :: OP at some later stage still. The
given instance of rule (Ip) must have been applied at that later stage since
7 was used on the extant part of B. [|

Lemma 6.5.3. If B is an open branch of a completed systematic tableau
then B is L-downward-saturated.

Proof: By Lemma 6.5.2, B is closed with respect to every rule of
the calculus (in the appropriate sense). We now have to go through the
necessary clauses (see page 94) to show that B is L-downward-saturated.

Clause 0) is satisfied since B is open. Clauses 1), 2) and 3) are satisfied
since B must be closed with respect to the classical propositional rules.
Clause 5) must be satisfied because B is closed with respect to (Ir). For
clause 4) assume that o :: OA € B and that o > 7 for some 7 in lab(B). We
have to show that 7 :: A € B for each definition of L-accessibility > from
Figure 18.

We give the proof for K5 only. By the definition of K5-accessibility,
o > 7 means that

T=omnor (Jo| >2and |7] > 2)

Case 1: If 7 = o.n then o :: OA € B implies on :: A € B by the fact that
B is closed with respect to the rule (1K).

Case 2: Otherwise, if (Jo| > 2 and |7| > 2) then ¢ = 1.ny.ne---ny for
some k > 1 and 7 = 1.mq.my---m, for some [> 1. Then starting from
(0 :: OA) = (I.ny.no---ng » OA) we can obtain 1.y :: OA € B and
1:: 04 € B by closure of B with respect to (14"). From the first we can
obtain 1 :: OOA € B by closure of B with respect to (15), and from this
we obtain 1.m; :: OA € B by (IK). Now, if [= 1 then 7 = 1.m; and
1:: OA € B immediately implies 7 :: A € B by (IK). Otherwise, if [> 2

96 Rajeev Goré

then 1.m; :: OA € B and closure with respect to (I4%) guarantee that
1.mimy---my_1 :: DA € B from which we get (1.my.mo---my :: A) =
(1 :: A) € B by (IK) as desired. |

Theorem 6.5.4. If the systematic tableau for X does not close then X is
L-satisfiable.

Proof: Suppose the systematic tableau for X does not close. Then
the tableau must be completed, and must contain some open branch B by
definition. Lemma 6.5.3 guarantees that B is an L-downward-saturated set.
Since lab(B) must have root p = 1, Lemma 6.5.1 then guarantees that B is
L-satisfiable (under the identity L-interpretation I(c) = o) in an L-model
M = (lab(B), >, V). Furthermore, if o :: A € B then 0 = A in M. The
tableau started with a linear sequence of nodes 1 :: A; for every A; € X,
hence 1 :: A; € B for every A; € X. But then 1 = X in M. [|

Corollary 6.5.5 (completeness). If A is L-valid then the systematic
tableau for {—A} must close.

These methods extend easily to cater for “strong completeness” where
we are allowed both “global” and “local” assumptions; see Fitting [Fit83]
and Massacci [Mas94].

6.6 Cycles, Termination and Decidability

In the previous sections we have seen how an infinite tableau must give rise
to a counter-model. But it is also possible to modify the systematic pro-
cedure to identify potential periodic chains and keep tabs on them during
the systematic procedure. That is, once a chain of labels becomes periodic
because o; and o; label identical sets of formulae, all formulae with the
longer label are put to sleep. They are awakened only when periodicity for
this chain is broken by the appearance of some new formula with a label
o; or 0j; see Massacci [Mas94]. Lemma 6.4.6 guarantees that every infi-
nite branch will eventually become periodic, hence the modified systematic
procedure will terminate for finite X. If the tableau has not closed then we
are still guaranteed the same model as if we had allowed it to run ad infini-
tum. Thus these labelled tableaux can be used as decision procedures for
the 15 basic logics. By keeping tabs on cycles we can also prove the finite
model property for these logics since the resulting L-frames are exactly the
finite-L-frames of Figure 13 (page 67).

The details are considerably more intricate than the preceding para-
graph suggests since we have to preserve “fairness” and completeness. But
there simply is no space. Massacci [Mas94, Mas95b] gives alternative proofs
of decidability for his systematic procedure based on an interpretation of
the tableau rules as term rewriting rules. But a check for periodicity cannot
be avoided for the transitive logics.

Tableau Methods for Modal and Temporal Logics 97

o ::-OP .
(ItG) ———— where o.n is new to the current branch
omn P

o.n::OP

@ -OP .
(IrGrz) 7= 7" Where o.n is new to the current branch

on P

o.n : O(P — OP)

LCL PC-Rules v-Rules m-Rule L-accessibility >
LCG LCPC (IK), (14) (IrG) K
LCKAG, LCPC (IK), (14) (IrGrz) K4
LCGrz LCPC (IK), (14), (IT) (IxGrz) S4

Fig. 19. Labelled Tableau Systems for Provability Logics

6.7 Extensions and Further Work

The most obvious extensions of this approach are to multi-modal logics
where different sorts of labels are used to model the different reachability
relations.

An alternative extension is to change the w-rule, thereby obtaining sys-
tems for the provability logics, as shown in Figure 19. Note that first-order
definability is not a hurdle for these labelled tableau systems since the class
of G-frames and Grz-frames are not first-order definable. It may also be
possible to extend these systems to handle some of the Diodorean modal
logics.

We noted on page 87 that the L-accessibility relation > and the finite-
L-frames of Figure 13 (page 67) are closely related. We also mentioned on
page 11 that there is a duality between the explicit tableau methods and
the implicit tableau methods. We now briefly explain these comments by
way of an alternative labelled tableau system £C* K45 for logic K45.

Consider the system £LC* K45 = LCPCU{ (Imy) , (I14™w) , (147) , (IK) }

where the new rules are as given below:

98 Rajeev Goré

1ln::—-0OP l.n::0OP ; OpP
(4rm) == an 22 i) 2
1::-0P 1::0P on: P
-0
(Im) % where 1.n is new to the current branch
1.n =

Note: except for 1.n in the rule (Im) , each label in the numerator and
denominator must already exist on the branch.

The system L£C*K45 does not fit into the mould of our other labelled
systems since: it has two m-rules, neither of which is the usual (7) rule; the
(147 7) rule does not create a successor but merely moves a w-formula from
world 1.n to the root world 1; and the (Im) rule is a special case of the
usual () rule, and creates a successor for a 7 formula only if its label is the
root label 1. We therefore need to modify the systematic procedure slightly
so that one of the mutually exclusive rules (14"7) or (lm) is applied to the
chosen (awake) w-formula as is appropriate. Then a w-formula with a label
o # 1 cannot cause the creation of a successor and a systematic £LC* K45-
tableau for a finite X will contain labels of length at most 2. Furthermore,
even though the logic is transitive, we do not need any check for periodicity
since every systematic tableau is guaranteed to terminate for finite X.

Theorem 6.7.1. The rules of LC* K45 are sound for K45-frames.

Proof: We have to show that if the numerator is K45-satisfiable then
so is each denominator. So as in Section 6.3 (page 86), suppose there is
some K45-model M and an L-interpretation I under which each numerator
is K45-satisfiable in M.

Proof for (/4"w) : If I(1.n) = —OP then 1> 1.n gives I(1)RI(1.n)
which gives I(1) = ©—-0OP which is I(1) = ©C—P. Then, by the variant
OOA — OA of the transitivity axiom 4 we have I(1) = O—=P, that is,
I(1) = —OP as required.

Proof for (147) : If I(1.n) = OP then 1>1.n gives I(1)RI(1.n), giving
I(1) | ©0OP, which by the euclidean axiom ¢GOA — OA gives I(1) = OP,
as required.

Proof for (lm) : The rule (Im) is just an instance of (I7) and we

know the latter is sound for all Kripke frames. [|
Theorem 6.7.2. The calculus LC*K45 is complete with respect to K45-
frames.

Proof: We have to show that if the systematic tableau for X is open
then some open branch B gives an K45-downward-saturated set of labelled
formulae (see page 94).

Very well, suppose the systematic tableau for X is open. Choose an

Tableau Methods for Modal and Temporal Logics 99

open branch B. The branch must be closed with respect to all the rules
of LC* K45 in the appropriate sense (page 95) since this is a consequence
of the systematic procedure itself rather than the form of the rules. The
clauses 0) to 3) of the definition of K45-downward-saturated go through
as before. For clause 4) note that 1> 1.n and 1.n > 1.m for all n and m,
where n and m are integers, captures K45-accessibility over lab(B) com-
pletely since B contains labels of length at most 2. The derivation below
left shows that clause 4) must be satisfied while the derivation below right
shows that clause 5) must also be satisfied

n o d .m0
11n PP (147) 11n PP (1477)
0O =0
— (IK) — (Im)
1.m: P 1.m :: =P

Thus X is K45-satisfiable under the identity L-interpretation I(c) = o
in the K45-model (lab(B),>,V) as defined in Lemma 6.5.1 on page 94. |l

The new rules of LC* K45 are essentially the operations that we required
in the completeness proofs for C'K45 on page 41. Thus £C*K45 imple-
ments the completeness proof for C'K45, but £C*K45 is cut-free! Fur-
thermore, the K45-model created by the completeness proof for £LC* K45
(above) is also a finite-K45-frame as defined on page 67. The extra power
of rules that look backward against R, like (147) and (I4"7) , have allowed
us to eliminate even analytic cut.

For most cases, LC* K45 will be more efficient than £LCK45 due to the
restriction that labels be at most length 2. Given a finite X, the number
of prefixes of length 2 on any branch of a systematic tableau for X can
be bounded by extending Lemma 6.4.2; see Massacci [Mas94] or Fitting
[Fit83]. Hence, as pointed out to me by Massacci, we may even be able
to determine the complexity of the decision and satisfiability problems for
K45 using this system, although such results are already known for most
of the basic logics; see [Lad77, HM85].

The system KE of Mondadori [DM94] has already been described in
another chapter in this handbook. Clearly, it should be possible to extend
all our modal tableau systems by modifying our tableau rules to incorporate
the rule (PB). The only work along these lines that I know of is the work of
Artosi, Governatori and coworkers [AG94] who use both (PB) and labelled
tableaux, but where the labels are allowed to contain variables as well as
constants. A branch is now closed if it contains some o :: A and some
T :: = A as long as the labels o and 7 are unifiable as strings with different
string unification algorithms for different modal logics. The rule (PB) is
also driven by string unification of labels. That is, the restrictions on the
reachability relation are not built into a notion like L-accessibility, but

100 Rajeev Goré

into the unification algorithms. The main advantage is that we can now
“detect” closure subject to a constraint that two given labels unify.

Ohlbach [Ohl93] has also studied such systems but in a different guise,
for Ohlbach literally translates modal logics into classical first-order logic.

Any method that uses labels is really translating the modal logic into
classical first-order logic since all these methods use a label of “universal
force” for O-formulae and use a label of “existential force” for ¢-formulae.
The recent work of Russo [Rus95] makes these intuitions explicit.

Acknowledgements: I would like to thank Melvin Fitting, Jean Goubault,
Alain Heuerding, Bob Meyer and Minh Ha Quang for their comments on
earlier drafts. Particular thanks to Fabio Massacci for many useful com-
ments and fruitful discussions, and Nicolette Bonnette for numerous cor-
rections.

Tableau Methods for Modal and Temporal Logics 101

References

[AES9)]

[AG94]

[Ame93]

[Avr8&4]

[Avr94]

[BB87]

[Bel85]
[Bet53]

[Bet55]

[BGS6)]

[BHE95]

[Boo79]
[Bor83]

[Bor93)]

[BP95]

Y. Auffray and P. Enjalbert. Modal theorem proving: An equa-
tional viewpoint. In 11th International Joint Conference on
Artificial Intelligence, pages 441-445, 1989.

A. Artosi and G. Governatori. Labelled model modal logic. In
Proceedings of the CADE-12 Workshop on Automated Model
Building, pages 11 17, 1994.

Martin Amerbauer. Schnittfreie Tableau- und Sequenzenkalkiile
fiir Normale Modale Aussagenlogiken. PhD thesis, Naturwis-
senschaftliche Fakultdt der Universitit Salzburg, 1993.

Arnon Avron. On modal systems having arithmetical interpre-
tations. Journal of Symbolic Logic, 49:935-942, 1984.

Arnon Avron. The method of hypersequents in proof theory
of propositional non-classical logics. Technical Report 294-94,
Institute of Computer Science, Tel Aviv University, Israel, 1994.
Behnam Baniegbal and Howard Barringer. Temporal logic with
fixed points. In Proc. Workshop on Temporal Logic in Specifi-
cation, LNCS 398, 1987.

G. Bellin. A system of natural deduction for GL. Theoria,
51:89-114, 1985.

E. W. Beth. On Padoa’s method in the theory of definition.
Indag. Math., 15:330-339, 1953.

E. W. Beth. Semantic entailment and formal derivability. Med-
edelingen der Koninklijke Nederlandse Akademie van Weten-
schappen, Afd. Letterkunde, 18:309 342, 1955.

M. Borga and P. Gentilini. On the proof theory of the modal
logic Grz. ZML (now called Mathematical Logic Quarterly),
32:145-148, 1986.

P. Baumgartner, R. Hahnle, and J. Posegga (Ed.). Proceed-
ings of the fourth workshop on theorem proving with analytic
tableaux and related methods. LNAT 918, 1995.

G. Boolos. The Unprovability of Consistency. Cambridge Uni-
versity Press, 1979.

M. Borga. On some proof theoretical properties of the modal
logic GL. Studia Logica, 42:453-459, 1983.

Tijn Borghuis. Interpreting modal natural deduction in type
theory. In Maarten de Rijke, editor, Diamonds and Defaults,
pages 67 102. Kluwer Academic Publishers, 1993.

Bernhard Beckert and Joachim Posegga. leanT4P: Lean
tableau-based deduction. Journal of Automated Reasoning,
15(3):339 358, 1995.

102

[BS84]

[Bul65]

[Bul8s]

[Bur84]

[Cat88]

[Cat91]

[Cer93]

[Che80]
[CL73]
[Cur52]

[DM94]

[EG82]

[EHS5]

[Eme85]

[Eme90)]

Rajeev Goré

R. A. Bull and K. Segerberg. Basic modal logic. In D. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic,
Volume II: Extensions of Classical Logic, pages 1 88. D. Reidel,
1984.

R. A. Bull. An algebraic study of Diodorean modal systems.
Journal of Symbolic Logic, 30(1):58—-64, 1965.

R. A. Bull. Review of ‘Melvin Fitting, Proof Methods for Modal
and Intuitionistic Logics, Synthese Library, Vol. 169, Reidel,
1983’. Journal of Symbolic Logic, 50:855—-856, 1985.

J. Burgess. Basic tense logic. In D. Gabbay and F. Guenthner,
editors, FExtensions of Classical Logic, volume II of Handbook of
Philosophical Logic, pages 1 88. Reidel, Dordrecht, 1984.

L Catach. TABLEAUX: A general theorem prover for modal
logics. In Proc. International Computer Science Conference:
Artificial Intelligence: Theory and Applications, pages 249-256,
1988.

Laurant Catach. TABLEAUX: A general theorem prover for
modal logics. Journal of Automated Reasoming, 7:489 510,
1991.

Claudio Cerrato. Modal sequents for normal modal logics.
Mathematical Logic Quarterly (previously ZML), 39:231-240,
1993.

B. F. Chellas. Modal Logic: An Introduction. Cambridge Uni-
versity Press, 1980.

G. L. Chang and R. G. T. Lee. Symbolic logic and mechanical
theorem proving. Academic Press, New York, 1973.

H. B. Curry. The elimination theorem when modality is present.
Journal of Symbolic Logic, 17:249 265, 1952.

M. D’Agostino and M. Mondadori. The taming of the cut:
classical refutations with analytic cut. Journal of Logic and
Computation, 4:285-319, 1994.

Eigirdas Gudzhinskas. Syntactical proof of the elimination the-
orem for von Wright’s temporal logic. Mat. Logika Primenen,
2:113 130, 1982.

E. A. Emerson and J. Y. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time. Journal
of Computer and System Sciences, 30:1-24, 1985.

E. Allen Emerson. Automata, tableaux, and temporal logics. In
Proc. Logics of Programs 1985, LNCS 193, pages 79-87, 1985.
E. A. Emerson. Temporal and modal logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume Vol-
ume B: Formal Models and Semantics, chapter 16. MIT Press,

[ES83]

[ES84]

[ES88]

[Fis01]

[Fit73]

[Fit83)]

[Fit93]

[FS91]

[Gabs7]

[Gab9x]

[Gen35]

[Gen91a]

Tableau Methods for Modal and Temporal Logics 103

1990.

E. A. Emerson and A. Prasad Sistla. Deciding branching time
logic: A triple exponential decision procedure for CTL*. Proc.
Logics of Programs, LNCS 164, pages 176 192, 1983.

E. A. Emerson and A. Prasad Sistla. Deciding branching time
logic. In Proc. 16th ACM Symposium Theory of Computing,
pages 14-24, 1984.

E. Allen Emerson and Jai Srinivasan. Branching time temporal
logic. In Proc. School/Workshop on Linear Time, Branching
Time and Partial Order In Logics and Models of Concurrency,
The Netherlands, 1988, LNCS 354, pages 123 172, 1988.
Michael Fisher. A resolution method for temporal logic. In Proc.
12th International Joint Conference on Artificial Intelligence
1991, pages 99-104. Morgan-Kaufmann, 1991.

Melvin Fitting. Model existence theorems for modal and intu-
itionistic logics. Journal of Symbolic Logic, 38:613—-627, 1973.
M. Fitting. Proof Methods for Modal and Intuitionistic Logics,
volume 169 of Synthese Library. D. Reidel, Dordrecht, Holland,
1983.

Melvin Fitting. Basic modal logic. In D. Gabbay et al, editor,
Handbook of Logic in Artificial Intelligence and Logic Program-
ming: Logical Foundations, volume 1, pages 365-448. Oxford
University Press, 1993.

Alan M. Frisch and Richard B. Scherl. A general framework
for modal deduction. In J. Allen, R. Fikes, and E. Sandewall,
editors, Proc. 2nd Conference on Principles of Knowledge Rep-
resentation and Reasoning. Morgan-Kaufmann, 1991.

Dov Gabbay. The declarative past and imperative future: Exe-
cutable temporal logic for interactive systems. In Proc. Work-
shop on Temporal Logic in Specification, LNCS 398, pages 409—
448. Springer-Verlag, 1987.

Dov Gabbay. Labelled Deductive Systems. Oxford University
Press (to appear), 199x.

G. Gentzen. Untersuchungen tiber das logische Schliessen.
Mathematische Zeitschrift, 39:176 210 and 405 431, 1935. En-
glish translation: Investigations into logical deduction, in The
Collected Papers of Gerhard Gentzen, edited by M. E. Szabo,
pp 68-131, North-Holland, 1969.

TIan Gent. Analytic Proof Systems for Classical and Modal Log-
ics of Restricted Quantification. PhD thesis, Dept. of Computer
Science, University of Warwick, Coventry, England, 1991.

104

[Gen91b)]
[Gen93]

[GHHY5]

[GHRO4]

[Gol87]

[Gor91]

[Gor92]

[Gor94]

[Gou84]

[Han66]

[HC68]
(HC84)
[Hin55]

[HMS5]

[HSZ]

[Hud94]

Rajeev Goré

Tan Gent. Theory tableaux. Technical Report 91-62, Mathe-
matical Sciences Institute, Cornell University, 1991.

Tan Gent. Theory matrices (for modal logics) using alphabetical
monotonicity. Studia Logica, 52(2):233 257, 1993.

R. Goré, W. Heinle, and A. Heuerding. Relations be-
tween propositional normal modal logics: an overview.
Technical Report TR-16-95, Automated Reasoning Project,
Australian National University, 1995. Available via
http://arp.anu.edu.au/ on WWW.

D M Gabbay, I. M. Hodkinson, and M A Reynolds. Tempo-
ral logic - mathematical foundations and computational aspects,
Volume 1. Oxford University Press, 1994.

R. I. Goldblatt. Logics of Time and Computation. CSLI Lec-
ture Notes Number 7, Center for the Study of Language and
Information, Stanford, 1987.

Rajeev Goré. Semi-analytic tableaux for modal logics with ap-
plications to nonmonotonicity. Logique et Analyse, 133-134:73—
104, 1991. (printed in 1994).

Rajeev Goré. Cut-free sequent and tableau systems for propo-
sitional normal modal logics. Technical Report 257, University
of Cambridge, England, June, 1992.

Rajeev Goré. Cut-free sequent and tableau systems for proposi-
tional Diodorean modal logics. Studia Logica, 53:433-457,1994.
G. Gough. Decision procedures for temporal logics. Master’s
thesis, Dept. of Computer Science, University of Manchester,
England, 1984.

William Hanson. Termination conditions for modal decision
procedures (abstract only). Journal of Symbolic Logic, 31:687

688, 1966.

G. E. Hughes and M. J. Cresswell. Introduction to Modal Logic.
Methuen, London, 1968.

G. E. Hughes and M. J. Cresswell. A Companion to Modal
Logic. Methuen, London, 1984.

K. J. J. Hintikka. Form and content in quantification theory.
Acta Philosophica Fennica, 8:3 55, 1955.

J. Y. Halpern and Y. Moses. A guide to the modal logics of
knowledge and belief: Preliminary draft. In Proc. International
Joint Conference on Artificial Intelligence, pages 480-490, 1985.
Alain Heuerding, Michael Seyfried, and Heinrich Zimmermann.
Efficient loop-check for backward proof search in some non-
classical logics. Submitted to Tableaux 96.

J. Hudelmaier. On a contraction free sequent calculus for the

[Kam68)

[Kan57]

[Kaw87]

[Kaw88]

[KHY4]

[Kra96]

[Kri59]

[Kri63]

[Lad77]

[Mas91]
[Mas92]

[Mas93]

[Mas94]

Tableau Methods for Modal and Temporal Logics 105

modal logic S4. In Proceedings of the 3rd Workshop on Theorem
Proving with Analytic Tableauz and Related Methods. Technical
Report TR-94/5, Department of Computing, Imperial College,
London, 1994.

Johan Anthony Willem Kamp. Tense Logic and the Theory of
Linear Order. PhD thesis, Dept. of Philosophy, University of
California, USA, 1968.

S. Kanger. Provability in Logic. Stockholm Studies in Philos-
ophy, University of Stockholm, Almqvist and Wiksell, Sweden,
1957.

Hiroya Kawai. Sequential calculus for a first-order infinitary
temporal logic. ZML (now Mathematical Logic Quarterly),
33:423-432, 1987.

Hiroya Kawai. Completeness theorems for temporal logics Tq
and OTq. ZML (now Mathematical Logic Quarterly), 34:393—
398, 1988.

M. Koshimura and R. Hasegawa. Modal propositional tableaux
in a model generation theorem prover. In Proceedings of the 3rd
Workshop on Theorem Proving with Analytic Tableauz and Re-
lated Methods. Technical Report TR-94/5, Department of Com-
puting, Imperial College, London, 1994.

M. Kracht. Power and weakness of the modal display calculus.
In H. Wansing, editor, Proof Theory of Modal Logics. Kluwer,
1996. to appear.

Saul Kripke. A completeness theorem in modal logic. Journal
of Symbolic Logic, 24(1):1 14, March 1959.

Saul Kripke. Semantical analysis of modal logic I: Normal
modal propositional calculi. Zeitschrift fir Mathematik Logik
und Grundlagen der Mathematik, 9:67-96, 1963.

Richard Ladner. The computational complexity of provability
in systems of modal propositional logic. STAM Journal of Com-
puting, 6(3):467 480, 1977.

Andrea Masini. 2-sequent calculus: Classical modal logic. Tech-
nical Report TR-13/91, Universita Degli Studi Di Pisa, 1991.
Andrea Masini. 2-sequent calculus: A proof theory of modali-
ties. Annals of Pure and Applied Logic, 58:229-246, 1992.
Andrea Masini. 2-sequent calculus: Intuitionism and natural
deduction. Journal of Logic and Computation, 3(5):533-562,
1993.

Fabio Massacci. Strongly analytic tableaux for normal modal
logics. In Alan Bundy, editor, Proc. CADE-12, LNAI 814, pages
723 737. Springer, 1994.

106

[Mas95a]
[Mas95b]
[Mer92]

[MMO95]

[Mo085]

[Mor76]

[MSS88]

[MST91]

[NFKT87]

[Oh190]

[Oh193]

[OM57a]

[OM57h)]

Rajeev Goré

Fabio Massacci. Personal communication, December 1995.
Fabio Massacci. Simple steps tableaux for modal logics. Sub-
mitted for publication, 1995.

Stephan Merz. Decidability and incompleteness results for first-
order temporal logics of linear time. Journal of Applied Non-
Classical Logic, 2(2), 1992.

P. Miglioli, U. Moscato, and M. Ornaghi. Refutation systems
for propositional modal logics. In P. Baumgartner, R. Hihnle,
and J. Posegga, editors, Proceedings of the 4th Workshop on
Theorem Proving with Analytic Tableaux and Related Methods,
volume LNAT 918, pages 95 105. Springer-Verlag, 1995.

R. C. Moore. Semantical considerations on nonmonotonic logic.
Artificial Intelligence, 25:272 279, 1985.

C. G. Morgan. Methods for automated theorem proving in non-
classical logics. IEEE Transactions on Computers, C-25(8):852—
862, 1976.

David E Muller, Ahmed Saoudi, and Paul E Schupp. Weak
alternating automata give a simple explanation of why most
temporal and dynamic logics are decidable in exponential time.
In Proc. Logics in Computer Science, pages 422 427, 1988.

W. Marek, G. Schwarz, and M. Truszczynski. Modal nonmono-
tonic logics: ranges, characterisation, computation. Technical
Report 187-91, Dept. of Computer Science, University of Ken-
tucky, USA, 1991.

H Nakamura, M Fujita, S Kono, and H Tanaka. Temporal logic
based fast verification system using cover expressions. In C H
Séquin, editor, VLSI ‘87, Proceedings of the IFIP TC 10/WG
10.5 International Conference on VLSI, Vancouver, pages 101—
111, 1987.

H. J. Ohlbach. Semantics based translation methods for modal
logics. Technical Report SEKI Report SR-90-11, Universitat
Kaiserslautern, Postfach, 3049, D-6750, Kaiserslautern, Ger-
many, 1990.

H. J. Ohlbach. Translation methods for non-classical logics: An
overview. Bulletin of the Interest Group in Pure and Applied
Logics, 1(1):69-89, 1993.

M. Ohnishi and K. Matsumoto. Corrections to our paper
‘Gentzen method in modal calculi I'. Osaka Mathematical Jour-
nal, 10:147, 1957.

M. Ohnishi and K. Matsumoto. Gentzen method in modal cal-
culi I. Osaka Mathematical Journal, 9:113 130, 1957.

[OM59]
[0S88]

[Pae88|

[P1i91]

[Pot&3]
[Rau79]
[Rau83]
[Rau85]

[Rau90]
[Rus95]

[SC85]

[Sch92]

[Seg71]

[Shi91]

[Shv89]

[Sla77]

[ST92]

Tableau Methods for Modal and Temporal Logics 107

M. Ohnishi and K. Matsumoto. Gentzen method in modal cal-
culi IT. Osaka Mathematical Journal, 11:115-120, 1959.

F Oppacher and E Suen. HARP: A tableau-based theorem
prover. Journal of Automated Reasoning, 4:69 100, 1988.

B Paech. Gentzen-systems for propositional temporal logics. In
Proc. 2nd Workshop on Computer Science Logics, LNCS 385,
pages 240-253, 1988.

Regimantas Pliuskevicius. Investigations of finitary calculus for
a discrete linear time logic by means of finitary calculus. In
LNCS vol 502, pages 504-528. Springer-Verlag, 1991.

Garrel Pottinger. Uniform, cut-free formulations of T, S4 and
S5. Abstract in JSL, 48:900 901, 1983.

W. Rautenberg. Klassische und Nichtklassische Aussagenlogik.
Vieweg, Wiesbaden, 1979.

W. Rautenberg. Modal tableau calculi and interpolation. Jour-
nal of Philosophical Logic, 12:403-423, 1983.

W. Rautenberg. Corrections for modal tableau calculi and in-
terpolation by W. Rautenberg, JPL 12 (1983). Journal of Philo-
sophical Logic, 14:229, 1985.

W. Rautenberg. Personal communication, December 5th, 1990.
Alessandra Russo. Modal labelled deductive systems. Tech-
nical Report TR-95/7, Dept. of Computing, Imperial College,
London, 1995.

A. P. Sistla and E. M. Clarke. The complexity of propositional
linear temporal logics. Journal of the Association for Comput-
ing Machinery, 32(3):733-749, 1985.

Grigori Schwarz. Minimal model semantics for nonmonotonic
modal logics. In Proc. Logics in Computer Science, 1992.
Krister Segerberg. An essay in classical modal logic (3 vols.).
Technical Report Filosofiska Studier, nr 13, Uppsala Univer-
sitet, Uppsala, 1971.

Tatsuya Shimura. Cut-free systems for the modal logic S4.3 and
S4.3GRZ. Reports on Mathematical Logic, 25:57-73, 1991.
Grigori F. Shvarts. Gentzen style systems for K45 and K45D.
In A. R. Meyer and M. A. Taitslin, editors, Logic at Botik ’89,
Symposium on Logical Foundations of Computer Science, LNCS
363, pages 245 256. Springer-Verlag, 1989.

Ralph L. Slaght. Modal tree constructions. Notre Dame Journal
of Formal Logic, 18(4):517-526, 1977.

G. E. Schwarz and M. Truszczynski. Modal logic S4F and the
minimal knowledge paradigm. In Proc. of Theoretical Aspects
of Reasoning About Knowledge, 1992.

108

[Sti92]

[SV80]

[SV82]

[Tru]

[Tru9l]

[Val83]

[Val86)

[vBT78]

[vB83]

[vB84]

[VS83]

[VWS86]

[Wal89]

[Wan94]

[Wol83]

Rajeev Goré

C. Stirling. Modal and temporal logics for processes. Technical
report, Dept of Computer Science, Edinburgh University, 1992.
ECS-LF(CS-92-221.

G. Sambin and S. Valentini. A modal sequent calculus for a
fragment of arithmetic. Studia Logica, 34:245 256, 1980.

G. Sambin and S. Valentini. The modal logic of provability: the
sequential approach. Journal of Philosophical Logic, 11:311—
342, 1982.

M. Truszczynski. Embedding default logic into modal nonmono-
tonic logics. In W. Marek, A. Nerode, and V. S. Subramanian,
editors, Proc. of the First International Workshop on Logic Pro-
gramming and Non-monotonic Reasoning.

M. Truszczynski. Modal interpretations of default logic. In
International Joint Conference on Artificial Intelligence, pages
393-398. Morgan Kaufmann, 1991.

S. Valentini. The modal logic of provability: Cut-elimination.
Journal of Philosophical Logic, 12:471-476, 1983.

S. Valentini. A syntactic proof of cut elimination for GL;;,.
Zeitschrift fir Mathematische Logik und Grundlagen der Math-
ematik, 32:137 144, 1986.

J.F. A. K. van Benthem and W. Blok. Transitivity follows from
Dummett’s axiom. Theoria, 44:117-118, 1978.

J. F. A. K. van Benthem. The Logic of Time: a model-theoretic
investigation into the varieties of temporal ontology and tem-
poral discourse. Synthese library; vol. 156, Dordrecht: Reidel,
1983.

Johan van Benthem. Correspondence theory. In D. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic,
volume IT, pages 167-247. D. Reidel, 1984.

S. Valentini and U. Solitro. The modal logic of consistency
assertions of Peano arithmetic. ZML (now Mathematical Logic
Quarterly), 29:25 32, 1983.

Moshe Vardi and Pierre Wolper. Automata-theoretic techniques
for modal logics of programs. Journal of Computer and System
Sciences, 32, 1986.

L. A. Wallen. Automated Deduction in Nonclassical Logics: Ef-
ficient Matriz Proof Methods for Modal and Intuitionistic Log-
scs. MIT Press, 1989.

Heinrich Wansing. Sequent calculi for normal modal proposi-
tional logics. Journal of Logic and Computation, 4, 1994.

P. Wolper. Temporal logic can be more expressive. Information
and Control, 56:72 99, 1983.

[Wol85]

[Zem73]

Tableau Methods for Modal and Temporal Logics 109

P. Wolper. The tableau method for temporal logic: an overview.
Logique et Analyse, 110-111:119-136, 1985.

J. J. Zeman. Modal Logic: The Lewis-Modal Systems. Oxford
University Press, 1973.

