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Abstract. In this paper we generalize the existing tableau methods for modal logics.

First of all, while usual modal tableaux are based on trees, our basic structures are rooted directed
acyclic graphs (RDAG). This allows natural tableau rules for some modal logics that are difficult to
capture in the usual way (such as those having an accessibility relation that is dense or confluent).
Second, tableau rules rewrite patterns, which are (schemas of) parts of a RDAG. A particular case
of these rules are the single-step rules recently proposed by Massacci. This allows in particular
tableau rule presentations for K5, KDb5, K45, KD45, and S5 that respect the subformula property.
Third, we divide modal tableau rules into propagation rules and structural rules. Structural rules
construct new edges and nodes (without adding formulas to nodes), while propagation rules add
formulas to nodes. This distinction allows to prove completeness in a modular way. -
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1. Introduction

Following Kripke, tableau rules should be designed in order to propagate formulas in a
tree so that it simulates the properties of a Kripke model, which is not simply a tree, but
has additional features. E.g., a tree with the S4 rule “if OA is present in some node then
transport it into all successors” should behave as if the tree where transitive.

In the standard approach the propagation of formulas is only top-down; moreover, using
only trees as underlying structures is too restrictive: it is difficult to design tableaux methods
for some logics like those based on a density axiom (Op — OOp) or on a confluence axiom
(OOp — OOp); this seems to indicate that trees are not a good basis for such properties.

We present here a new basis that is characterized by two ideas:

1. the propagation of formulas need not to be top-down,

2. the underlying structure need not to be a tree.
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About point 1: recently, some authors have used the first idea ([De Giacomo, Massacci 1996],
[Massacci 1994]). Their approach is intimely mixed with another feature: the so called
single-step rules. Such rules allow to propagate formulas only from one node to one of its
successors or predecessor in the tree. We claim that this desideratum is unnecessarily re-
strictive. Rather, we define here “pattern-driven rules” (even though they are very often
single-step rules): rules apply if some elementary pattern in the mathematical structure has
been matched.

The second point, to our knowledge, has never been identified before. We will show that
while trees are a good basis for many usual modal logics, they fail to support confluent
relations for example. We argue in this paper that rooted directed acyclic graphs (RDAG for
short), which are DAGs having a distinguished node called the root, are better suited. They
allow to naturally handle some properties that do not marry easily with tree structures (like
confluence, density), while other properties (like transitivity, symmetry, ...) can still be
handled by the propagation of formulas.

This leads us to identify two kinds of tableaux rules:

1. propagation rules

2. structural rules.
The former are formulated as “if in some node of such pattern there is such formula, then
propagate such formula (the same or another one)”, while the latter are “if there is such
pattern then add some new node(s) and edge(s)”.
They respectively correspond to two different families of axioms (relational properties):

e Propagation rules correspond to axioms T, 4, B and 5 (properties of reflexivity, tran-

sitivity, symmetry and euclideanity, respectively);
e Structural rules correspond to axioms D, De and C (respectively properties of seriality,

density and confluence).

What do we gain by this new perspective? It holds in a few words: simplicity, naturality
and modularity, both in the definition of a tableau calculus for a given system and in its
correctness proof. First, for the classical connectives as well as for <, rules and correctness
proof are common to all systems. There only remains the case of structural rules, and of
propagation rules for O that are treated in a really simple, natural and modular way.

Generally speaking, a tableau is a structure (usually a tree, in our case it will be an RDAG)
whose nodes are labelled by sets of formulas. The completeness proof of a tableau method
is in two main steps: the construction of a model from this structure, and the verification
that this model satisfies the formulas of the nodes (the so-called Fundamental Lemma).

The first step is usually done by adding new arrows to the structure, according to the
particular property of the accessibility relation of the logic under concern. For example, for
the system S4 the accessibility relation is reflexive and transitive. Hence, given a tree (the
underlying structure for S4), we must close it under reflexivity and transitivity in order to
make an S4-model of it. In other terms, we must characterize when two nodes are related
in the resulting closure. Then we can say that for a given node = another node y will be
accessible from x if there is an n > 0 and =z, ..., %;, Ti11,...,2, such that z¢ is z, z, is y
and x;y1 is a child of z; in the original tree. From this characterization of the closure of
the initial tree under the additional properties of the logic under concern, we can “read oft”
the rules to be designed. Thus the rules will ensure the correct propagation of formulas, the
proof being very easy'. This gives naturality and simplicity. In addition, the rules that we
have obtained fit closely to the intuition.

Modularity is achieved since we obtain tableaux calculi whose completeness proofs are neatly
separated into three components:

IThe correctness proof mainly consists in results of relational calculus.
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1. afirst relation calculus part stated in the Relational Closure Lemma (lemma4.1) where
the properties of the closure of an RDAG under some relational properties are expressed
in terms of the initial RDAG,

2. a second relation calculus part stated in the Structural Lemma (lemma 4.3) where we
check that the closure of an RDAG under some relational properties preserves some of
its initial features (e.g. the transitive closure of a confluent RDAG yields a confluent
relation, but not necessarily an RDAG),

3. a “Box” part stated in the Box Lemma (lemma 7.1) where we check that whenever
and y are related in the closure, and OA € x then the set of associated rules ensures
that A was transported into y.

The rest of the completeness proof is completely factorized. We also present a soundness
result for the tableaux calculi we define.

Last, but not least, all our tableaux calculi verify the subformula property: only subformulas
of the initial formula are propagated. Thus the usual argument of finiteness can be applied
and provides a decidability result.

We assume that the reader is familiar with modal logic, Kripke semantics and tableau
methods for modal logics as presented e.g. in [de Swart 1980], [Fitting 1983], [Fitting 1993].

2. Modal logics and relational properties

A modal logic can be specified syntactically or semantically. We recall what the links between
these presentations are.

The modal logics we consider are all obtained by extending the basic modal logic K by
one or several of the well-known axioms T, B, 4, 5, D, De (axiom of density: Op — OOp)
and C (axiom of confluence: GOp — OOp). Thus KDC4 denotes the modal logic obtained
by adding the axioms D, C and 4 to the basic system K.

With each of these axioms can be associated a relational property of the accessibility
relation of the Kripke models:

Axiom Property Notation
T=0p—p reflexivity Ref

4 = 0p — Odp | transitivity | Tr

B =30p = p | symmetry Sym

5 = OOp — Op | euclideanity | Eucl

Group 1: Properties handled by propagation rules

Axiom Property | Notation
D=0p—p seriality Ser

De = Op — OOp | density Dens

C =<0dp — O0p | confluence | Conf

Group 2: Properties handled by structural rules

As a consequence of Sahlqvist’s theorem [Sahlqvist 1975], a system based on K plus
any combination of these axioms is characterized by the Kripke models whose accessibil-
ity relation satisfies the corresponding properties. Thus, KD4 is characterized by Kripke
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models where the accessibility relation is both serial and transitive; for KT5 reflexivity and
euclideanity are required (and, as a consequence, transitivity, seriality and symmetry).
From now on we will indistinctly denote a modal system by KA;...A,, where each A;
belongs to group 1 or 2, or by a set p of its accessibility relation properties; we will write p =
p1Up2 where pq is a maximal subset of properties of group 1 (maximal here means “including
all those of group 1 which are a consequence of it”: thus, symmetry and transitivity imply
euclideanity: any set p; that contain Sym and Tr must also contains Eucl ), and ps is a
subset of properties of group 2. E.g. KCD4 will be denoted by {Ser , Tr , Conf }, KDeB4 by
{Sym , Tr , Eucl , Dens } (since euclideanity is a consequence of transitivity and symmetry).

Definition 1. Given a set p of relational properties among group 1 and 2, a p-model is
a Kripke model whose accessibility relation satisfies p. A formula is p-satisfiable iff it is
satisfiable in a p-model. It is p-valid iff it is valid in the class of all p-models, this will be
denoted =, A. Thus A is a theorem of a system denoted by a set p of properties iff it is
p-valid.

We note that Relational calculus has been used as a base for proof procedures in non-
classical logis in a comprehensive way in [Orlowska 1997] and [Demri, Orlowska].

3. Preliminaries and notations

The tableau method we are going to present is based on RDAG (rooted directed acyclic
graphs) having additional properties; let p be the set of these additional properties, we
define:

Definition 2. A labelled p-RDAG is a triple (N, X, FOR) where:

e (NV,Y) is a directed acyclic graph (DAG), i.e. a directed graph that contains no cycle,
with a distinguished node called the root that can access every other node in the
transitive closure of X,

e (N,Y) satisfies all the properties of p,

® FOR is a function that associates additional information with each of the nodes: if x
is a node, FOR(x) is a set of formulas.

By abuse of notation and for the sake of notational economy, we will make no distinction
between the nodes and their associated sets of formulas; thus we will write A € x instead
of A € FOR(z). Also by abuse of notation, we will sometimes denote a p-RDAG (N, X) by
the binary relation . Thus we will make no distinction between labelled structures and
structures.

This notion also extend to graphs:

Definition 3. An RGRAPH is a graph that has a root, and a p-RGRAPH is a RGRAPH that
satisfies all properties of p.

As usual, X(z) will denote the set of nodes accessible from z by ¥: X(z) = {y € N:(z,y) €
Y}, Also, ¥* will denote the pairs (z,y) such that there is a path of length n between x and
y. The diagonal relation: {(z,z):x € N'} will be denoted by I and also by X°.

For the sake of clarity, we will use diagrammatic representation for RDAG. The figure below
gives the intended meaning of those diagrammatic representations in which the edges are
implicitely left-to-right directed?:

oS denotes a node S

S0 ., 51 denotes (50,51) € ¥

?Note that RDAG are of course antisymmetrical.
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SoAsz denotes (50, 51),(50,52),(51,52) € ¥
s1
SO.<:52 denotes (50,51),(50,52) € &
so<:5§.sg denotes (50, S1),(50,52), (S1,83),(52,593) € &

52

The last two diagrams do not involve any order between S1 and 52, e.g. so <Sl can
52 52
be represented as well by so <s
1

4. Closure of RGRAPH

We define the following closure operation on RGRAPH:

Definition 4. Let ¥ be an RGRAPH over a set A and p a set of relational properties of
group 1; the p-closure of ¥ (denoted by ¥*) is the least RGRAPH that contains ¥ and which
satisfies every property of p.

This p-closure always exists if the properties are among {Ref , Tr,Sym ,Eucl }. A very
important point is that for properties of group 1, the closure can be expressed in terms of
the initial RGRAPH. E.g. the transitive closure of an RGRAPH ¥ is defined by: (z,y) € ¥17
iff 3n > 1 such that (z,y) € ¥ (c.f. def 9). Note that we do not consider here properties
of group 2: it makes no sense to talk about closure under a property of group 2. This is the
reason why they are handled in a different way: no propagation rule can simulate them.

Lemma 4.1. (Relational Closure Lemma)
Let X be an RDAG over a set A" of nodes:

o (z,y)e X iff (z,y)eX orx =y.
o (z,y) € B iff (x,y) € Bor (y,2) € %,

(z,y) € ¥T7iff In > 1 such that (z,y) € X"

(z,y) € 2P iff (z,y) € Y or Ju € N In > 1 Im > 1 such that (u,z) € X" and
(u,y) € X7,

(z,y) € LRSS iff (zy) €Y orz =yor (y,z) € 2.

(z,y) € BB iff 9n > 0 such that (z,y) € ¥".

(z,y) € BhehPued §ff Ip > 0 oz = 2, .. 25 Tig1s 5Ty = Y (Ti,241) € 3 or
(J/'H_l,l'i) € Y.

o (z,y) € MOV T iff n > 1 Jag = 2, .. T4, Tiggy -5 T (@i, xi41) € Yot (Ti41,2;) € X

o (z,y) € NIl iff 3y € N In > 0 Im > 1 such that (u,z) € X" and (u,y) € X™.

Proof:
Straightforward consequence of the lemmas 9.1 and 9.3 of the appendix.

Lemma 4.2. The remaining cases are reducible to those of the previous lemma:

° ZSym,Eucl — ZSym,Tr,Eucl — ZSym,Tr
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° ZRef,Sym,Tr — ZRef,Tr,Eucl — ZRef,Sym,Eucl — ZRef,Sym,Tr,Eucl — ZRef,Eucl‘

Proof:
Straightforward.

The above lemma will be a powerful tool for proving completeness: it will allow to
define a model for a formula from an open tableau. But this is not the whole story. As we
previously said, some properties are handled structurally; roughly speaking seriality, density
and confluence are treated by the underlying “kind” of RDAG of the tableaux. When in the
completeness proof we must close the RDAG under one or several properties of group 1 (note
that after this closure operation, the initial RDAG is no longer an RDAG but an RGRAPH),
we must also check that its structural properties are preserved after this closure (i.e. that
it is still of the same “kind”). E.g. we must prove that the transitive closure of a confluent
RDAG is still confluent. This is the aim of the lemma below:

Lemma 4.3. (Structural Lemma) Let p; be a subset of group 2, py a subset of group 1
and let X be a p;-RGRAPH over a set A of nodes. Then Y1 is also a po-RGRAPH and hence
is a (p1 U p2)-RGRAPH.

Proof:
See appendix II.

5. Rewriting RDAG

Usually, tableaux calculi consist in rewriting a structure by using some appropriate set of
rewriting rules (or simply rules). But before presenting our rules, we want to propose some
visual conventions. The rules we will use will all be of one of the following forms (the
intended meaning is given below the rule); as usual, S, A denotes S U {A}:

S o= 54
rewrite the node S into the node S U{A}, i.e. add the formula A to the node S,

O = 5., 51
add the new node S1 to the successors of the node S,

S04 oS1 = S0,A, o SL,B
add the formula A to the node S0 and B to 51,

so. L 52 = so,4. LB 520

add the formula A to S0, B to S1 and C to 52,

St S1,B
SO<52 - SO’A<52,O
add thesformula A to SO,S? to S1 and C to S2.
50 <52 = 50 ,<:%.53

add the new node 53 as a common successor of the node S1 and 52,

S0e__4S1 =—> S0 A&
add the new node S2 between S0 and S1.

This presentation allows to implicitly take into account constraints on the applicability of
rules: e.g. a rule such as

50, SLOA 59— 50, SLOA 53 04 reads “add OA to any successor of S1 if S1 has a
predecessor and contains OA”.
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6. Rules

Here are the rules we need:

o (lassical and < rules:

— Rule L: A4S — A-4,1,8
— Rule = ;4,5 — 44,5
— Rule A: AAB,S— _AAB,AB,S

— Rule v: ,~(AAB),S —  ~(4AB),C,S
where C' is one among - A and =B

— Rule &: 045 —=— ¢4,5, . 4

e Propagation rules:
— Rule K: 04,8, .51 =—> 04,5, __, 4,51
— Rule T: ,B4,5 — B4,4,5
— Rule 4: s;o4, ,51 = 5,04, _, S1,04

— Rule B: s ,51,04 —> S,4,___, 51,04

51,04 51,04
Rule 5. s< — s<
$2 52,04

— Rule 541 5., 51,04 = s,04, 51,04
— Rule 5;: S5, SL0A o — 5, SLOA g 04

e Structural rules:

— Rule D: ,° = S, L0

Rule C0: = v
ule 50 o SO.\/’%.

— Rule C1: s, 351 = S, "y 0

— Rule De: so,, 51 = 50,.—"~_s1
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Tableau rules

In order to define a tableau calculus for a system denoted by p; U ps, we must associate
a set of rules with it. All the tableaux calculi we are going to define contain: the classical
rules and the rule & plus the rule K (as these rules are common to all tableaux calculi, we
will henceforth omit them) plus none or some structural and propagation rules.

A tableau calculus for a system denoted by (p1 U p2) is obtained by taking (in addition
to classical, & and K rules) the rules corresponding to properties of (p1 U p2); this corre-
spondance is given in the figure below.

Properties | Rules

Group 1 | Ref T Propagation
Sym B Rules
Tr 4
FEucl P T N

Group 2 | Ser D Structural
Dens De Rules
Conf Co C1

Definition 5. A (p; U py)-tableau for a formula A is the limit of a sequence Yo, ..., Y, Tiyq,. ..
where:

e T, is an RDAG consisting of only one node whose associated set of formulas is {A},

o T, is obtained from T; by applying either a classical rule, or the < rule, or the rule
K, or a rule of (p1 U p2)
e and in which every applicable rule has been applied.

Definition 6. A tableau is closed if some node in it contains L; it is open otherwise. A
formula is p; U pa-closed iff all its (p; U py)-tableaux are closed .

7. Completeness

In this section we prove the completeness of our tableaux calculi*. We show how, from a
given open (p1 U py)-tableau for A we can construct a (p; U pa)-model for A.

Let T be an open (p; U py)-tableau for A. T is a p-RDAG where T = (N, X, FOR) with
root r, since structural rules corresponding to py ensure that T satisfies ps.

Now let = (W, R, 7) be the Kripke model defined as follows:
Definition 7.

e W =N

o R is the pi-closure of ¥, i.e. R =X"

o forall we W, we r(p) iff p € w (in fact iff p € For(w)).

By construction, g satisfies properties of p; and, by the Structural Lemma (lemma 4.3),
it also satisfies the properties of ps; hence it is a (p; U py)-model. What remains is to prove
that it satisfies the formula A. We first establish the following important lemma:

3Due to the rule Vv, a formula may have several distinct tableaux.
*We make the usual assumption of fairness.
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Lemma 7.1. (Box Lemma) Let T = (N, X, FOR) be a (p; U py)-tableau with root r. Let
x,y be such that (z,y) € ¥ and OA € x; then A € y.

Proof:
There are nine cases, according to p;; we only prove the lemma for some of the most complex
cases (all involving euclideanity):

o p1 = {Fucl}: if (z,y) € ¥ then by the Relational Closure lemma, we have either
(x,y) € ¥ and then A € y (by rule K), or Ju I3n > 1 Im > 1 such that (u,z) € ¥"
and (u,y) € ¥ from. Hence

— dzg =@, .., Tig1y ey Xy = W (Tig1,2;) € X; then OA € ; for 0 <7 < n (by
rule 5+ n times), in particular: OA € x,_y and OA € , = u.

— Jyo = Uy YisYitty - o Ym = Y (Yis Yir1) € X5 hence OA € yy (by rule 5., since
OA € x,-1) from which we get OA € y, for 1 < ¢ < m (by rule 5, m — 1 times)
and since OA € x, = u = yp it comes: OA € y; for 0 < ¢ < m. Hence A € y; for
1 < < m (by rule K), in particular A € y.
e p1 = {T'r,Eucl}: if (z,y) € ¥ then by the Relational Closure lemma, we have
Ju e N In >0 Im > 1 such that (u,z) € X" and (u,y) € X™. This implies that:

—dn >0 dag =2, 0,2, Tig1s oy = w(Xig1, 1) € X5 then OA € x¢ implies
OA € u (by rule 5, n times)

— dm >0 3yo = Uy Yiy Yigts - oy Ymr1 = Y: (24, Tig1) € X3 hence OA € u implies
OA € y,, (by rule 4, m times) and A € y (by rule K).

o p1 = {Sym,Tr, Eucl}: if (x,y) € ¥ then by the Relational Closure lemma, we have
dn>13deg=a,... 02041, .... 0, =y (5, 2541) € X or (2541, 2;) € 3; but OA € 2
and OA € x; = OA € x,41 (by rule 4 or 5y, according to whether (z;,2;41) € ¥ or
(tip1,2;) € ¥). Thus OA € x; for 0 < i < n and hence A € z; for 0 < ¢ < n+1 (by
rule K or B). Thus A € y.

The following fundamental lemma brings us to the desired conclusion:

Lemma 7.2. (Fundamental Lemma) Let T be an open (p; U py)-tableau for A, let u be
the (p1 U pa)-model defined as in definition 7 w.r.t. T and let B € Subformulas(A) then:
(i) if B € « then pu,x = B.

Proof:
(By induction on the structure of B: W.l.o.g we can suppose that B is written with only —,
A, L and O).

Induction initialization: let B be an atom; then (i) holds by definition of .

Induction step®:

e B cannot be L, otherwise x would be closed.

o Let B be -—(.
-~ ex
= C € z (by rule =)
= p,x | C (by IH)
= p,x | --C.

°In this proof, when we say “by rule R” we mean “by rule R and by the fairness assumption that rule R
has been applied”.
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e Let B be (CAD).
(CAD)€ex
= C €z and D € x (by rule A)
= u,x | Cand g,z = D (by TH)
= u,x = (C A D).

e Let B be =(C A D).
-(CAD)ex
= =C € x or =D € z (by rule V)
= u,x | ~C or u,x = =D (by IH)
= p,x = -(C A D).

o Let B be -OC
00 € x
= there exists y such that (x,y) € ¥ and =C € y (by rule &)
= there exists y such that (x,y) € R, and p,y | =C (by IH and definition of R)
= u,x | -0C.

e Let B be OC and suppose (x,y) € R; then by the Box Lemma (7.1), C' € y. Then by
[H, it comes u,y E C. Hence, p,z = 0OC.

As a direct consequence of the previous lemma, we have:

Corollary 7.1. If A has a fair open (p; U py)-tableau then A is (p1 U py)-satisfiable. Hence
our tableaux calculi are complete under the fairness assumption.

8. Soundness

In this section, we prove the soundness of our tableaux calculi: if a formula A is (p; U p2)-
closed then A is (p; U pa)-unsatisfiable. The technique we use for proving the soundness of
our tableaux is simple. We prove that all rules preserve the “satisfiability” of the pattern
involved in its application. In our sense, a pattern is (p; U pz)-satisfiable iff there exists a
(p1 U p2)-model that contains it and satisfies its formulas. We formally develop this below.

p2)-RGRAPH and = (W, R, 7) be a

Definition 8. Let T = (N, X, FOR) be a labelled (p; U
) C W and Vny,ny € N:(ny,ny) € ¥ =

(p1 U p2)-model; let h be a function such that A(N
(h(n1),h(n2)) € R.

e h is called an embedding from Y to u (or h matches T to p);
o u satisfies Y via h iff Vn € N: A € FOR(n) = p, h(n) E A;

o 1 satisfies T iff there exists an embedding h from T to p such that p satisfies T via h.

Lemma 8.1. Let T = T’ be a rule of some set p (resp. T = T or T” for rule V); then
if some p-model p satisfies T then it satisfies T’ (resp. then it satisfies Y' or T").

Proof:

If we suppose that p satisfies T via some embedding h we just have to exhibit an embedding
h' such that p satisfies T’ via A’ (resp. such that p satisfies T/ or Y” via h’). This is done
by analysing every rule. We only do it for the < rule, for one structural rule and for one
propagation rule. For classical rules, it is immediate: just take A’ = h.
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e RuleC: T = (N ={ng}, X =0,FOR = {(ng, CA)}) rewrites into T/ = (N U{n,}, U
{00 )} FOR U {(mr. 1))
If p satisfies T via h then p,h(ng) = OA, hence Jy € R(h(no)):p,y = A; let
be such a y, and define h'(ny) = y; and h'(ng) = h(ng). wu satisfies T’ via h’, since
(h'(ng),h'(n1)) € Rand p,h'(ny) E A.

e Rule De: T = (N = {ng,n1},¥ = {(no,n1)}, FOR = {(no, So), (n1, S1)}) rewrites into
T = (N U {n2}7 Y {(nov n2)7 (n27 nl)}v FOR U {(n27 Q)})
If u satisfies T via h then (h(ng),h(n1)) € R, and since R is dense 3z: (h(ng),z) € R
and (z,h(n1)) € R. Let z3 be such a z and define h'(n2) = 23 and A'(n) = h(n) for
n # ny. p satisfies Y’ via b/, since (h'(ng),h'(ng)) € R and (h'(n2),h'(n1)) € R, and
For(ny) = 0.

For propagation rules, we just have to prove that we are done by taking h' = h.

e Rule5: T = (N = {no,n1,n2}, % = {(ng,n1), (ng, n2)}, FOR = {(n0, So),
(ny, 51 U{OA}), (ng, S2)}) rewrites into Y = (A, X, FOR U {(ng, OA)}).
If p satisfies T via h then u, h(ng) = OA;

Also, since R is euclidean, we have:
t,h(ng) E O(OA — O0OA) (valid formula of euclidean models)

= u,h(ny) EOA — OOA (since (h(ng), h(n1) € R)

= u,h(ny) EOOA (since u, h(n,) E OA)

= u,h(ng) = OOOA (since h(ng),h(ny) € R)

= u,h(ng) FO0OA (OCOOA — OOA is valid in euclidean models)
= u,h(ny) E OA (since (h(ng), h(ny)) € R).

Corollary 8.1. If A is (p1 U py)-satisfiable then it has an open (p; U pg)-tableau. Hence our
tableaux calculi are sound.

Proof:

If A is (p1 U pz)-satisfiable by some world x of some (p; U pz)-model y, then its starting
labelled RGRAPH: ({no}, D, {(no, A)}) is satisfied by u (via the embedding h: ng — ). Hence,
at least one of its (p; U py)-tableaux must be open since no closed tableau is satisfiable by

L

9. Concluding remarks

Decidability and Termination All rules we use only propagate subformulas of the initial
formula. Thus only finitely many distinct nodes can be generated, therefore there is a finite
model if the formula is satisfiable. Hence all the logics we have considered are decidable. For
termination of the tableau calculi, the usual argument as for S4 (cf. [Fitting 1983]) applies
with the help of a loop-test (which consists in blocking the development of nodes already in
the RGRAPH), the problem being to efficiently implement it.

Extensions to other properties Our work extends easily to other properties of group 1
(almost-reflexivity: Vo (Ju: (u,z) € R = (x,2) € R), almost-transitivity: Va,y, z,u ((z,y) €
RA(y,z) € RA(z,u) € R) = (y,u) € R, ...). First complete the Relational Closure
lemma (4.1) and then check that the closure under this new property of a po-RGRAPH is still
a p2-RGRAPH (Structural lemma). Then design one or several rules for this property e.g. for
almost-reflexivity, the natural rule such as:

S0e o S1,04 — S0, o S1,04, 4

(it is obviously sound). Then prove that this/these rule(s) allow(s) to correctly propagate
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formulas (Box lemma) with the help of the Relational Closure lemma.

For new properties of group 2 (like 3-density: (x,y) € R = Ju,v:(x,u) € R A (u,v) €
R A (v,y) € R), one must first define the underlying structure (here 3-dense RGRAPH) and
extend the Structural lemma (if possible). Then designing a corresponding sound structural
rule is straightforward, and completeness is for free.
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Appendix I: Some properties about binary relations

From now on, we will make use of relations (binary relations) and rooted relations instead
of graphs and rooted graphs. The set of all relations over a given set will be denoted by R
while that of rooted relations will be denoted by R'R.

Definition 9. Let R be a relation over a set N: R(z) will denote the set of nodes acces-
sible from z by R: R(z) = {y € N:(z,y) € R}, R will denote its inverse, Rt will denote
its transitive closure and R* its transitive and reflexive closure. Also, R" will denote the
pairs (x,y) such that there is a path of length n between & and y. The diagonal relation:
{(z,z):x € N} will be denoted by I and also by R°. The composition of two relations R
and S (which is defined as {(x,y): 3z(x,2) € R and (z,y) € S} will be denoted by (RoS5).
The total relation N2 is denoted by /. The empty relation is denoted by O.

Property 1. (About R) Let R, S and T' € R, let p be a subset of group 1:
1. R+ — UZZI RZ

2. R=R
3. RUS=RUS
4. RoS = SoR

5 R =R" (for n > 0)
6. R* =R'
7. F=R
8. (RUN*t =R
9. (RU S)oT = (RoT) U (SoT)
10. To(RUS) = (ToR)U (ToS)
1. It=r=T=1
12. If R # O then RoR # O
13. If R # O then UoRold = U
14. (R™)* C (R*)" (for n > 0)
15. R C R” (growth)
16. R C S = R’ C 5° (monotonicity)
17. If P € p then (R*)" = R? (idempotence); and of course: (R”)? = R”
18. R is reflexive iff I C R

19. R is symmetrical iff R C R
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20. R is transitive iff R? C R

21. R is euclidean iff (RoR) C R, or iff (RoR) C R
22. R is dense iff R C R?

23. R is serial iff [ C (RoR)

24. R is confluent iff (RoR) C (RoR)

25. R is rooted iff (R oR*) =U

26. R is connected iff (RU R)* = U, and rooted implies connected.

Proof:

All are well-known or obvious properties except maybe 14 for which it suffices to prove that
(R2)* C(R)% , . o

(R+)2 = (Uiz1 Rll)z = (Uiz1 RZ)O(UZ'E R) = UiZI UjZI(RZORJ)

= U¢21 sz1(RZ+]) = Uizz(ﬁn)v '

and, (R*)* = U1 B% CUjso(R).

Property 2. (About RR) Let R € RR:
1. Let p be a subset of group 1 then R’ is also in R'R.

2. (RToR*oR oR*) = (RToR")
3. If (RoR) C (RoR) then (RToRT) C (RToR")
4. (RoR*)* = (RoR")

Proof:

1. Trivial since the root r of R is still a root in R”.

2. If R = O then 2 holds trivially, else we have:
(RToRtoR oRY) = (RoR oR*oRoRoR oR*oR) = (RodoRoRoldoR) = (RoldoR);
(since R # O = RoR # Q) = (F-l—oR"')

3. We show that (RoR) C (RoR) = Vk,[ > 1: (EkoRl) - (Rloﬁk) by induction on k + (.
Induction base:
if k4 [ = 2, the property hold by hypothesis.
Induction step:
if £ > 1 then (EkoRl) = (Eoﬁk_lo]%l) - (EoRloFk_l)( by IH ) C (Rloﬁoﬁk_l)( by IH ) C
(Rloﬁk).
elseif k=1 and [ > 1 then
(R'oRY) = (R"oRoR™') C (RoR'oR""1)( by IH ) C (RoR'oR")( by IH ) C (R'oR").

4. Tt suffices to show that (R oRt)? = (R oR*t):
If R = O then it holds trivially, else we have: (R oRt)? = (R oR*o0R)? = (UoR)? =
(UoRolloR) = (UoR) = (R oR™).
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Appendix II: Properties of closure operations

Lemma 4.1 (Relational Closure Lemma)
This lemma stated at page 5 is a straightforward consequence of the lemmas 9.1 and 9.3
below.

Lemma 9.1. (Closure under one property) Let R € RR:
1. RFf = RUT

2. " = RUR
3. RT" = R*
4. RPv! = RU(R'oR")

Proof:
Only 4. is not obvious and well-known (it uses the fact that R has a root). We prove it by
showing:

i) RU (R oR*) C RPw

i) RU (F-l_o]%"') is euclidean

and we will get the conclusion since RE*! is the least superset of R being euclidean and, as
such, it contains any other euclidean superset of R.

i) First we prove by induction on i + j that Vi, j: (R oR?) C (REulo RFul),
Induction base:
i+ =2 ie 1 =7 =1 (RoR) C (REwloRF*!) (since R C RF*! and hence
E g REucl)‘
Induction step:
ifj>1 '
then (Elo]i’j) = (EloRj_loR) C (REwloRPuloR) (by TH) C (REvloR) C (REulo RFuel)
(by growth).
else
ifj=1andi>1 '
then (Elo]i’j) = (FOF_IORj) C (RoRFuclo RPuel) (hy TH) C (RoRE!) C (RFuclo REu),

Now, since (F-l_o]%"') = (Uit Fi)O(U]21 R) = Ui7j21(FiORj)
g Ui,jZI(WOREud) — (REucloREucl) g REucl:
we obtain R U (F-l_o]%"') C RU Rbud C REuc,

ii) We show that indeed R U (F-l_o]%"') is euclidean by using lemma 1:
(RU (R oR*))o(RU (R oR%)) = (RU (R oR*))o(RU (R oR*))

= (RU (RToR))o(RU(RYoR)) = (RU (R oR"))o(RU (R oRT))
= (RoR) U (EOF—I—OR—I_) U (F-l_oR"'oR) U (E+OR+OE+OR+)

C (F-l_o]%"') U (E+OR+OF+OR+)

(since (RoR), (EOF—I—OR—I_) and (F-l_oR"'oR) C (F-l_oR"'))

C (RToR*) (Abour RR: 2) C RU (R oR*).
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Thanks to the previous lemma, we know how to compute the closure of an R'R under
one property of group 1, but how to do it for several properties 7 The following lemma will
provide us with a tool for this computation. It states that if some fix-point is reached by
performing alternatively the closures under each of the properties of some subset p of group
1, then this fix-point is the closure under p. Before, we recall that if p = {Py,..., P,} is a
set of properties, a relation S is said to be the p-closure of some relation R (i.e. S = R?) if
and only if S is the least relation containing R and closed under each P;.

Lemma 9.2. Let p = {Py,..., P,} be a subset of group 1, and R € RR. Let Ry = R and
Rivi=(... (Rfjl) ...)P; then if there exists m such that R,, .1 = R, then R, = R*.

Proof:

We have by growth: R, C R C(RE) C ... C (... ((RE)2) .. )" = R,.,,. Now, since
R,, = R4 1t comes: R, = RZ", for 1 <1 < n (otherwise growth would be falsified) and
thus R,, is closed under each P; (1 < ¢ < n). Hence R,, is closed under p. To conclude,
take note that R’ is the least superset of R closed under p and as such is contained in R,,
which, in its turn, is contained in R” since Ry C R’ (by growth) and R, C R’ = R, C
(... ((RHY)2) .. ) = R* (by idempotence).

Lemma 9.3. (Closure under several properties) Let R be any RR:
1. RRelSvm — RURU I

2. REITr — (RUT)*
3. REehSymIr — (RURUI)?*
4. RS T = (RUR)*

5. RTT,Eucl — (F*OR—I—)
Due to lemma 4.2, the other cases reduce to one of the previous.

Proof:
We indicate a closure by some property p by == :

1. Case of REHSvm, REL py T2 RUTURUT = RURUTZL RURUT. A fix-point

has been obtained.
2. Case of RFITr: REL Ry TS = (RUNFEL(RUN)TUT=(RUI)* = R,

3. Case of RfEe/Sym.Tr. RRZBQ cf. case 1 %RUFU[%(R’UFU nt

Sym

L RURUN*UT=(RURUID)* =(RURy =UZBuvll = = (B oR").

4. Case of R REE(RUR) LS (RUR)* 22 (RUR)* U(RUR)*Y
—(RUR)"U(RUR) =(RUR*U(RUR)* = (RUR)".

5. Case of RT™Fuwl; L% R+ B2 — R+((R¥)*o(RT)*) = RYU(R'oRY) = (R oR*) 2%
(E*OR—I_)-I_ = (F*OR"') (About RR: 4).

We need to prove now the stability of group 2 with respect to closure under several
properties of group 1. We first prove the following lemma concerning this stability with
respect to closure under one property of group 1, and then (lemma 4.3) shows that the same
holds for several properties.
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Lemma 9.4. Let py be a subset of group 2, p; a property of group 1, let R € R'R satisfying
p2 then Rt is in R'R and satisfies po; hence it satisfies p; U p,.

Proof:

The proof is case-based:

Case py = Ser : Immediate since R C R”* (by monotonicity).

Case py = Dens : we must show that R” C (R )*:

— If p; = Ref : Trivial since reflexivity implies density;

— If py = Sym :
(R™)> = R* U (RoR)U (RoR)UR’ 2 R*UR’ 2 RUR,
hence (R**)? O RU R = R**;

- If /01 = TI':
(301)2 = (R-I—)2 D (RZ)-I— (About R: 14) DRt = RA1;

— If py = Eucl : Trivial since euclideanity implies density;

Case p; = Conf: we must show that (R1oR?) C (R oRM):

— If py = Ref:
(RrroR) = ((RUTo(RUT))=(RUI)o(RUI)=(RoR)URURUI
- (ROF) URURUI (since R is confluent)
On the other hand, (Rf1oRet) = (RoR) URU RU I

hence (RrroRRFr) C (RFroRer);

— If py = Sym : Trivial since symmetry implies confluence;

—Ifpy =Tr:
(RrroR™) = (RToRY) C (RToR") (About RR: 3) = (R" oRw)

— If py = Eucl : Trivial since euclideanity implies confluence.

Lemma 4.3 (Structural Lemma)
Let py be a subset of group 2, p; a subset of group 1, let R € R'R satisfying py then R is
in RR and satisfies pq; hence it satisfies p; U ps.

Proof:

If py is empty it is trivial. Now suppose (IH1): the lemma is true for some py; let P be a
property of group 1; we must prove (C): the lemma holds for p; U {P}. But R/} is the
fixpoint of the sequence (((...((R*)7)*)F...)1)F" that will be denoted by ((R”)F) {ies
where n is the number of closure operations to be done before to reach the fixpoint. If
n = 0 we trivially have (C). Now suppose (IH2): (C) holds for N, we must prove that
it holds for N + 1. We have: ((Rpl)P)N_I_l times = (((B*)P) v times )™)T . By (IH2),

(R )y times satisfis pa, then by (1) ((R”)7)y imes ) alto satisfies p, and by
lemma 9.4 ((((B*)F) y times )" = ((Rpl)P)N_I_l times satisfies py too.



