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Introduction
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Source: Google Images

o Many practical applications, such as automatic toll collection,
private spaces access control and road traffic monitoring.

@ Automatic License Plate Recognition (ALPR) systems typically
have three stages:
@ License Plate (LP) Detection;
@® Character Segmentation;
© Character Recognition.



Challenges - Real-World Scenarios

Many solutions are still not robust enough
to be executed on real-world scenarios

@ An ideal scenario:

Source: https://github.com/openalpr/
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Challenges - Real-World Scenarios

Many solutions are still not robust enough
to be executed on real-world scenarios

@ A real-world scenario:
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Source: http://platesmania.com
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Challenges - License Plate Detection

False positives

Source: UFPR-ALPR dataset? Detection: OpenALPR?

"https://web.inf .ufpr.br/vri/databases/ufpr-alpr/
https://www.openalpr.com/cloud-api.html
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Challenges - License Plate Detection

False positives

Source: UFPR-ALPR dataset? Detection: OpenALPR?

Solution — Vehicle Detection

"https://web.inf .ufpr.br/vri/databases/ufpr-alpr/
https://www.openalpr.com/cloud-api.html
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Challenges - Motorcycle Detection

Original Image Expected result



Challenges - Motorcycle Detection

OpenALPR? Sighthound*

*https://www.openalpr.com/cloud-api.html
“https://wuw.sighthound. com/products/cloud


https://www.openalpr.com/cloud-api.html
https://www.sighthound.com/products/cloud

Challenges - License Plate Layouts
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Examples of different license plate Iayouts in the United States.



Challenges - License Plate Layouts
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License plates from Mercosur, Argentlna, Bra2|| and Paraguay.

Goal: a single ALPR system robust for different LP layouts.



Challenges - Character Recognition

Training data is unbalanced
@ License plates in Parana: AAA-0001 to BEZ-9999;


https://web.inf.ufpr.br/vri/databases/ufpr-alpr/

Challenges - Character Recognition

Training data is unbalanced
@ License plates in Parana: AAA-0001 to BEZ-9999;
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Letters distribution in the UFPR-ALPR dataset, acquired in Parana.


https://web.inf.ufpr.br/vri/databases/ufpr-alpr/

Challenges - Accuracy vs Execution Time

“Real Time”

@ A fast-enough operation to not miss a single object of interest that
moves through the scene.

@® A system able to process at least 30 frames per second (FPS).

Source: https://github.com/icarofua/siamese-two-stream


https://github.com/icarofua/siamese-two-stream

Proposed ALPR System



Proposed ALPR System
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Proposed ALPR System

Layout Classification
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Object Detection

How to detect objects in real time?

You Only Look Once (YOLO)5:°

e State-of-the-art results in real time;

@ Open source: https://pjreddie.com/darknet/yolo/

o Video: https://www.youtube.com/watch?v=V0C3hugHrss

®J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

®J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
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You Only Look Once (YOLO)

YOLO splits the input image into an S x S grid.




You Only Look Once (YOLO)

Each cell predicts boxes and confidences: P(Object)




You Only Look Once (YOLO)

Each cell predicts boxes and confidences: P(Object)




You Only Look Once (YOLO)

Each cell predicts boxes and confidences: P(Object)
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You Only Look Once (YOLO)

Each cell also predicts class probabilities.
Conditioned on object: P(Dining Table | Object)

Dining
Table
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You Only Look Once (YOLO)

Then YOLO combines the box and class predictions.




Vehicle Detection

@ YOLOvV2 + adjustments;



Vehicle Detection

Data Augmentation (flipping, rescaling and shearing).

@ Many images with distinct characteristics from a single labeled one.




Vehicle Detection - Results




Vehicle Detection - Results

Incorrect detections (false negatives):
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LP Detection and Layout Classification

e Fast-YOLOv2 + adjustments.



LP Detection and Layout Classification

We classify each LP layout into one of the following classes:
@ American, Brazilian, Chinese, European or Taiwanese.

(a) American

w3 |

(c) Chinese
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@ We consider only one LP per vehicle;
@ We classify as ‘undefined layout’ every LP that has its position
and class predicted with a confidence value below a threshold;
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LP Detection and Layout Classification - Results
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LP Detection and Layout Classification - Results

@ Accuracy: 99.51%.




LP Detection and Layout Classification - Results

(b) Examples of images in which the position of the LP was predicted
correctly, but not the layout.
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e We employ CR-NET’, a YOLO-based model, for LP recognition.

’S. M. Silva and C. R. Jung, “Real-time brazilian license plate detection and
recognition using deep convolutional neural networks,” in Conference on Graphics,
Patterns and Images (SIBGRAPI), Oct 2017, pp. 55-62.
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LP Recognition

Data augmentation — negative images
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(a) Gray LP — Red LP (Braznllan)
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(b) Red LP — Gray LP (Brazilian)
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LP Recognition

Data augmentation — character permutation®

8G. R. Goncalves, M. A. Diniz, R. Laroca, D. Menotti, and W. R. Schwartz,
"“Real-time automatic license plate recognition through deep multi-task networks,”
in Conference on Graphics, Patterns and Images (SIBGRAPI), Oct 2018.
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LP Recognition - Heuristic Rules

The minimum and the maximum number of characters to be
considered in license plates of each layout.

# Characters

HP Layout AT Max.
American 4 7
Brazilian 7 7
Chinese 6 6
European 5 8
Taiwanese 5 6

We swap digits and letters according to the LP layout.
@ For example, on a Brazilian LP, A8C-123A — ABC-1234;
@ We avoid errors in characters that are often misclassified;

e ‘B’ and ‘8’, ‘G’ and ‘6’, ‘I’ and ‘1’, and others.
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LP Recognition (Overall Evaluation)

Recognition rates (%) obtained by the proposed system, previous works,
and commercial systems in the datasets used in our experiments.

Dataset [84] [92] [33] [13] [30] Sighthound ~ OpenALPR Proposed
Caltech Cars - - - - - 95.7+27 99.1+1.2 98.7+1.2
EnglishLP 97.0 — — — — 925+3.7 78.6 £3.6 95.7+23
UCSD-Stills - - - — - 98.3 98.3 98.0+ 1.4
ChineselLP - - - - - 90.4 +2.4 926+1.9 97.5+0.9
AOLP — 99.8* — — — 87.1+0.8 — 99.2+0.4
OpenALPR-EU - - 935 - - 92.6 90.7 96.9 £ 1.1
SSIG SegPlate - — 88.6 88.8 85.5 82.8 92.0 98.2+ 0.5
UFPR-ALPR - - - - 64.9 62.3 82.2 90.0 £ 0.7
Average — — — — — 87.7+£24 90.5+23 96.8+1.0

* The LP patches for the LP recognition stage were cropped directly from the ground truth in [92].

[84] IEEE Transactions on Intelligent Transportation Systems, 2017,
[33,92] European Conference on Computer Vision (ECCV), 2018;

[13] Conference on Graphics, Patterns and Images (SIBGRAPI), 2018;
[30] International Joint Conference on Neural Networks (IJCNN), 2018.
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LP Recognition (Overall Evaluation)

Examples of LPs that were correctly recognized:
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LP Recognition (Overall Evaluation)

Examples of LPs that were incorrectly recognized:

ABO0416 ( AR0416) 2MFE674 (2MFF674) HOR8361 (HDR8361)

A X
-JHH?

AYH5087 (AXH5087) 430463TC (30463TC)  YB8096 (Y88096) DJ9A4AE (DJ944AE)

RL0020- (L0020I) ATT4026 (ATT4025) ZG594TSH (ZG594TS) 4NTU770 (4NIU770)
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LP Recognition (Overall Evaluation)

Execution time (NVIDIA Titan Xp).

ALPR Stage Model Time (ms) FPS
Vehicle Detection YOLOv2 8.5382 117
L:;Lgeéeliis?f?c::iin Fast-YOLOV2  3.0854 324

LP Recognition CR-NET 1.9935 502
Total - 13.6171 73
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Other Works in the Literature



Other Works in the Literature (1/2)

License Plate Detection and Recognition in Unconstrained Scenarios®

@ Most systems assume a mostly frontal view of the vehicle and LP;

@ More relaxed image acquisition scenarios might lead to oblique
views in which the LP might be highly distorted yet still readable.

°S. M. Silva and C. R. Jung, “License Plate Detection and Recognition in
Unconstrained Scenarios,” in European Conference on Computer Vision (ECCV),
Sept 2018, pp. 593-609.
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Other Works in the Literature (1/2)

License Plate Detection and Recognition in Unconstrained Scenarios®

@ License plate rectification;
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°S. M. Silva and C. R. Jung, “License Plate Detection and Recognition in
Unconstrained Scenarios,” in European Conference on Computer Vision (ECCV),
Sept 2018, pp. 593-609.
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Other Works in the Literature (1/2)

License Plate Detection and Recognition in Unconstrained Scenarios

9

@ The results do not vary much in the mostly frontal datasets;
@ There is a considerable accuracy gain in datasets with oblique LPs.

Table 2: Full ALPR results for all 5 datasets.

OpenALPR SSIG AOLP Proposed Average
EU BR Test RP CD-HARD

Ours 93.52% 91.23% 88.56% 98.36%  75.00% 89.33%

Ours (no artf.)  92.59%  88.60% 84.58%  93.29% 73.08% 86.43%

Ours (unrect.) 94.44% 90.35% 87.81% 84.61% 57.69% 82.98%
Commercial systems

OpenALPR 96.30% 85.96% 87.44% 69.72%* 67.31% 81.35%

Sighthound 83.33% 94.73% 81.46%  83.47% 45.19% 77.64%

Amazon Rekog.  69.44% 83.33% 31.21%  68.25% 30.77% 56.60%
Literature

Laroca et al. [17] - - 85.45% - - -

Li et al. [18] - - - 88.38% - -

Li et al. [19] - - - 83.63% - -

°S. M. Silva and C. R. Jung, “License Plate Detection and Recognition in
Unconstrained Scenarios,” in European Conference on Computer Vision (ECCV),
Sept 2018, pp. 593-6009. -



Other Works in the Literature (2/2)

A Two-stream Siamese Neural Network For Vehicle
Re-identification By Using Non-overlapping Cameras'®
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0], 0. Oliveira, K. V. O. Fonseca and R. Minetto, “A Two-stream Siamese
Neural Network For Vehicle Re-identification By Using Non-overlapping Cameras,”

in IEEE International Conference on Image Processing (ICIP), 2019.
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Other Works in the Literature (2/2)

A Two-stream Siamese Neural Network For Vehicle
Re-identification By Using Non-overlapping Cameras
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Other Works in the Literature (2/2)

Concatenate (Fusion)
Fully Connelcted (1024)
Fully Conmlacted (512)
Fully Conntlacted (256)
Fully Coniected (2)

Y

Matching Non-Matching

0], 0. Oliveira, K. V. O. Fonseca and R. Minetto, “A Two-stream Siamese
Neural Network For Vehicle Re-identification By Using Non-overlapping Cameras,”
in IEEE International Conference on Image Processing (ICIP), 2019.
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Other Works in the Literature (2/2)
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0], 0. Oliveira, K. V. O. Fonseca and R. Minetto, “A Two-stream Siamese
Neural Network For Vehicle Re-identification By Using Non-overlapping Cameras,”

in IEEE International Conference on Image Processing (ICIP), 2019.
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Thanks for your attention!

David Menotti

menottid@gmail.com menotti@inf.ufpr.br

Presentation made by Rayson Laroca
http://wuw.inf.ufpr.br/rblsantos/
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