Introdução à Pesquisa em Ciência da Computação 2025/2

E05: Um Exemplo

David Menotti - <u>web.inf.ufpr.br/menotti</u>

Departamento de Informática

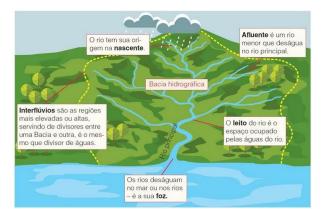
Universidade Federal do Paraná (UFPR)

Sumário

- Um exemplo
- Organização Trabalhos Relacionados

Metodologia de Pesquisa em Ciência da Computação

A história de um aluno


- Era uma vez um aluno de mestrado...
- Identificou um problema local:
 - Um rio cortava a cidade e não havia forma segura de atravessá-lo.
- Convenceu o orientador de que seria um bom tema de monografia.

Revisão bibliográfica do aluno

- Estudou rios em vez de estudar formas de atravessar rios
- Escreveu sobre:
 - Criação dos oceanos (Gênesis)
 - Molécula da água (H₂O)
 - Deltas dos rios
 - Gravidade e correntezas
- Conclusão: revisão extensa, mas não relevante ao problema real.

Primeira solução: Catapulta

- Escolheu a catapulta como ferramenta de trabalho
- Experimento 1: 100 indivíduos atravessando
 - 95% não sobreviveram
 - 5% de sucesso
- Conclusão do aluno: havia espaço para melhorias!

Experimento com paraquedas

- Experimento 2: catapulta + paraquedas
 - 20% abriram cedo → caíram no rio
 - ⇒ 30% esqueceram de abrir → caíram forte na margem
 - ~50% sobreviveram
- Conclusão: melhoria significativa em relação ao experimento inicial.

Colchão de ar

- Experimento 3: catapulta + colchão de ar na outra margem
 - 95% sucesso
 - Apenas 5% caíram fora do colchão
- Resultado: grande avanço
 - mas o problema real ainda não estava resolvido.

Trabalho futuro

- Nesse momento, já satisfeito com os resultados, encerrou os experimentos
 - até porque estava ficando difícil encontrar voluntários;
- Proposta:
 - Algoritmo para calcular a velocidade da catapulta
 - Variáveis: peso do passageiro + índice de pânico
- Não implementado → ficou como "trabalho futuro"
- Escreveu o capítulo do desenvolvimento
 - O aluno entrega o texto para o orientador
 - Só faltava escrever as conclusões e o resumo.

Trabalho futuro

- Nesse momento, já satisfeito com os resultados, encerrou os experimentos
 - até porque estava ficando difícil encontrar voluntários;
- Proposta:
 - Algoritmo para calcular a velocidade da catapulta
 - Variáveis: peso do passageiro + índice de pânico
- Não implementado → ficou como "trabalho futuro"
- Escreveu o capítulo do desenvolvimento
 - O aluno entrega o texto para o orientador
 - Só faltava escrever as conclusões e o resumo.
 - E é reprovado.

Exemplo

- Por incrível que pareça, exageros à parte, a história contada corresponde à de muitas monografias nas diversas áreas da computação;
- Apesar de seu trabalho ter ares de ciência, o aluno pecou em vários aspectos no que concerne ao seu comportamento e à metodologia científica.

Quais foram os problemas na condução da pesquisa feita por este aluno?

Por que foi reprovado?

Problemas metodológicos:

- Falta de contato com o orientador
 - Desde o momento da definição do tema até a conclusão dos experimentos
 - Poderia tê-lo redirecionado;
- Revisão bibliográfica inadequada
 - estudou muita coisa sobre rios, mas não sobre as formas que já existiam para cruzá-los, como, por exemplo, pontes, barcos, teleféricos etc;
 - o aluno seguiu na crença de que era a primeira pessoa no mundo a tentar resolver esse tipo de problema.
- Escolha de ferramenta a priori (catapulta) sem justificativa
 - Assim, em vez de ter como objetivo achar uma forma de cruzar um rio, seu propósito era achar uma forma de cruzar um rio com uma catapulta.

Por que foi reprovado?

- Comparou resultados só consigo mesmo
 - Não há comparação com trabalhos correlatos de outros autores;
- Problema local e pouco generalizável
 - Problemas locais nem sempre são problemas para todo mundo,
 - já podem ter soluções prontas, bastando aplicá-las;
 - Soluções locais nem sempre podem ser generalizadas.
- Não formulou nenhuma questão de pesquisa
 - Apenas desenvolveu tecnologia (duvidosa) para cruzar um rio.

Reflexão ética

- Se fosse real:
 - Comitê de ética da universidade
 - Polícia (uso de cobaias humanas)
- Demonstra que não basta ter "ares de ciência":
 - É preciso método
 - É preciso ética

Moral da história

- Ciência não é apenas testar ideias criativas
- Exige:
 - Problema bem definido
 - Revisão adequada da literatura
 - Comparação com trabalhos existentes
 - Questões de pesquisa claras
 - Supervisão e ética

Possíveis Questões de Pesquisa

- Qual é o impacto social e econômico da falta de infraestrutura de travessia no rio para a cidade?
 - Investigar como a ausência de formas eficientes de atravessar o rio afeta o comércio, transporte e a vida diária dos habitantes.

- Quais são as soluções de engenharia e infraestrutura viáveis para a construção de meios de travessia sobre o rio?
 - Explorar opções como pontes, balsas, túneis ou outras estruturas, considerando aspectos técnicos, financeiros e ambientais.

Possíveis Questões de Pesquisa

- Quais são os custos e benefícios de diferentes soluções para a travessia do rio, e como eles se comparam?
 - Investigar como a ausência de formas eficientes de atravessar o rio afeta o comércio, transporte e a vida diária dos habitantes.

- Como a construção de uma travessia impactaria a segurança e o transporte urbano na cidade?
 - Analisar como a nova infraestrutura pode melhorar a segurança dos usuários e otimizar o transporte urbano.

Nota final do autor

- Nenhum ser humano ou animal foi ferido durante a escrita
- Talvez alguma formiga tenha sido esmagada...
- Moral: ciência evita verdades absolutas

Objetivo da aula

- Evitar erros comuns na pesquisa em Computação
- Ajudar a conduzir bons trabalhos científicos

Como organizar seu texto? (artigos estudados)

- Revisão Bibliográfica
 - Fundamentação Teórica
 - Trabalhos Relacionados (correlatos)

- Para cada artigo lido, descrever 3 a 5 sentenças:
 - O que o trabalho propõe?
 - O que o trabalho usa de diferente?
 - Experimentos:
 - Quais bases de dados?
 - Quais métricas?
 - Quais são resultados alcançados pelo trabalho?
 - So what?
 - Qual sua conclusão sobre o trabalho com relação sua proposta?

- Organizar a ordem de apresentação
 - Cronologicamente
 - Evolução das contribuições
 - Estado da Arte

- Ao final:
 - Criar uma tabela sumarizando os trabalhos estudados
 - Uma seção apresentando as conclusões do estudo
 - Quais são as lacunas existentes?

Bibliografia

 R. S. Wazlawick.
 Metodologia de pesquisa para ciência da computação.

LTC, 3a edição, 2021;

• J. Zobel.

Writing for Computer Science.

Springer, 3a edição 2014;

M. A. Marconi & E. M. Lakatos

Fundamentos de Metodologia Científica,

Atlas, 9a edição, 2025.