Finding People in Images and Videos

Navneet DALAL

GRAVIR, INRIA Rhône-Alpes

Thesis Advisors Cordelia SCHMID et Bill TRIGGS

17 July, 2006

Institut National Polytechnique de Grenoble

Goals & Applications

Goal: Detect and localise people in images and videos Applications:

Images, films & multi-media analysis Pedestrian detection for smart cars Visual surveillance, behavior analysis

Difficulties

Wide variety of articulated poses Variable appearance and clothing Complex backgrounds Unconstrained illumination Occlusions, different scales

Videos sequences involves motion of the subject, the camera and the objects in the background

Main assumption: upright fully visible people

Talk Outline

Overview of detection methodology

Static images

Feature sets

Object localisation

Extension to other object classes

Videos

Motion features

Optical flow estimation

Part based person detection

Conclusions and perspectives

Overview of Methodology

Detection Phase

Scale-space pyramid

Detection window

Focus on building robust feature sets (static & motion)

Finding People in Images

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

Existing Person Detectors/Feature Sets

Current Approaches

Haar wavelets + SVM:

Papageorgiou & Poggio, 2000; Mohan et al 2000
 Rectangular differential features + adaBoost:

- Viola & Jones, 2001
- Edge templates + nearest neighbour:
 - Gavrila & Philomen, 1999

Model based methods

- Felzenszwalb & Huttenlocher, 2000; Ioffe & Forsyth, 1999
 Other works
 - Leibe et al, 2005; Mikolajczyk et al, 2004

Orientation histograms

Freeman et al, 1996; Lowe, 1999 (SIFT); Belongie et al, 2002 (Shape contexts)

+1

Static Feature Extraction

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

Overview of Learning Phase

Learning phase

Input: Annotations on training images

Create fixed-resolution normalised training image data set

Encode images into feature spaces

Learn binary classifier

HOG Descriptors

Parameters

Gradient scale Orientation bins Percentage of block overlap

Schemes

RGB or Lab, colour/gray-space Block normalisation *L2*-norm,

or

 $v \leftarrow v / \sqrt{\|v\|_2^2} + \varepsilon$

L1-norm,

 $v \leftarrow \sqrt{v/(\|v\|_1 + \mathcal{E})}$

Evaluation Data Sets

MIT pedestrian database	INRIA person database					
507 positive windows	1208 positive windows					
Negative data unavailable	1218 negative images					
200 positive windows	566 positive windows					
Negative data unavailable	453 negative images					
Overall 709 annotations+	Overall 1774 annotations+					
reflections	reflections					

Overall Performance

MIT pedestrian database **INRIA** person database DET - different descriptors on MIT database DET - different descriptors on INRIA database 0.2 -O- Lin. R–HOG - 🖪 - Lin. C–HOG -v- Lin. EC–HOG -A · Wavelet 0.2 PCA-SIFT -▶· Lin. G-ShaceC Lin. E-ShaceC -A · MIT best (part) 0.1 miss rate miss rate MIT baseline 0.1 o- Ker. R–HOG 0.05 Lin. R2-HOG Lin. R-HOG Lin. C-HOG Lin. EC-HOG 0.05 Wavelet 0.02 PCA-SIFT 0.02 A - Lin, G–ShapeC 0.01 Lin. E-ShapeC 0.01 10⁻³ 10^{-4} 10^{-2} 10^{-5} 10 10 10 10 false positives per window (FPPW) false positives per window (FPPW)

R/C-HOG give near perfect separation on MIT database Have 1-2 order lower false positives than other descriptors

Performance on INRIA Database

Effect of Parameters

Reducing gradient scale from 3 to 0 decreases false positives by 10 times

Orientation bins, β

Increasing orientation bins from 4 to 9 decreases false positives by 10 times

Normalisation Method & Block Overlap

Block overlap

Overlapping blocks improve performance, but descriptor size increases

Effect of Block and Cell Size

Trade off between need for local spatial invariance and need for finer spatial resolution

Descriptor Cues

Most important cues are head, shoulder, leg silhouettes Vertical gradients inside a person are counted as negative Overlapping blocks just outside the contour are most important

Multi-Scale Object Localisation

Effect of Spatial Smoothing

Spatial smoothing aspect ratio as per window shape, smallest sigma approx. equal to stride/cell size Relatively independent of scale smoothing, sigma equal to 0.4 to 0.7 octaves gives good results

Effect of Other Parameters

Hard clipping of SVM scores gives the best results than simple probabilistic mapping of these scores

Fine scale sampling helps improve recall

Results Using Static HOG

No temporal smoothing of detections

Conclusions for Static Case

Fine grained features improve performance

Rectify fine gradients then pool spatially

- No gradient smoothing, [1 0 -1] derivative mask
- Orientation voting into fine bins
- Spatial voting into coarser bins

Use gradient magnitude (no thresholding)

Strong local normalization

Use overlapping blocks

Robust non-maximum suppression

• Fine scale sampling, hard clipping & anisotropic kernel

Human detection rate of 90% at 10⁻⁴ false positives per window Slower than integral images of Viola & Jones, 2001

Applications to Other Classes

M. Everingham et al. The 2005 PASCAL Visual Object Classes Challenge. Proceedings of the PASCAL Challenge

Parameter Settings

Most HOG parameters are stable across different classes

- Parameters that change
 - Gamma compression
 - Normalisation methods
 - Signed/un-signed gradients

Results from Pascal VOC 2006

	Person	Car	Motorbike	Bicycle	Bus	Sheep	Horse	Сом	Cat	Dog
Cam bridge	0.030	0.254	0.178	0.249	0.138	0.131	0.091	0.149	0.151	0.118
ENSMP	-	0.398	-	-	-	-	-	0.159	-	-
HOG	0.164	0.444	0.390	0.414	0.117	0.251	-	0.212	-	-
Laptev= HOG+ Ada- boost	0.114	-	0.318	0.440	-	-	0.140	0.224	-	-
TUD	0.074	-	0.153	-	-	-	-	-	-	-
TKK	0.039	0.222	0.265	0.303	0.169	0.227	0.137	0.252	0.160	0.113

HOG outperformed other methods for 4 out of 10 classes

Its adaBoost variant outperformed other methods for 2 out of 10 classes

Finding People in Videos

N. Dalal, B. Triggs and C. Schmid. Human Detection Using Oriented Histograms of Flow and Appearance. ECCV, 2006. 26

Finding People in Videos

Motivation

Human motion is *very* characteristic

Requirements

Must work for moving camera and background

Robust coding of relative motion of human parts

Previous works

Viola et al, 2003 Gavrila et al, 2004 Efros et al, 2003

Courtesy: R. Blake Vanderbilt Univ

Handling Camera Motion

Camera motion characterisation

- Pan and tilt is locally translational
- Rest is depth induced motion parallax

Use local differential of flow

- Cancels out effects of camera rotation
- Highlights 3D depth boundaries
- Highlights motion boundaries

Robust encoding into oriented histograms

- Some focus on capturing motion boundaries
- Other focus on capturing internal motion or relative dynamics of different limbs

Motion HOG Processing Chain

Overview of Feature Extraction

Coding Motion Boundaries

Treat *x*, *y*-flow components as independent images Take their local gradients separately, and compute HOGs as in static images

First Second frame frame

Motion Boundary Histograms (MBH) encode depth and motion boundaries

diff

diff

Coding Internal Dynamics

Ideally compute relative displacements of different limbs

Requires reliable part detectors

Parts are relatively localised in our detection windows

Allows different coding schemes based on fixed spatial differences

Internal Motion Histograms (IMH) encode relative dynamics of different regions

...IMH Continued

Simple difference

Take *x*, *y* differentials of flow vector images $[I_x, I_y]$

Variants may use larger spatial displacements while differencing, e.g. [1 0 0 0 -1]

Center cell difference

Wavelet-style cell differences

Proesman's flow [Proesmans et al. ECCV 1994]

15 seconds per frame

Our flow method

Multi-scale pyramid based method, no regularization

Brightness constancy based damped least squares solution $[x, y]^T = (\mathbf{A}^T \mathbf{A} + \beta \mathbf{I})^{-T} \mathbf{A}^T \mathbf{b}$ on 5X5 window

1 second per frame

MPEG-4 based block matching

Performance Comparison

With motion only, MBH scheme on Proesmans' flow works best Combined with appearance, centre difference IMH performs best

Appearance + motion

Trained on Static & Flow

Adding static images during test reduces performance margin

No deterioration in performance on static images

Motion HOG Video

No temporal smoothing, each pair of frames treated independently

Recall-Precision for Motion HOG

Unresolved issue!

Recall-precision plots for the combined static + motion HOG shows there is no gain over the static HOG

Results are disappointing; probable reason is different internal biases during nonmaximum suppression for static and motion HOG

Recall-Precision -- descriptors on INRIA static+moving person database

Conclusions for Motion HOG

Summary

- When combined with appearance, IMH outperforms MBH
- Regularization in flow estimates reduces performance
- MPEG4 block matching looks good but motion estimates not good for detection
- Larger spatial difference masks help
- Strong local normalization is very important
- Relatively insensitive to number of orientation bins

Window classifier reduces false positives by 10 times Issue of unexpectedly low precision for full detector Slow compared to static HOG

Human Part Detectors

Current approaches:

Mohan et al, 2000; Mikolajczyk et al, 2004

Current approach to part detectors

- Use manual part annotations to learn individual classifiers
- Parameters optimized for each detector

Other approaches

Cluster block feature vectors to automatically learn different part representations

Part-based Human Detectors

Contributions

Bottom-up approach to object detection Robust feature encoding for person detection Gives state-of-the-art results for person detection Also works well for other object classes Proposed differential motion features vectors for feature extraction from videos

Future Work

Fix the motion HOG integration

- Real time implementation is possible
- Use rejection cascade algorithms for selecting most relevant features
- Part based detector for handling partial occlusions
- Extend motion HOG to activity recognition
- Use higher level image analysis to improve performance

Thank You

Multi-Scale Object Localisation

