Histograms of Oriented Gradients for Human Detection N. Dalal and B. Triggs CVPR 2005

HOG Steps

- HOG feature extraction
 - Compute centered horizontal and vertical gradients with no smoothing
 - Compute gradient orientation and magnitudes
 - For color image, pick the color channel with the highest gradient magnitude for each pixel.
 - For a 64x128 image,
 - Divide the image into 16x16 blocks of 50% overlap.
 - 7x15=105 blocks in total
 - Each block should consist of 2x2 cells with size 8x8.
 - Quantize the gradient orientation into 9 bins
 - The vote is the gradient magnitude
 - Interpolate votes bi-linearly between neighboring bin center.
 - The vote can also be weighted with Gaussian to downweight the pixels near the edges of the block.
 - Concatenate histograms (Feature dimension: 105x4x9 = 3,780)

Computing Gradients

-1

0

1

- Centered: $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x-h)}{2h}$
- Filter masks in x and y directions
 - Centered:

- Gradient
 - Magnitude: $s = \sqrt{s_x^2 + s_y^2}$
 - Orientation:

$$\theta = \arctan(\frac{s_y}{s_x})$$

Blocks, Cells

- 16x16 blocks of 50% overlap.
 - 7x15=105 blocks in total
- Each block should consist of 2x2 cells with size 8x8.

Tri-linear Interpolation

- Each block consists of 2x2 cells with size 8x8
- Quantize the gradient orientation into 9 bins (0-180)
 - The vote is the gradient magnitude
 - Interpolate votes linearly between neighboring bin centers.
 - Example: if θ =85 degrees.
 - Distance to the bin cente Bin 70 and Bin 90 are 15 and 5 degrees, respectively.
 - Hence, ratios are 5/20=1/4, 15/20=3/4.
 - The vote can also be weighted with Gaussian to downweight the pixels near the edges of the block.

Final Feature Vector

- Concatenate histograms
 - Make it a 1D matrix of length 3780.

Visualization

Results

Navneet Dalal and Bill Triggs "Histograms of Oriented Gradients for Human Detection" CVPR05

