Matemática Discreta

Unidade 16: Funções Iteradas (1)

Renato Carmo David Menotti

Departamento de Informática da UFPR

Segundo Período Especial de 2020

Unidade 16: Funções Iteradas (1)

O objetivo desta aula é exercitar a ideia de cálculo iterado de uma função que será intensivamente usada nas próximas aulas (segunda parte) para resolver recorrências. Para resolver recorrências do tipo

$$f(n) = m(n)f(h(n)) + s(n),$$

é preciso saber determinar a expressão de $h^k(n)$, $s^k(n)$ e $m^k(n)$ a partir das expressões de h(n), s(n) e m(n), respectivamente.

Definição

Sejam A, B, C conjuntos e sejam $f: A \to B$ e $g: B \to C$. A **composição** de f com g é a função $f \circ g: A \to C$ dada por

$$f\circ g(x):=g(f(x)).$$

Definição

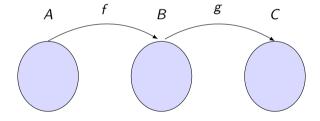
Sejam A, B, C conjuntos e sejam $f: A \to B$ e $g: B \to C$. A **composição** de f com g é a função $f \circ g: A \to C$ dada por

 $f \circ g(x) := g(f(x)).$

Definição

Sejam A, B, C conjuntos e sejam $f: A \to B$ e $g: B \to C$. A **composição** de f com g é a função $f \circ g: A \to C$ dada por

$$f\circ g(x):=g(f(x)).$$



Definição

Sejam A, B, C conjuntos e sejam $f: A \to B$ e $g: B \to C$. A **composição** de f com g é a função $f \circ g: A \to C$ dada por

$$f \circ g(x) := g(f(x)).$$

A f B G C

 $f \circ g$

Definição

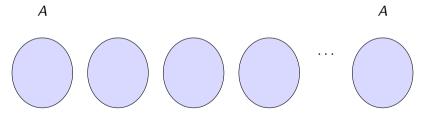
Seja A um conjunto e $f:A\to A$ uma função. Para todo $n\in\mathbb{N}$ definimos $f^n\colon A\to A$ como

$$f^{n}(a) = (\underbrace{f \circ f \circ \ldots \circ f}_{nvezes})(a) = \underbrace{f(f(\ldots f(a)))}_{nvezes}.$$

Definição

Seja A um conjunto e $f:A\to A$ uma função. Para todo $n\in\mathbb{N}$ definimos $f^n\colon A\to A$ como

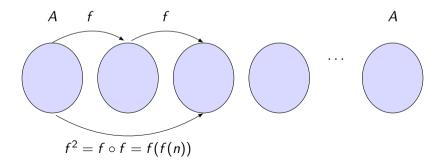
$$f^{n}(a) = (\underbrace{f \circ f \circ \ldots \circ f}_{nvezes})(a) = \underbrace{f(f(\ldots f(a)))}_{nvezes}$$



Definição

Seja A um conjunto e $f:A\to A$ uma função. Para todo $n\in\mathbb{N}$ definimos $f^n\colon A\to A$ como

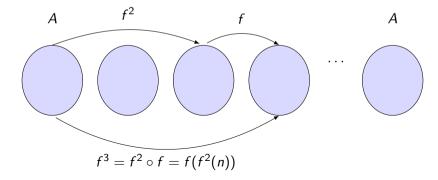
$$f^n(a) = (\underbrace{f \circ f \circ \ldots \circ f}_{nvezes})(a) = \underbrace{f(f(\ldots f(a)))}_{nvezes}.$$



Definição

Seja A um conjunto e $f:A\to A$ uma função. Para todo $n\in\mathbb{N}$ definimos $f^n:A\to A$ como

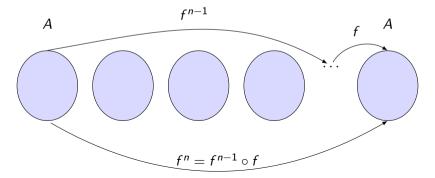
$$f^n(a) = (\underbrace{f \circ f \circ \ldots \circ f}_{nvezes})(a) = \underbrace{f(f(\ldots f(a)))}_{nvezes}.$$



Definição

Seja A um conjunto e $f:A\to A$ uma função. Para todo $n\in\mathbb{N}$ definimos $f^n:A\to A$ como

$$f^{n}(a) = (\underbrace{f \circ f \circ \ldots \circ f}_{nvezes})(a) = \underbrace{f(f(\ldots f(a)))}_{nvezes}.$$



Definição

Mais precisamente,

$$f^n := \begin{cases} I, & \text{se } n = 0, \\ f^{n-1} \circ f, & \text{se } n > 0, \end{cases}$$

onde I : $A \rightarrow A$ denota a função identidade, dada por

$$I(a) = a$$
 para todo $a \in A$.

Exercício 91

Para cada uma das funções f(x) abaixo, dê uma expressão para $f^n(x)$. Em cada caso, prove por indução em n que sua resposta está correta.

- a f(x) = x + 1.
- **b** f(x) = x + 2.
- f(x) = x + 3.
- d f(x) = x + s.
- e f(x) = 2x.
- f f(x) = 3x.
- g f(x) = mx.
- h f(x) = s + mx.

O cálculo de $f^n(x)$, pela definição recursiva, deriva em f^{n-1} , que por sua vez precisa de f^{n-2} e assim por diante. Isto é, o cálculo de $f^n(x)$ se desdobra recursivamente enquanto n > 0. Em outras palavras, partimos de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$. E daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+1)$$
$$= (x+1) + 1 = x + 2.$$

O cálculo de $f^n(x)$, pela definição recursiva, deriva em f^{n-1} , que por sua vez precisa de f^{n-2} e assim por diante. Isto é, o cálculo de $f^n(x)$ se desdobra recursivamente enquanto n > 0. Em outras palavras, partimos de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$. E daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+1)$$
$$= (x+1) + 1 = x + 2.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(x+2)$$
$$= (x+2) + 1 = x+3.$$

O cálculo de $f^n(x)$, pela definição recursiva, deriva em f^{n-1} , que por sua vez precisa de f^{n-2} e assim por diante. Isto é, o cálculo de $f^n(x)$ se desdobra recursivamente enquanto n > 0. Em outras palavras, partimos de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$. E daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+1)$$
$$= (x+1) + 1 = x + 2.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(x+2)$$
$$= (x+2) + 1 = x + 3.$$

Ε,

$$f^{4}(x) = f^{3} \circ f(x) = f(f^{3}(x)) = f(x+3)$$
$$= (x+3) + 1 = x + 4.$$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(x + (n-1))$$

= $(x + (n-1)) + 1 = x + n$,

mas este resultado não está provado.

Exercício 91(a) Seja
$$f(x) = x + 1$$
, dê a expressão para $f^n(x)$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(x + (n-1))$$

= $(x + (n-1)) + 1 = x + n$,

mas este resultado não está provado.

Resta provar, por indução em n, que, se f(x) = x + 1,

$$f^n(x) = x + n$$
, para todo $n \in \mathbb{N}$.

Exercício 91(a) Prove que $f^n(x) = x + n$, para todo $n \in \mathbb{N}$.

Vamos provar que

$$f^n(x) = x + n$$
, para todo $n \in \mathbb{N}$.

Exercício 91(a) Prove que $f^n(x) = x + n$, para todo $n \in \mathbb{N}$.

Vamos provar que

$$f^n(x) = x + n$$
, para todo $n \in \mathbb{N}$.

Hipótese Indutiva: Seja $a \in \mathbb{N}$ tal que

$$f^k(x) = x + k$$
, para todo $k \in [0..a]$.

Exercício 91(a) Prove que
$$f^n(x) = x + n$$
, para todo $n \in \mathbb{N}$.

Passo da Indução: Vamos provar que

$$f^{a+1}(x) = x + (a+1).$$

Pela definição de f^n , temos que

$$f^{a+1}(x) = f^a \circ f(x) = f(f^a(x)).$$

Como $a \in [0..a]$, da hipótese indutiva, vem que

$$f^{a}(x)=x+a,$$

e portanto

$$f^{a+1}(x) = f(f^a(x)) = f(x+a) = (x+a) + 1 = x + (a+1).$$

Exercício 91(a) Prove que $f^n(x) = x + n$, para todo $n \in \mathbb{N}$.

Base: Seja b = 0, vamos provar que

$$f^b(x) = x + b.$$

Por um lado (pela definição de $f^n x$),

$$f^0(x)=x.$$

Por outro lado,

$$x + 0 = x$$
.

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+2)$$
$$= (x+2) + 2 = x + 4 = x + 2 \times 2.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+2)$$
$$= (x+2) + 2 = x + 4 = x + 2 \times 2.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(x+4)$$
$$= (x+4) + 2 = x + 6 = x + 3 \times 2.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+2)$$
$$= (x+2) + 2 = x + 4 = x + 2 \times 2.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(x+4)$$
$$= (x+4) + 2 = x + 6 = x + 3 \times 2.$$

Ε,

$$f^{4}(x) = f^{3} \circ f(x) = f(f^{3}(x)) = f(x+6)$$
$$= (x+6) + 2 = x+8 = x+4 \times 2.$$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(x + 2(n-1))$$

= $(x + 2(n-1)) + 2 = x + 2n$,

mas este resultado não está provado.

Exercício 91(b) Seja
$$f(x) = x + 2$$
, dê a expressão para $f^n(x)$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(x + 2(n-1))$$

= $(x + 2(n-1)) + 2 = x + 2n$,

mas este resultado não está provado.

Resta provar, por indução em n, que, se f(x) = x + 2,

$$f^n(x) = x + 2n$$
, para todo $n \in \mathbb{N}$,

o que é deixado como exercício.

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+3)$$
$$= (x+3) + 3 = x + 6 = x + 2 \times 3.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+3)$$
$$= (x+3) + 3 = x + 6 = x + 2 \times 3.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(x+6)$$
$$= (x+6) + 3 = x + 9 = x + 3 \times 3.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+3)$$
$$= (x+3) + 3 = x + 6 = x + 2 \times 3.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(x+6)$$
$$= (x+6) + 3 = x + 9 = x + 3 \times 3.$$

Ε,

$$f^{4}(x) = f^{3} \circ f(x) = f(f^{3}(x)) = f(x+9)$$
$$= (x+9) + 3 = x + 12 = x + 4 \times 3.$$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(x+3(n-1))$$

= $(x+3(n-1)) + 3 = x + 3n$,

mas este resultado não está provado.

Exercício 91(c) Seja
$$f(x) = x + 3$$
, dê a expressão para $f^n(x)$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(x + 3(n-1))$$

= $(x + 3(n-1)) + 3 = x + 3n$,

mas este resultado não está provado.

Resta provar, por indução em n, que, se f(x) = x + 3,

$$f^n(x) = x + 3n$$
, para todo $n \in \mathbb{N}$,

o que é deixado como exercício.

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+s)$$
$$= (x+s) + s = x + 2s = x + 2 \times s.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+s)$$
$$= (x+s) + s = x + 2s = x + 2 \times s.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(x+2s)$$
$$= (x+2s) + s = x + 3s = x + 3 \times s.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(x+s)$$
$$= (x+s) + s = x + 2s = x + 2 \times s.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(x + 2s)$$
$$= (x + 2s) + s = x + 3s = x + 3 \times s.$$

Ε,

$$f^{4}(x) = f^{3} \circ f(x) = f(f^{3}(x)) = f(x + 3s)$$
$$= (x + 3s) + s = x + 4s = x + 4 \times s.$$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(x + s(n-1))$$

= $(x + s(n-1)) + s = x + sn$,

mas este resultado não está provado.

Exercício 91(d) Seja
$$f(x) = x + s$$
, dê a expressão para $f^n(x)$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(x + s(n-1))$$

= $(x + s(n-1)) + s = x + sn$,

mas este resultado não está provado.

Resta provar, por indução em n, que, se f(x) = x + s,

$$f^n(x) = x + sn$$
, para todo $n \in \mathbb{N}$,

o que é deixado como exercício.

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(2x)$$
$$= 2(2x) = 4x = 2^{2}x.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(2x)$$

= $2(2x) = 4x = 2^{2}x$.

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(2^{2}x)$$
$$= 2(2^{2}x) = 8x = 2^{3}x.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(2x)$$

= $2(2x) = 4x = 2^{2}x$.

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(2^{2}x)$$
$$= 2(2^{2}x) = 8x = 2^{3}x.$$

Ε,

$$f^4(x) = f^3 \circ f(x) = f(f^3(x)) = f(2^3x)$$

= $2(2^3x) = 16x = 2^4x$.

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(2^{n-1}x)$$

= $22^{n-1}x = 2^{n}x$,

mas este resultado não está provado.

Exercício 91(e) Seja
$$f(x) = 2x$$
, dê a expressão para $f^n(x)$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(2^{n-1}x)$$

= $22^{n-1}x = 2^{n}x$,

mas este resultado não está provado.

Resta provar, por indução em n, que, se f(x) = 2x,

$$f^n(x) = 2^n x$$
, para todo $n \in \mathbb{N}$,

o que é deixado como exercício.

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(3x)$$
$$= 3(3x) = 9x = 3^{2}x.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(3x)$$

= $3(3x) = 9x = 3^{2}x$.

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(3^{2}x)$$
$$= 3(3^{2}x) = 27x = 3^{3}x.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(3x)$$

= $3(3x) = 9x = 3^{2}x$.

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(3^{2}x)$$
$$= 3(3^{2}x) = 27x = 3^{3}x.$$

Ε,

$$f^{4}(x) = f^{3} \circ f(x) = f(f^{3}(x)) = f(3^{3}x)$$
$$= 3(3^{3}x) = 81x = 3^{4}x.$$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(3^{n-1}x)$$

= $33^{n-1}x = 3^{n}x$,

mas este resultado não está provado.

Exercício 91(f) Seja
$$f(x) = 3x$$
, dê a expressão para $f^n(x)$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(3^{n-1}x)$$
$$= 33^{n-1}x = 3^{n}x,$$

mas este resultado não está provado.

Resta provar, por indução em n, que, se f(x) = 3x,

$$f^n(x) = 3^n x$$
, para todo $n \in \mathbb{N}$,

o que é deixado como exercício.

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(mx)$$
$$= m(mx) = m^{2}x.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(mx)$$
$$= m(mx) = m^{2}x.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(m^{2}x)$$

= $m(m^{2}x) = m^{3}x$.

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como

$$f^{2}(x) = f \circ f(x) = f(f(x)) = f(mx)$$
$$= m(mx) = m^{2}x.$$

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(m^{2}x)$$

= $m(m^{2}x) = m^{3}x$.

Ε,

$$f^{4}(x) = f^{3} \circ f(x) = f(f^{3}(x)) = f(m^{3}x)$$

= $m(m^{3}x) = m^{4}x$.

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(m^{n-1}x)$$

= $mm^{n-1}x = m^{n}x$,

mas este resultado não está provado.

Exercício 91(g) Seja
$$f(x) = mx$$
, dê a expressão para $f^n(x)$

Isto nos leva a crer que a forma de $f^n(x)$ é

$$f^{n}(x) = f^{n-1} \circ f(x) = f(f^{n-1}(x)) = f(m^{n-1}x)$$

= $mm^{n-1}x = m^{n}x$,

mas este resultado não está provado.

Resta provar, por indução em n, que, se f(x) = mx,

$$f^n(x) = m^n x$$
, para todo $n \in \mathbb{N}$,

o que é deixado como exercício.

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como $f^{2}(x) = f \circ f(x) = f(f(x)) = f(s + mx)$

Partindo de
$$f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$$
, daí, vem que f^2 é definido como
$$f^2(x) = f \circ f(x) = f(f(x)) = f(s + mx)$$
$$= s + m(s + mx) = s + ms + m^2x = m^0s + m^1s + m^2x.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como $f^2(x) = f \circ f(x) = f(f(x)) = f(s + mx)$ = $s + m(s + mx) = s + ms + m^2x = m^0s + m^1s + m^2x$.

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(s + ms + m^{2}x)$$

$$= s + m(s + ms + m^{2}x) = s + ms + m^{2}s + m^{3}x$$

$$= m^{0}s + m^{1}s + m^{2}s + m^{3}x.$$

Partindo de $f^1 = f^0 \circ f(x) = f(f^0(x)) = f(x)$, daí, vem que f^2 é definido como $f^2(x) = f \circ f(x) = f(f(x)) = f(s + mx)$ = $s + m(s + mx) = s + ms + m^2x = m^0s + m^1s + m^2x$.

Então,

$$f^{3}(x) = f^{2} \circ f(x) = f(f^{2}(x)) = f(s + ms + m^{2}x)$$

$$= s + m(s + ms + m^{2}x) = s + ms + m^{2}s + m^{3}x$$

$$= m^{0}s + m^{1}s + m^{2}s + m^{3}x.$$

Ε,

$$f^{4}(x) = f^{3} \circ f(x) = f(f^{3}(x)) = f(s + ms + m^{2}s + m^{3}x)$$

$$= s + m(s + ms + m^{2}s + m^{3}x) = s + ms + m^{2}s + m^{3}s + m^{4}x$$

$$= m^{0}s + m^{1}s + m^{2}s + m^{3}s + m^{4}x.$$

Isto nos leva a crer que a forma de $f^n(x)$ tem dois componentes, um exponencial e um somatório, onde s e m são constantes, isto é,

$$f^{n}(x) = m^{n}x + \sum_{i=0}^{n-1} sm^{i} = m^{n}x + s\sum_{i=0}^{n-1} m^{i},$$

Isto nos leva a crer que a forma de $f^n(x)$ tem dois componentes, um exponencial e um somatório, onde s e m são constantes, isto é,

$$f^{n}(x) = m^{n}x + \sum_{i=0}^{n-1} sm^{i} = m^{n}x + s\sum_{i=0}^{n-1} m^{i},$$

e o somatório é uma progressão geométrica de razão m com n termos, e portanto

$$f^{n}(x) = \begin{cases} x + sn, & \text{se } m = 1, \\ m^{n}x + s\frac{m^{n}-1}{m-1}, & \text{se } m \neq 1, \end{cases}$$

mas este resultado não está provado.

Isto nos leva a crer que a forma de $f^n(x)$ tem dois componentes, um exponencial e um somatório, onde s e m são constantes, isto é,

$$f^{n}(x) = m^{n}x + \sum_{i=0}^{n-1} sm^{i} = m^{n}x + s\sum_{i=0}^{n-1} m^{i},$$

e o somatório é uma progressão geométrica de razão m com n termos, e portanto

$$f^{n}(x) = \begin{cases} x + sn, & \text{se } m = 1, \\ m^{n}x + s\frac{m^{n}-1}{m-1}, & \text{se } m \neq 1, \end{cases}$$

mas este resultado não está provado.

Resta provar, por indução em n, que, se f(x) = s + mx,

$$f^n(x) = egin{cases} x + sn, & ext{se } m = 1, \\ m^n x + s rac{m^n - 1}{m - 1}, & ext{se } m
eq 1, \end{cases}$$

e está proposto como Exercício 68.

Teorema 22

Teorema 22: Sejam $f: \mathbb{R} \to \mathbb{R}$ e $s, m \in \mathbb{R}$ tais que

$$f(x) = s + mx$$
, para todo $x \in \mathbb{R}$,

então, para todo $x \in \mathbb{R}$ e todo $n \in \mathbb{N}$,

$$f^n(x) = \begin{cases} x + sn, & \text{se } m = 1, \\ m^n x + s \frac{m^n - 1}{m - 1}, & \text{se } m \neq 1. \end{cases}$$

Prova: Exercício 68