Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica

Boas Maneiras em Aprendizado de Máquinas

David Menotti www.inf.ufpr.br/menotti/ci171-182

Boas Maneiras

Agenda

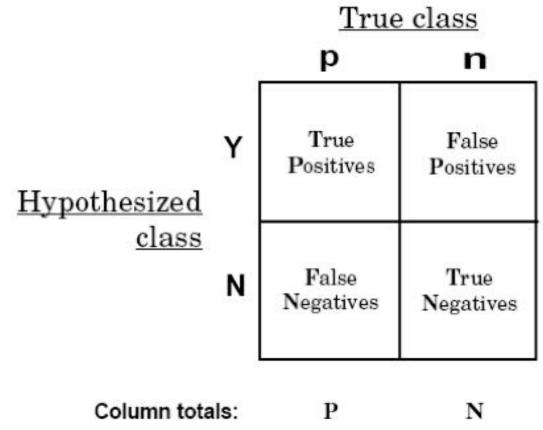
- Introdução
- Métricas de Avaliação
- Técnicas de Validação
- Avaliação de Classificadores
- Comparando Classificadores

Introdução

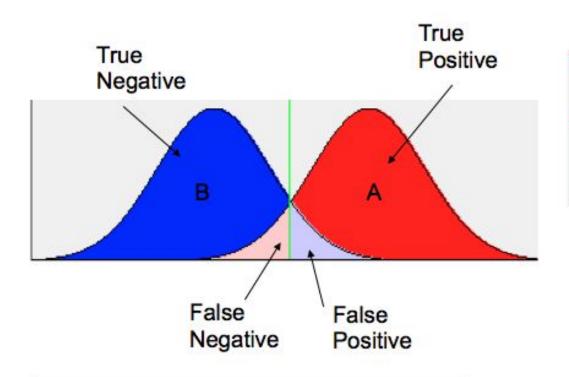
- Considere por exemplo, um problema de classificação binário com 99 exemplos na classe positiva e 1 exemplo na classe negativa.
- Considere que o classificador classificou corretamente todos os exemplos da classe positiva e errou somente o exemplo da classe negativa.
- Nesse caso temos uma acurácia de 99\%.
- Atenção: Acurácia de um classificador nem sempre é a melhor medida para se avaliar um classificador, principalmente em problemas desbalanceados.

Avaliação

 Dado um classificador binário, as saídas possíveis são as seguintes:



Avaliação



TPF	FPF
0.920	0.088
FNF	TNF
0.079	0.911

TP - Classe é A e classificamos como A

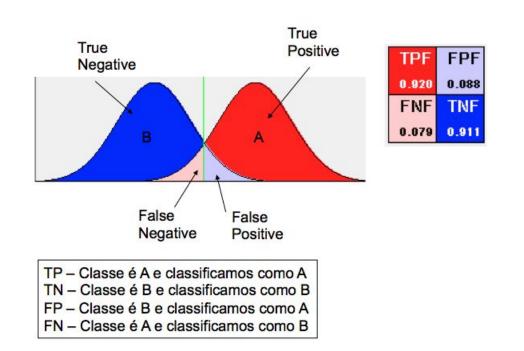
TN - Classe é B e classificamos como B

FP - Classe é B e classificamos como A

FN - Classe é A e classificamos como B

Tipos de Erro

- Erro Tipo I (α-erro, falso positivo):
 - Aceita-se como genuíno algo que é falso FP
- Erro Tipo II (β-erro, falso negativo):
 - Rejeita-se algo que deveria ter sido aceito FN



- FP Rate
 - FP/N
- TP Rate ou hit rate
 - TP / P
- Accuracy

$$- (TP + TN) / (P + N)$$

- P = TP + FN
- N = TN + FP

- Precision (Pr)
 - TP / (TP + FP)

Tende a 1 se FP tende a 0

- Recall (R) (revogação)
 - TPR = TP / (TP + FN)

Tende a 1 se FN tende a 0

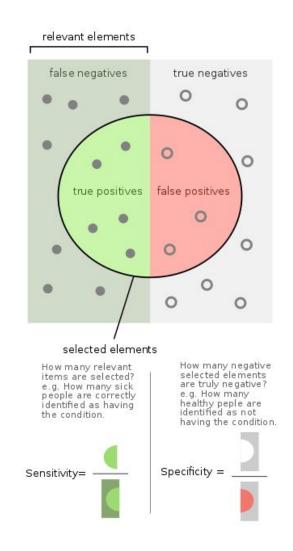
- F-Measure
 - -2/(1/Pr+1/R)
 - 2 Pr. R / (Pr + R)

Média harmônica de Pr e R, tendo em vista que são grandezas inversamente proporcionais

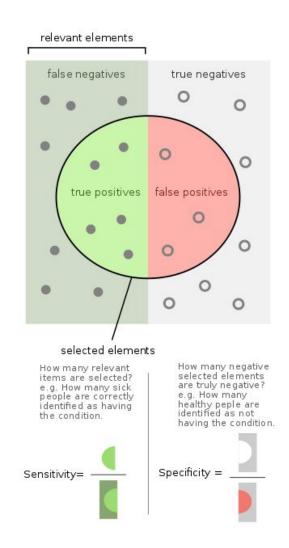
No scikit-learn, essas métricas estão implementadas no método classification report (classe metrics)

```
>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 2, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
            precision
                         recall f1-score support
    class 0
                 0.67
                           1.00
                                     0.80
                                     0.00
    class 1
                 0.00
                           0.00
    class 2
                 1.00
                           1.00
                                    1.00
avg / total
                 0.67
                           0.80
                                     0.72
                                                  5
```

- Espeficidade / Specificity
 - TN/N
- Sensibilidade / Sensibility
 - TP/P
 - * Recall



- Espeficidade / Specificity
 - TN/N
- Sensibilidade / Sensibility
 - TP/P
 - * Recall



Técnicas de Validação

- Resubstitution
- Hold-out
- K-fold cross-validation
- LOOCV
- Random subsampling
- Bootstrapping

Resubstitution

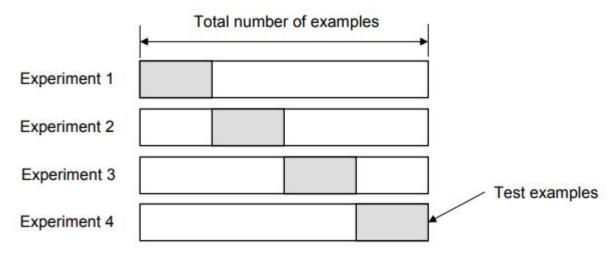
- Se todos os dados forem usados para treinar o modelo e a taxa de erro for avaliada com base no resultado versus valor real do mesmo conjunto de dados de treinamento, esse erro será chamado de erro de resubstituição (resubstitution error validation).
- Por exemplo:
 - Análise de Malware
 - Aplicações onde necessitam de:
 - Black list
 - White list

Hold-out

- Para evitar o erro de resubstituição, os dados são divididos em dois conjuntos de dados diferentes rotulados como um conjunto de treinamento e de teste.
- A divisão pode ser: 60% / 40% ou 70% / 30% ou 80% / 20%, etc.
 - Avaliar classificador em diferentes cenários:
 - 5% de train? ou 90% de train?
- Muito provavelmente haverá distribuição desigual das classes (alvos/metas) nos conjunto de dados de treinamento e teste.
 - os conjuntos de dados de treinamento e teste são criados com distribuição igual de diferentes classes de dados.
 - Esse processo é chamado de estratificação.

K-fold cross-validation

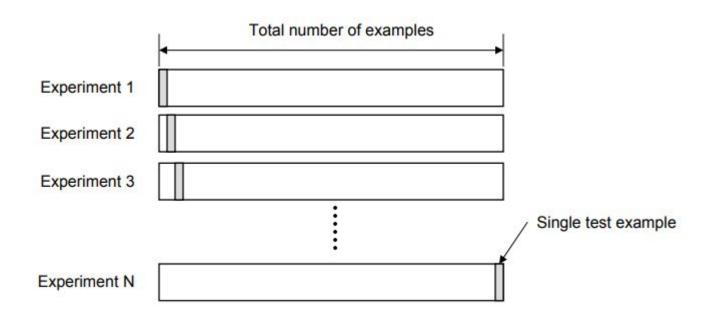
 Nesta técnica, k-1 folds são usadas para treinamento e o restante (1 fold) é usado para teste.



- A vantagem é que todos os dados são usados para treinamento.
 - Cada amostra é usada apenas uma vez para teste.
- A taxa de erro do modelo é a média
- Pode-se ver esta técnica como um hold-out repetido

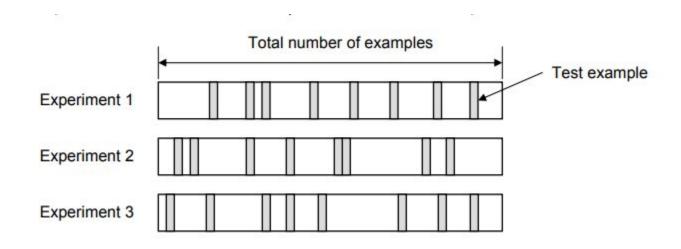
Leave-One-Out Cross-Validation (LOOCV)

- Todos os dados, exceto um registro, são usados para treinamento
 - Um registro é usado para teste.
- Processo é repetido por N vezes se houver registros N.
 - A vantagem é que (N-1)/ são usados para treinamento
- Desvantagem: custo computacional: N rodadas



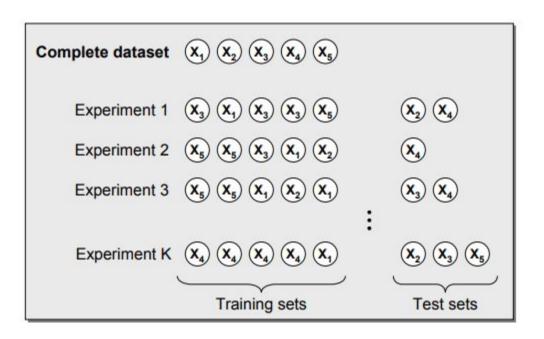
Random subsampling

- Amostras são escolhidos aleatoriamente para formar o test set.
- Os dados restantes formam o train set
- Bem utilizada na prática: pelo menos 30 execuções/rodadas



Bootstrapping

- Train set é selecionado aleatoriamente com substituição / repetição.
- Os exemplos restantes que não foram selecionados para treinamento são usados para teste.
- Diferente da validação cruzada de K-fold,
 - é provável que o valor mude de fold para fold.



Avaliação de Classificadores

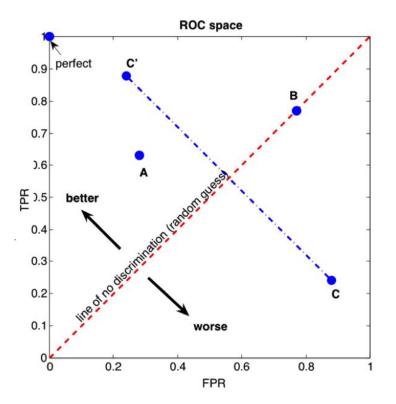
Exemplos de Classificadores

A		В			С			C′			
TP=63	FN=37	100	TP=77	FN=23	100	TP=24	FN=76	100	TP=76	FN=24	100
FP=28	TN=72	100	FP=77	TN=23	100	FP=88	TN=12	100	FP=12	TN=88	100
91	109	200	154	46	200	112	88	200	88	112	200
TPR = 0.63 TPR = 0.77				TPR = 0.24			TPR = 0.76				
FPR = 0.28 FPR = 0.77		FPR = 0.88			FPR = 0.12						
F1 = 0.66 F1 = 0.61			F1 = 0.22			F1 = 0.81					
ACC = 0.68 ACC = 0.50				ACC = 0.18			ACC = 0.82				

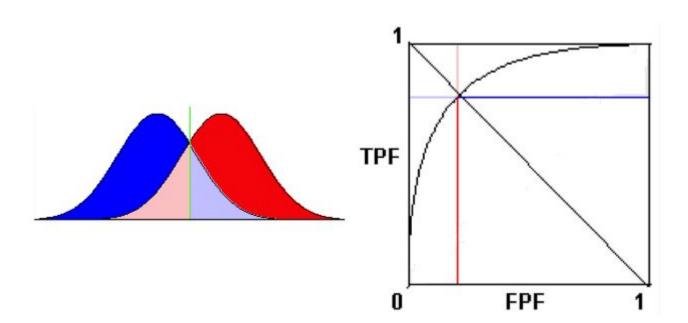
Espaço ROC

ROC (*Receiver Operating Characteristic*) é uma representação gráfica que ilustra o desempenho de um classificador binário em um determinado ponto de operação.

Classificadores do exemplo anterior no espaço ROC.



- A curva ROC mostra todos os pontos de operação do classificador (relação entre TP e FP)
- Para cada ponto, existe um limiar associado.
- EER (Equal Error Rate):
 - Ponto no gráfico no qual FPR é igual a 1-TPR
- Quando n\u00e3o existe um ponto operacional espec\u00edfico, usamos EER.



• Considere 20 amostras, 10 classificadas corretamente (+) e 10 classificadas incorretamente (-) com suas respectivas probabilidades.

#	Classe	Score	#	Classe	Score
1	+	0.90	11	-	0.70
2	+	0.80	12	-	0.53
3	+	0.60	13	-	0.52
4	+	0.55	14	J=0.1	0.505
5	+	0.54	15	. .	0.39
6	+	0.51	16	-	0.37
7	+	0.40	17	-	0.36
8	+	0.38	18	-	0.35
9	+	0.34	19	.=0.4	0.33
10	+	0.30	20		0.10

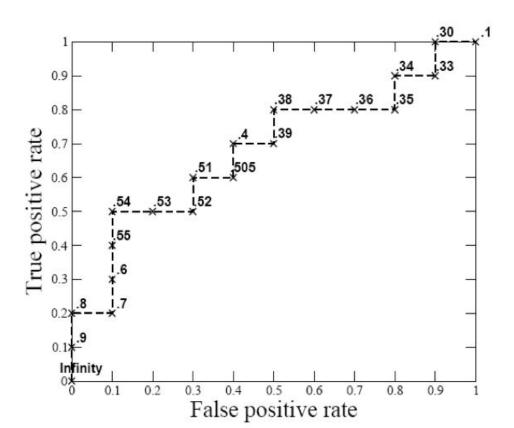
Exemplo

• Considere 20 amostras, 10 classificadas corretamente (+) e 10 classificadas incorretamente (-) com suas respectivas probabilidades.

#	Classe	Score	#	Classe	Score
1	+	0.90	11	-	0.70
2	+	0.80	12	-	0.53
3	+	0.60	13	-	0.52
4	+	0.55	14	-	0.505
5	+	0.54	15	-	0.39
6	+	0.51	16	-	0.37
7	+	0.40	17	-	0.36
8	+	0.38	18	-	0.35
9	+	0.34	19	-0	0.33
10	+	0.30	20		0.10

Exemplo

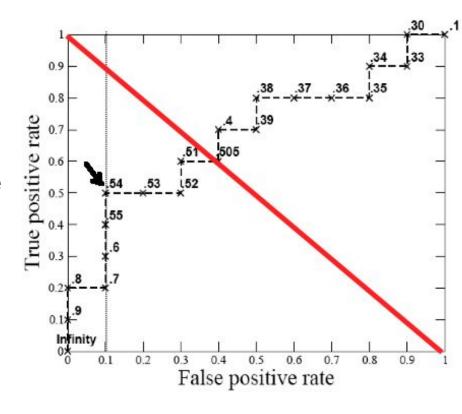
 Após ordenar os dados usando as probabilidades, temos a seguinte curva ROC



Exemplo

- Suponha que a especificação do seu sistema diga que o máximo FPR permitido é de 10%
- Qual seria o ponto de operação do sistema (limiar) ? [0,7; 0,54]
- Para esse limiar, qual seria a taxa de acerto do sistema?

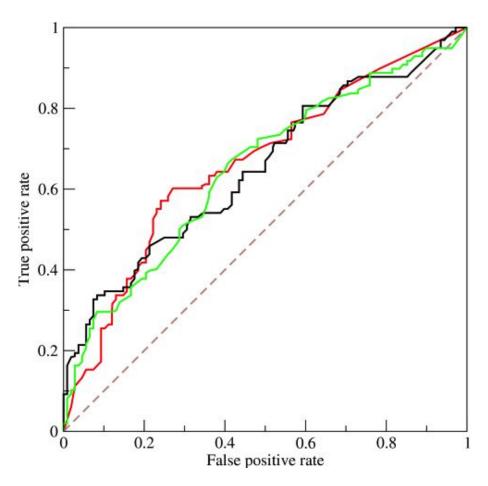
70% para um limiar de 0,54



Classes desbalanceadas

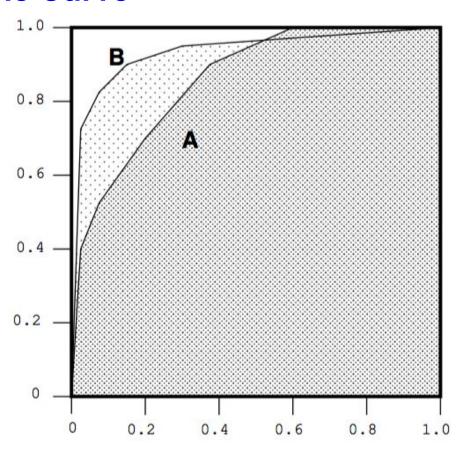
- Curvas ROC têm uma propriedade interessante:
 - não são sensíveis a mudanças de distribuição das classes
- Se a proporção de instâncias negativas e positivas na base de teste muda, a curva continua a mesma.
 - A curva é baseada em TP e FP.
- Isso permite uma fácil visualização do desempenho dos classificadores independentemente da distribuição das classes.

Qual seria o melhor classificador?



AUC

Area Under the Curve



 Suponha que você tenha dois classificadores que produziram as seguintes taxas de erro nos 10 folds de validação da sua base de dados.

$$C_1 = [10,15,7,6,13,11,12,9,17,14]$$

е

$$C_2 = [17,14,12,16,23,18,10,8,19,22]$$

- O erro médio de $C_1 = 11,4\%$ enquanto o erro médio de $C_2 = 15,9\%$
- Podemos afirmar que C₁ é melhor do que o C₂?
- A média é bastante sensível a outliers.
 - O desempenho muito bom em um fold pode compensar o desempenho ruim em outro.

- Uma ferramenta bastante útil nesses casos é o teste de hipóteses.
 - t-Teste
 - Requer que as diferenças entre as duas variáveis comparadas sejam distribuídas normalmente.
 - Tamanho das amostras seja grande o suficiente (~30).
- A natureza do nosso problema não atende nenhum dos critério acima.
- Alternativa é o Wilcoxon signed-rank test

- Teste não paramétrico que ordena as diferenças de desempenho de dois classificadores, ignorando os sinais, e compara a posição das diferenças (positivas e negativa).
- O teste consiste em:
 - Definir as hipóteses
 (H₀ Não existe diferença e H₁ Existe diferença)
 - Calcular as estatísticas do teste
 - Definir o nível de significância do teste (α)
 - Rejeitar ou aceitar H₀, comparando o valor da estatística calculada com o valor crítico tabelado.
- Nível de significância: Em aprendizagem de máquina, α = 0,05 é um valor bastante utilizado. Isso quer dizer que existe 5 chances em 100 da hipótese ser rejeitada quando deveria ter sido aceita, ou seja, uma probabilidade de erro de 0,05 = 5%.

Considere o exemplo anterior dos classificadores C₁ e C₂

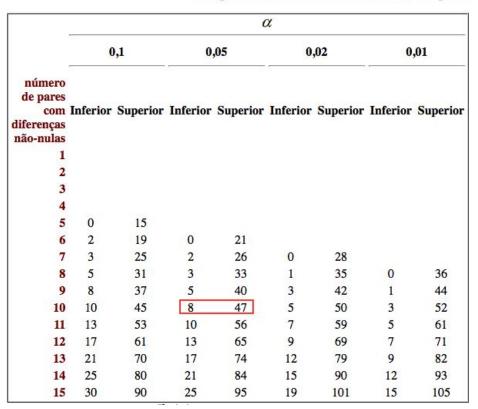
C_1	C_2	Diff		
10	17	7		
15	14	1		
7	12	5		
6	16	10		
13	23	10		
11	18	7		
12	10	2		
9	8	1		
17	19	2		
14	22	8		

Differenças	1	1	2	2	5	7	7	8	10	10
	1	2	3	4	5	6	7	8	9	10
Posição	1.5	1.5	3.5	3.5	5	6.5	6.5	8	9.5	9.5
Sinal	+	+	+	-	-	-	-	-	- 1	-

- Estatísticas: N = 10,
- W⁺ = 6,5 (Soma das posições com sinal +)
- W^+ = 48,5 (Soma das posições com sinal -)
- Comparar os valores das estatísticas calculadas com os valores tabelados.

Valores críticos bi-caudais para o teste de Wilcoxon

Rejeição de H_0 para \sum_{R-} ou \sum_{R+} fora do intervalo dado pelos valores delimitados entre Inferior e Superior



- Comparar os valores das estatísticas calculadas (W⁺ = 6,5 e W⁻ = 48,5) com os valores tabelados.
- Os valores críticos de W para
 N=10 e α = 0.05 são 8 e 47.
- Como os valores calculados estão fora do intervalo crítico, rejeita-se a hipótese que não há diferença (H₀), ou seja, aceita-se H₁ (existe diferença estatística entre os dois classificadores).

O teste de Wilcoxon pode ser encontrado em diversas ferramentas

- Matlab (signedrank)
- Python Scipy (from scipy import stats)

```
Python
>>> c1 =[10, 15, 7, 6, 13, 11, 12, 9, 17, 14]
>>> c2 =[17, 14, 12, 16, 23, 18, 10, 8, 19, 22]
>>> from scipy.stats import wilcoxon
>>> wilcoxon(a,b)
(6.5, 0.031865021445197136)

MATLAB
>> [p,h,stats] = signrank(c1,c2)
p = 0.0332
h = 1
stats = signedrank: 6.5000
```

- Um teste não paramétrico utilizado para comparar diversos classificadores é o teste de Friedman
 - Semelhante ao ANOVA

Referências

- J. Demsar,
 Statistical Comparisons of Classifiers over Multiple Data Sets,
 J. of M. Learning Research, 7:1-20, 2006.
- S. Salzberg,
 On Comparing Classifiers: Pitfalls to avoid and recommended approach,
 Data Mining and Knowledge Discovery, 1:317-327, 1997.
- Luiz E. S. Oliveira,
 Avaliando Classificadores,
 Notas de Aulas, DInf / UFPR, 2017.

Referências

- Wikipedia, Sensitivity & Specificity
 https://en.wikipedia.org/wiki/Sensitivity_and_specificity
- DZone Ai Zone
 Machine Learning: Validation Techniques
 https://dzone.com/articles/machine-learning-validation-techniques

38