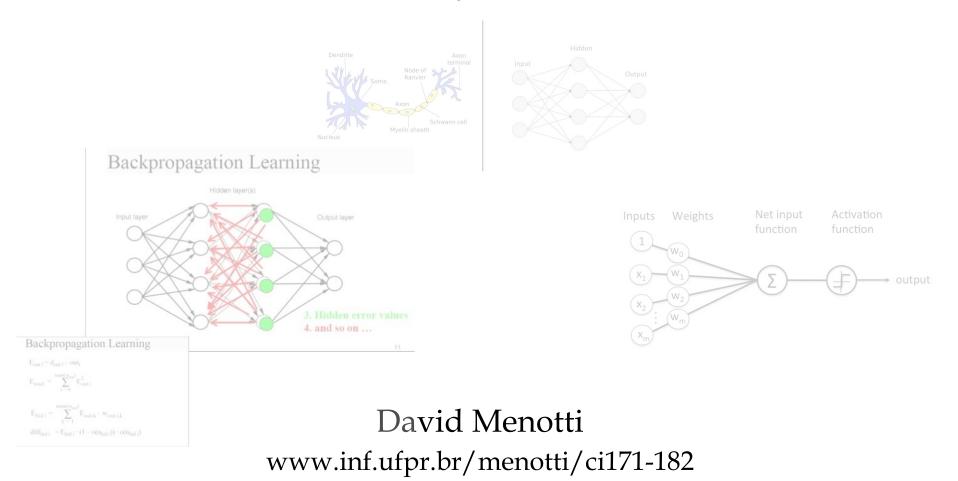
#### Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica

#### Multiple Layer Perceptron

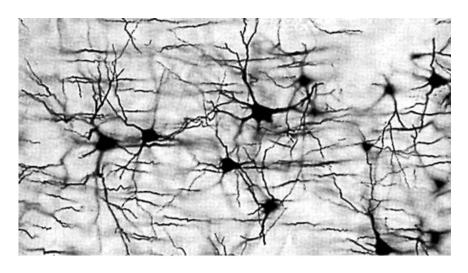


## Hoje

- Multiple Layer Perceptron (MLP)
  - Backpropagation

## Multiple Layer Perceptron

## Redes Neuronais



- Cérebro humano.
  - Mais fascinante processador existente.
  - Aprox. 10 bilhões de neurônios conectados através de sinapses.
  - Sinapses transmitem estímulos e o resultado pode ser estendido por todo o corpo humano.

## Redes Neuroniais Artificiais: Um breve histórico

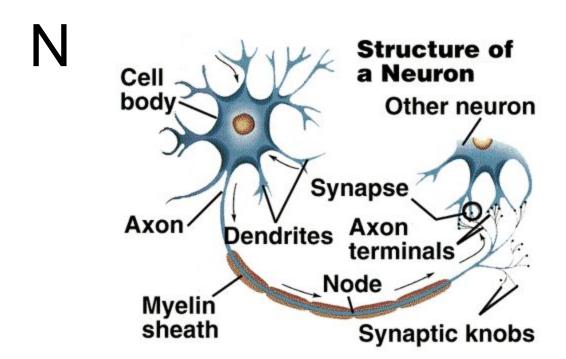
- 1943 McCulloch e Pitts.
  - Sugeriram a construção de uma máquina baseada ou inspirada no cérebro humano.
- 1949 Donald Hebb.
  - Propõe uma lei de aprendizagem específica para as sinápses dos neurônios.
- 1957/1958 Frank Rosenblatt.
  - Estudos aprofundados pai da neuro-computação.
  - Perceptron.
  - Criador do primeiro neuro-computador a obter sucesso (Mark I).

# Mark I - Perceptron



## Um breve histórico (cont)

- 1958-1967.
  - Várias pesquisas mal sucedidas.
- 1967-1982.
  - Pesquisas silenciosas.
- 1986 David Rumelhart.
  - Livro "parallel distributed processing".
  - Algoritmo eficaz de aprendizagem.
- 1987.
  - Primeira conferência IEEE Int. Conf. On Neural Nets.



- Dendritos:
  - Receber os estímulos transmitidos por outros neurônios.
- Corpo (somma).
  - Coletar e combinar informações vindas de outros neurônios.
- Axônio.
  - Transmite estímulos para outras células.

#### Redes Neuronais Artificiais

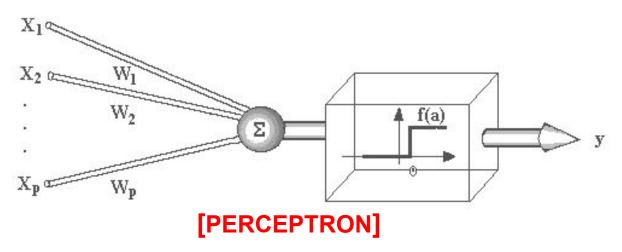
- Técnica computacional que apresenta um modelo inspirado na estrutura do neurônio.
- Simula o cérebro humano:
  - Aprendendo, errando e fazendo descobertas.
- Estrutura de processamento de informação distribuída paralelamente na forma de um grafo direcionado.

# Cérebro X Computador

| Parâmetro                               | Cérebro                             | Computador                        |
|-----------------------------------------|-------------------------------------|-----------------------------------|
| Material                                | Orgânico                            | Metal e Plástico                  |
| Velocidade                              | Milisegundos                        | Nanosegundos                      |
| Tipo de Processamento                   | Paralelo                            | Sequêncial                        |
| Armazenamento                           | Adaptativo                          | Estático                          |
| Controle de Processos                   | Distribuído                         | Centralizado                      |
| Número de Elementos<br>Processados      | 10 <sup>11</sup> a 10 <sup>14</sup> | 10 <sup>5</sup> a 10 <sup>6</sup> |
| Ligações entre Elementos<br>Processados | 10.000                              | < 10                              |

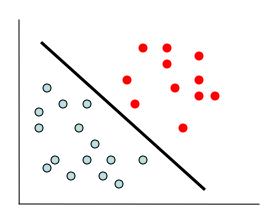
## Neurônio artificial

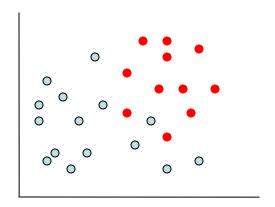
- Sinais são apresentados à entrada.
- Cada sinal é multiplicado por um peso.
- Soma ponderada produz um nível de ativação.
- Se esse nível excede um limite (threshold) a unidade produz uma saída.



## Perceptron

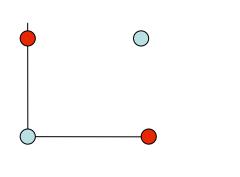
- Resolve problemas linearmente separáveis somente.
- Problemas reais, entretanto, na maioria das vezes são mais complexos.

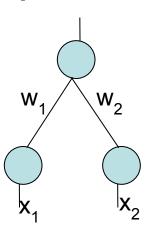




## Exemplo

Considere por exemplo, o problema XOR





Como visto anteriormente com SVMs, podemos afirmar que em altas dimensões os problemas são linearmente separáveis.

Sendo assim, vamos mudar o problema de R<sup>2</sup> para R<sup>3</sup> adicionando uma terceira característica.

## Exemplo

| X1 | X2 | X3 | Output |
|----|----|----|--------|
| 1  | 1  | 1  | 0      |
| 1  | 0  | 0  | 1      |
| 0  | 1  | 0  | 1      |
| 0  | 0  | 0  | 0      |

- Nesse caso, a característica adicionada (X3) é a operação AND entre X<sub>1</sub> e X2
- O fato de adicionarmos essa característica faz com que o problema torne-se linearmente separável.

#### Adicionando uma camada

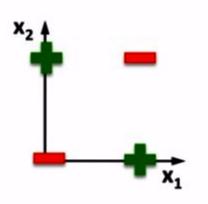
- Outra maneira de resolver esse problema consiste em adicionar uma camada extra (escondida) entre as camadas de entrada e saída.
- Dado uma quantidade suficiente de neurônios na camada escondida, é possível resolver qualquer tipo de problemas
  - Claro que isso depende das características de entrada.

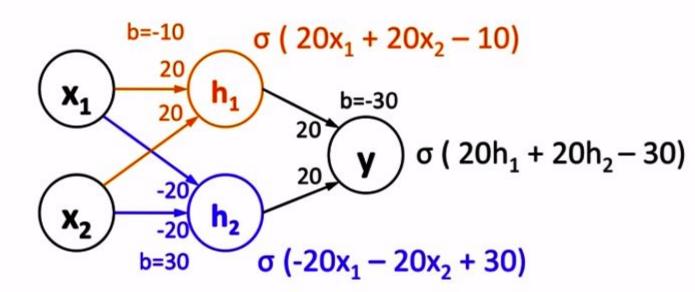
#### Camada Escondida

- Essa camada pode ser vista como um extrator de características, ou seja, a grosso modo, o neurônio escondido seria uma característica a mais
  - O que torna o problema do XOR linearmente separável.

## Uma outra rede: XOR

#### Linear classifiers cannot solve this

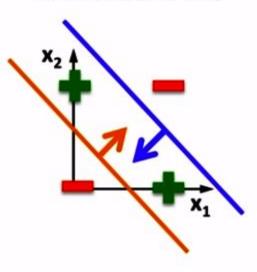


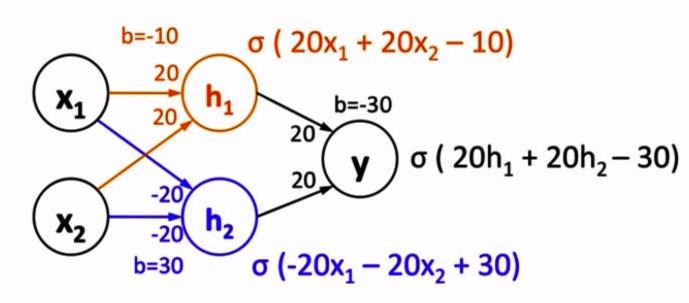


```
\sigma(20^*0 + 20^*0 - 10) \approx 0 \sigma(-20^*0 - 20^*0 + 30) \approx 1 \sigma(20^*0 + 20^*1 - 30) \approx 0 \sigma(20^*1 + 20^*1 - 10) \approx 1 \sigma(-20^*1 - 20^*1 + 30) \approx 0 \sigma(20^*1 + 20^*0 - 30) \approx 0 \sigma(20^*0 + 20^*1 - 10) \approx 1 \sigma(-20^*0 - 20^*1 + 30) \approx 1 \sigma(20^*1 + 20^*1 - 30) \approx 1 \sigma(20^*1 + 20^*1 - 30) \approx 1
```

## Uma outra rede: XOR

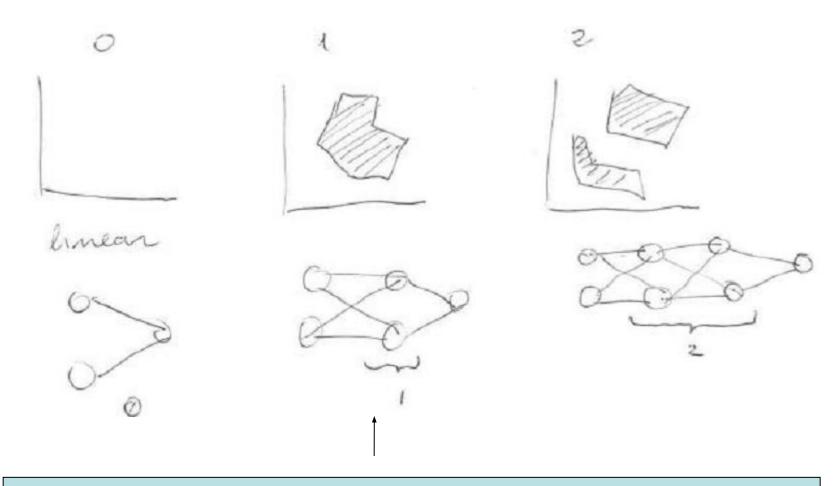
#### Linear classifiers cannot solve this





```
\sigma(20^*0 + 20^*0 - 10) \approx 0 \sigma(-20^*0 - 20^*0 + 30) \approx 1 \sigma(20^*0 + 20^*1 - 30) \approx 0 \sigma(20^*1 + 20^*1 - 10) \approx 1 \sigma(-20^*1 - 20^*1 + 30) \approx 0 \sigma(20^*1 + 20^*0 - 30) \approx 0 \sigma(20^*0 + 20^*1 - 10) \approx 1 \sigma(-20^*0 - 20^*1 + 30) \approx 1 \sigma(20^*1 + 20^*1 - 30) \approx 1 \sigma(20^*1 + 20^*1 - 30) \approx 1
```

#### Camadas X Fronteiras



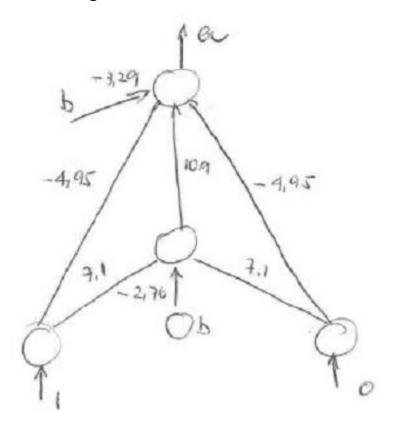
Geralmente uma camada escondida resolve a grande maioria dos problemas.

# O problema de atribuição de créditos

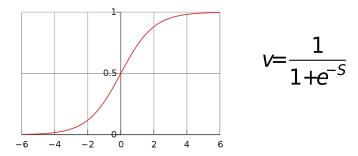
- Quando temos uma camada escondida, surge o problema de atribuição de créditos aos neurônios desta camada
  - Não existem "targets" como na camada de saída.
  - Período entre 1958 e 1982 foi dedicado a resolver esse problema
  - Solução foi o algoritmo conhecido como Backpropagation.
    - David E. Rumelhart et al (1986)

## MLP para o problema XOR

 Considere o problema XOR e a seguinte rede já treinada.



A saída é calculada de maneira similar ao perceptron, mas a MLP geralmente usa **sigmoid** como função de ativação.



Para grandes quantidades de dados o resultado da sigmoid pode ser interpretado como estimação de probabilidade.

## MLP para o problema XOR

 Para calcular a saída da rede, primeiramente devemos encontrar o valor do neurônio escondido.

$$1 * 7.1 + 1 * -2.76 + 0 * 7.1 = 4.34$$

- Passando o valor 4.34 na função de ativação,
  - temos 0.987.
- O valor de saída é então calculado

$$1 * -4.95 + 0 * -4.95 + 0.987 * 10.9 + 1 * -3.29 = 2.52$$

- Passando 2.52 na função de ativação,
  - temos a saída igual a 0.91

## MLP para o problema XOR

 Após classificarmos todos os padrões de entrada teríamos

| 1 | 0 | 0.91 | <del></del> |
|---|---|------|-------------|
| 0 | 0 | 0.08 |             |
| 0 | 1 | 1.00 | <del></del> |
| 1 | 1 | 0.10 |             |

Podemos usar como regra de decisão um limiar igual a 0.9, por exemplo.

## BackProp

- Seja f uma função de ativação.

$$net_j = \sum_{i=1}^n \omega_{ij} o_i$$

- Seja w<sub>ij</sub> o peso entre os neurônios i e j.
- Seja net<sub>j</sub> a entrada para o neurônio j, a qual é calculada por

 $o_j = f(net_j)$  onde  $\emph{n}$  é o número de unidades ligadas ao neurônio  $\emph{j}$ 

## BackProp

- O treinamento acontece da seguinte maneira:
  - 1. Inicializar os valores dos pesos e neurônios aleatoriamente.
  - 2. Apresentar um padrão a camada de entrada da rede
  - 3. Encontrar os valores para as camadas escondidas e a camada de saída.
  - 4. Encontrar o erro da camada de saída.
  - Ajustar os pesos através da retropropagação dos erros (Backpropagation)
    - 1. Diminuir o erro a cada iteração
  - 6. Encontrar o erro na camada escondida
  - 7. Ajustar os pesos.

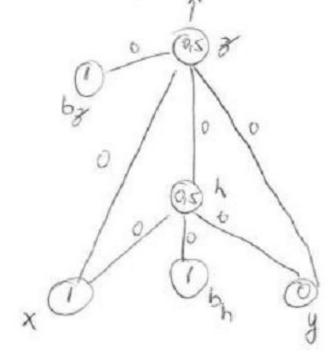
## BackProp

- O valor corrente de ativação de um neurônio k é o<sub>k</sub> e o target é t<sub>k</sub>
- Após realizar os passos 1, 2, e 3, o próximo passo consiste em calcular o erro, o qual pode ser realizado através da seguinte equação

$$\delta_k = (t_k - o_k) o_k (1 - o_k)$$

Considere uma rede inicializada da

seguinte forma



Nesse caso  $\delta_z = (1-0.5) \times 0.5 \times (1-0.5) = 0.125$ 

 A fórmula para atualizar os pesos W entre o neurônio i e j é

$$\omega_{ij} = \omega_{ij} + \eta \delta_j o_i$$

- onde eta é uma constante pequena e positiva camada de "taxa de aprendizagem" (*learning rate*)
- Usando uma taxa de 0.1, temos

$$W_{xz} = 0 + 0.1 \times 0.125 \times 1 = 0.0125$$
  
 $W_{yz} = 0 + 0.1 \times 0.125 \times 0 = 0$   
 $W_{hz} = 0 + 0.1 \times 0.125 \times 0.5 = 0.00625$   
 $W_{bz} = 0 + 0.1 \times 0.125 \times 1 = 0.0125$ 

A fórmula para calcular o erro dos neurônios da camada escondida é

$$\delta_i = o_i (1 - o_i) \sum_k \delta_k w_{ik}$$

Como temos somente um neurônio no nosso exemplo

$$\delta_h = o_h (1 - o_h) \delta_z w_{hz}$$

Nesse caso teríamos

$$\delta_h = 0.5(1-0.5)0.125 \times 0.00625 = 0.000195313$$

Para atualizar os pesos, usamos a mesma fórmula

$$W_{hx} = 0+0.1 \times 0.0001953 \times 1 = 0.00001953$$
  
 $W_{hy} = 0+0.1 \times 0.0001953 \times 0 = 0$   
 $W_{hbh} = 0+0.1 \times 0.0001953 \times 1 = 0.00001953$ 

Com os novos pesos calculados, a saída da rede seria 0.507031

Após aplicarmos todos os padrões, teríamos o seguinte

| 1 | 0 | 0.4998 |
|---|---|--------|
| 0 | 0 | 0.4998 |
| 0 | 1 | 0.4998 |
| 1 | 1 | 0.4997 |

- Usando uma taxa de aprendizagem = 0,1 ,
  - o algoritmo levará 20.000 iterações para convergir.
- Uma solução para melhorar isso seria
  - aumentar a learning rate.
- Se usarmos learning rate = 2,
  - o algoritmo converge em 480 iterações.

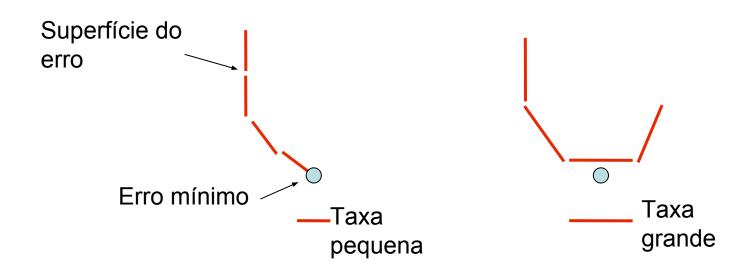
## Aspectos Práticos

- Alguns aspectos práticos devem ser considerados na utilização de redes neuronais MLP.
  - Taxa de aprendizagem
  - Momentum
  - Online vs batch
  - Shuffle
  - Normalização
  - Inicialização dos pesos
  - Generalização

Y. LeCun et al, Efficient Backprop, 1998

# Taxa de Aprendizagem

- Taxas muito pequenas tornam o processo bastante lento.
- Taxas muito grandes tornam o processo rápido.
  - Podem n\u00e3o trazer os resultados ideais.

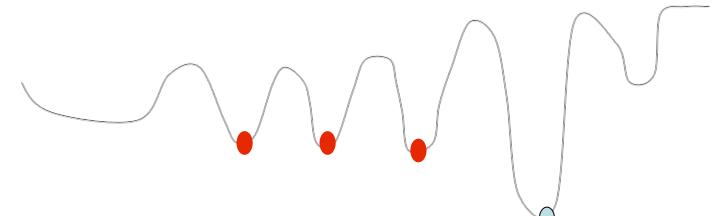


## Taxa de Aprendizagem

- O ideal é começar com uma taxa grande e reduzir durante as iterações.
- Permite a exploração global no início (exploration) a local (exploitation) quando o algoritmo estiver próximo do ótimo global.
- Geralmente valores entre 0.05 e 0.75 fornecem bons resultados.

#### Momentum

- É uma estratégia usada para evitar mínimos locais.
- Considere a seguinte superfície



• Existem três mínimos locais antes do mínimo global.

#### Momentum

- Considere, por exemplo, que uma bola seja solta no início da superfície.
- Se ela tiver "momentum" suficiente, ela vai conseguir passar os três mínimos locais e alcançar o mínimo global.

$$\omega_{ij} = lpha \omega_{ij} + \eta \delta_j o_k$$

• Normalmente  $0 < \alpha < 0.9$ 

#### On-line vs Batch

- A diferença está no momento em que os pesos são atualizados.
- Na versão on-line, os pesos são atualizados a cada padrão apresentado a rede.
- Na versão batch, todos os pesos são somados durante uma iteração/época (todos os padrões) e só então os pesos são atualizados.
- Versão batch
  - Interessante para aplicações que possam ser paralelizadas.
- Versão on-line
  - Geralmente converge mais rapidamente.

# Misturando Exemplos (Shuffle)

- Redes neuronais aprendem melhor quando diferentes exemplos de diferentes classes são apresentados a rede.
- Uma prática muito comum consiste em apresentar um exemplo de cada classe a rede
  - Isso garante que os pesos serão atualizados levando-se em consideração todas as classes.

# Misturando Exemplos (Shuffle)

- Se apresentarmos à rede todos os exemplos de uma classe, e assim por diante, os pesos finais tenderão para a última classe
  - A rede vai "esquecer" o que ela aprendeu antes.

- A normalização é interessante quando existem características em diversas unidades dentro do vetor de características.
- Nesses casos, valores muito altos podem saturar a função de ativação.
- Soma 1: Uma maneira bastante simples de normalizar os dados consiste em somar todas as características e dividir pela soma

$$x_i' = rac{x_i}{\sum_i x_i}$$

• Garante que a "energia" inserida na rede seja 1

 Z-score: Para redes neuronais MLP, geralmente é interessante ter as características com média próxima de zero

$$x_i' = rac{x_i - \mu(X_i)}{\sigma(X_i)}$$

 Melhora o tempo de convergência durante a aprendizagem.

 Max-min: Pode-se também normalizar cada característica para ficar entre 0 e 1

$$x_i' = rac{max(X_i) - x_i}{max(X_i) - min(X_i)}$$

Pode "sobrecarregar" a rede

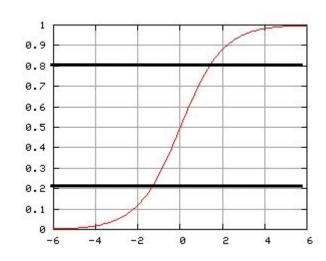
- As características devem ser não correlacionadas se possível
  - Quando temos poucas características podemos verificar isso facilmente.
  - Com várias características, o problema se torna muito mais complexo.
  - Métodos de seleção de características para escolher características descorrelacionadas

## Inicialização dos Pesos

- Assumindo que os dados foram normalizados e uma sigmoid está sendo usada como função de ativação.
  - Os pesos (espaço de separação) devem ser inicializados aleatoriamente mas de modo que fiquem na região linear da sigmoid

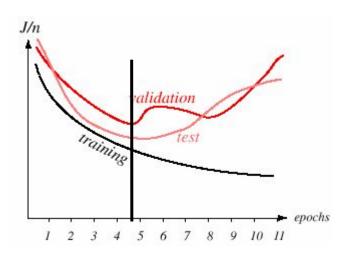
Com pesos muito altos ou muito baixo a sigmoid deve saturar

- Gradientes pequenos
- Aprendizagem muito lenta.



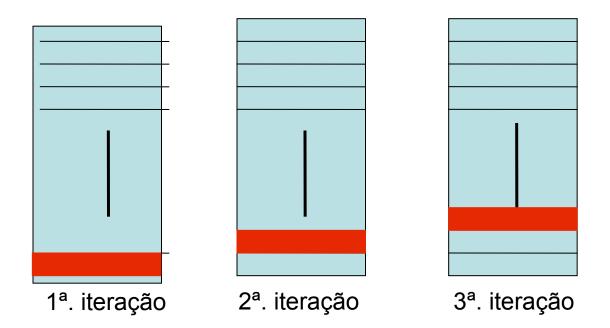
- Um aspecto bastante importante quando treinamos um classificador é garantir que o mesmo tenha um bom poder de generalização.
  - Evitar overfitting.
- A maneira clássica de se garantir uma boa generalização consiste em reservar uma parte da base para validar a generalização.

- A cada iteração, devemos monitorar o desempenho na base de validação.
- Não é raro observar o seguinte desempenho



- Uma outra estratégia é a validação cruzada.
  - Interessante quando a base não é muito grande
  - Separar alguns exemplos para validação pode prejudicar o treinamento.
- Consiste em dividir a base de aprendizagem em n partições iguais e usar n-1 partições para aprendizagem e uma partição para validação.

 A cada iteração de aprendizado a partição usada para validação é trocada.



#### Tamanho da Rede

- Geralmente uma camada escondida é suficiente.
- Em poucos casos você vai precisar adicionar uma segunda camada escondida.
- Não existe uma fórmula matemática para se encontrar o número de neurônios.
  - Empírico
- Dica prática
  - Comece com uma rede menor, pois a aprendizagem vai ser mais rápida.

#### Referências

- Luiz E. S Oliviera, **Classificadores Lineares**, DInf / UFPR, 2014.
- Victor Lavrenko, Introductory Applied Machine Learning, University of Edinburgo, 2014.