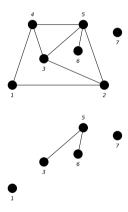
Algoritmos e Teoria dos Grafos

Tópico 5: Subgrafos

Renato Carmo André Guedes Murilo Silva

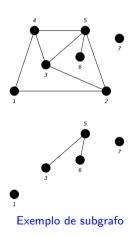
Departamento de Informática da UFPR

Sejam G e H grafos,



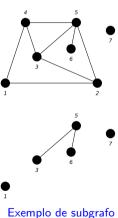
Sejam G e H grafos,

H é **subgrafo** de G



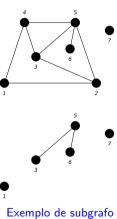
Sejam G e H grafos,

H é subgrafo de $G \equiv G$ é supergrafo de H:



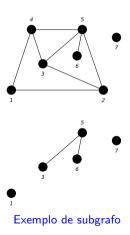
Sejam G e H grafos,

H é subgrafo de $G \equiv G$ é supergrafo de H: $V(H) \subseteq V(G)$



Sejam G e H grafos,

H é subgrafo de $G \equiv G$ é supergrafo de H: $V(H) \subseteq V(G)$ $E(H) \subseteq E(G)$



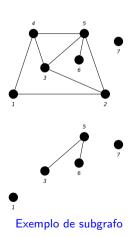
Sejam G e H grafos,

H é **subgrafo** de $G \equiv G$ é **supergrafo** de H:

$$V(H) \subseteq V(G)$$

$$E(H) \subseteq E(G)$$

Notação para subgrafo: $H \subseteq G$



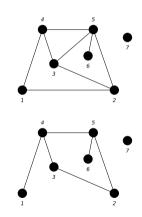
Sejam G e H grafos,

H é **subgrafo** de $G \equiv G$ é **supergrafo** de H:

$$V(H) \subseteq V(G)$$

$$E(H) \subseteq E(G)$$

Notação para subgrafo: $H \subseteq G$



$$H$$
 é subgrafo gerador de G se $V(H) = V(G)$

Exemplo de subgrafo gerador

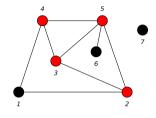
Seja $X\subseteq V(G)$,

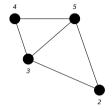
Seja $X\subseteq V(G)$,

Subgrafo induzido por X

Seja $X \subseteq V(G)$,

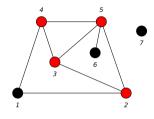
Subgrafo induzido por X: maior subgrafo de G cujo conjunto de vértices é X

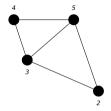




Seja $X \subseteq V(G)$,

Subgrafo induzido por X: maior subgrafo de G cujo conjunto de vértices é X

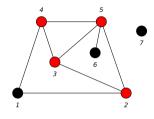


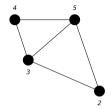


Seja $X \subseteq V(G)$,

Subgrafo induzido por X: maior subgrafo de G cujo conjunto de vértices é X

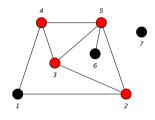
Formalmente, é o grafo G[X]

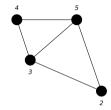




Seja $X \subseteq V(G)$,

Subgrafo induzido por X: maior subgrafo de G cujo conjunto de vértices é X

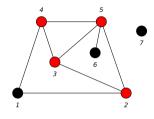


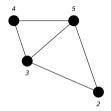


Seja $X \subseteq V(G)$,

Subgrafo induzido por X: maior subgrafo de G cujo conjunto de vértices é X

$$V(G[X]) := X$$



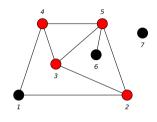


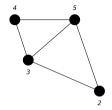
Seja
$$X \subseteq V(G)$$
,

Subgrafo induzido por X: maior subgrafo de G cujo conjunto de vértices é X

$$V(G[X]):=X$$

$$E(G[X]) := E(G) \cap {X \choose 2}$$





Seja $X \subseteq V(G)$,

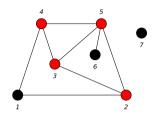
Subgrafo induzido por X: maior subgrafo de G cujo conjunto de vértices é X

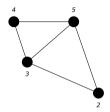
Formalmente, é o grafo G[X], definido por:

$$V(G[X]) := X$$

$$E(G[X]) := E(G) \cap \binom{X}{2}$$

Dados $G \in H$,





Seja $X \subseteq V(G)$,

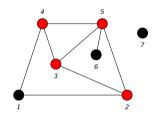
Subgrafo induzido por X: maior subgrafo de G cujo conjunto de vértices é X

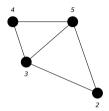
Formalmente, é o grafo G[X], definido por:

$$V(G[X]) := X$$

$$E(G[X]) := E(G) \cap \binom{X}{2}$$

Dados G e H, dizemos que H é subgrafo induzido de G





Seja $X \subseteq V(G)$,

Subgrafo induzido por X: maior subgrafo de G cujo conjunto de vértices é X

Formalmente, é o grafo G[X], definido por:

$$V(G[X]) := X$$

$$E(G[X]) := E(G) \cap \binom{X}{2}$$

Dados G e H, dizemos que H é subgrafo induzido de G se $\exists X \subseteq V(G)$ tal que H = G[X]

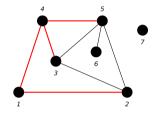
Seja
$$X\subseteq E(G)$$
,

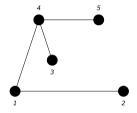
Seja $X\subseteq E(G)$,

Subgrafo induzido por X:

Seja $X \subseteq E(G)$,

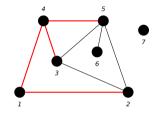
Subgrafo induzido por X: subgrafo de G cujo conjunto de arestas é X e tal que cada vértice seja ponta de uma aresta de X.

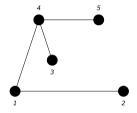




Seja $X \subseteq E(G)$,

Subgrafo induzido por X: subgrafo de G cujo conjunto de arestas é X e tal que cada vértice seja ponta de uma aresta de X.

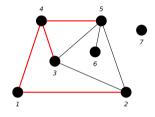


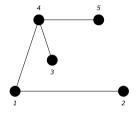


Seja $X \subseteq E(G)$,

Subgrafo induzido por X: subgrafo de G cujo conjunto de arestas é X e tal que cada vértice seja ponta de uma aresta de X.

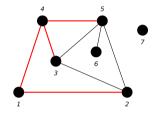
Formalmente, é o grafo G[X]

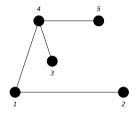




Seja $X \subseteq E(G)$,

Subgrafo induzido por X: subgrafo de G cujo conjunto de arestas é X e tal que cada vértice seja ponta de uma aresta de X.

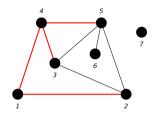


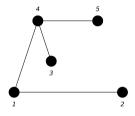


Seja $X \subseteq E(G)$,

Subgrafo induzido por X: subgrafo de G cujo conjunto de arestas é X e tal que cada vértice seja ponta de uma aresta de X.

$$E(G[X]) := X$$





Seja $X \subseteq E(G)$,

Subgrafo induzido por X: subgrafo de G cujo conjunto de arestas é X e tal que cada vértice seja ponta de uma aresta de X.

$$E(G[X]) := X$$

$$V(G[X]) := \bigcup_{a \in X} a$$

Se $X \subseteq V(G)$

$$G - X$$

$$G - X := G[V(G) - X]$$

$$G-X:=G[V(G)-X]$$

$$G - v$$

$$G-X:=G[V(G)-X]$$

$$G - v := G - \{v\}$$

$$G - X := G[V(G) - X]$$

$$G-v:=G-\{v\}$$

Se
$$X \subseteq E(G)$$

Se $X \subseteq V(G)$, então definimos

$$G-X:=G[V(G)-X]$$

$$G - v := G - \{v\}$$

Se $X \subseteq V(G)$, então definimos

$$G - X := G[V(G) - X]$$

$$G - v := G - \{v\}$$

$$G - X$$

Se $X \subseteq V(G)$, então definimos

$$G - X := G[V(G) - X]$$

$$G-v:=G-\{v\}$$

$$G - X$$
:

$$E(G-X):=E(G)-X$$

Se $X \subseteq V(G)$, então definimos

$$G-X:=G[V(G)-X]$$

$$G-v:=G-\{v\}$$

$$G - X$$
:

$$E(G-X):=E(G)-X$$

$$V(G-X):=V(G)$$

Se
$$X \subseteq V(G)$$
, então definimos

$$G-X:=G[V(G)-X]$$

$$G - v := G - \{v\}$$

Se
$$X \subseteq E(G)$$
, então definimos

$$G - X$$
.

$$E(G - X) := E(G) - X$$
$$V(G - X) := V(G)$$

$$G - a := G - \{a\}$$

Teorema 5:

O grafo H é subgrafo induzido por vértices de G se e somente se H pode ser obtido a partir de G por remoção de vértices, isto é, se e somente se H=G-X para algum $X\subseteq V(G)$.

Demonstração.

Prova: Exercício 17.