CI-202 - Métodos Numéricos Aula 04 - Representação Ponto Flutuante

Professor Murilo V. G. da Silva

Departamento de Informática Universidade Federal do Paraná

Mantissa e expoente

- ightharpoonup 0,125 = 0,001₂
- $-5,875 = -101,111_2$
- $ightharpoonup 41 = 101001_2$

Vamos representar cada um destes números binários na seguinte forma:

- $\rightarrow x_b = m_b \cdot 2^e$
 - m_b é a mantissa em binário $0 \le |m_b| < 1$
 - ▶ e é o expoente em decimal
- \triangleright 0.001₂ = 0.1₂ · 2⁻²
- $101,111_2 = 0,101111_2 \cdot 2^3$
- $101001_2 = 0,101001_2 \cdot 2^6$

Mantissa e expoente

```
► -5.875 = 0.101111_2 \cdot 2^3
► 0.125 = 0.1_2 \cdot 2^{-2}
► 41 = 0.101001_2 \cdot 2^6
```

Representando o número (mantissa e expoente) como uma única sequência de 16 bits:

- ▶ Um primeiro bit 0/1 correspondendo ao sinal da mantissa (+/-)
- Uma sequência de 10 bits que corresponde aos 10 primeiros bits da representação binária da parte fracionária da mantissa
- ▶ Um bit 0/1 correspondendo sinal do expoente (+/-)
- Uma sequência de 4 bits que corresponde ao expoente em binário

Mantissa e expoente

```
► -5,875 = 0,101111_2 \cdot 2^3
► 0,125 = 0,1_2 \cdot 2^{-2}
► 41 = 0,101001_2 \cdot 2^6
```

- **►** -5.875
 - mantissa: 11011110000
 - expoente: 00011
- ▶ 0,125
 - mantissa: 01000000000
 - expoente: 10010
- **4**1
 - mantissa: 01010010000
 - expoente: 00110

Observações:

- ▶ 10 bits da mantissa: pode ser necessário completar com zeros à direita
- ▶ 4 bits do expoente: pode seer necessário completar com zero à esquerda
- Números que precisam de mais de 10 bits para mantissa ou mais de 4 bits para o expoente não são representáveis
 - No caso da mantissa, pode-se usar truncamento para armazenar aproximação do número

$$(-1)^{s_1} \cdot 0$$
, $m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8 m_9 m_{10} \cdot 2^{(-1)^{s_2} \cdot e_1 e_2 e_3 e_4}$

- $ightharpoonup s_1$: sinal do número da mantissa. 0 o positivo e 1 o negativo e 1
- $ightharpoonup m_1 \dots m_{10}$: mantissa com 10 bits significativos
- $ightharpoonup s_2$: sinal do expoente. 0 o positivo e 1 o negativo
- \triangleright $e_1 \dots e_4$: expoente

ightharpoonup Exemplo: $41_{10} = 0,101001 \cdot 2^6$

mantissa: 101001

expoente: 0110

ightharpoonup sinal da mantissa positivo: $s_1 = 0$

ightharpoonup sinal do expoente positivo: $s_2 = 0$

s_1	d_1	d_2	d ₃	d ₄	d_5	d_6	d ₇	d ₈	d ₉	d ₁₀	s ₂	e_1	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄
0	1	0	1	0	0	1	0	0	0	0	0	0	1	1	0

- ▶ O maior valor possível para 16 bits?
- ▶ O menor valor possível para 16 bits?
- ► O valor zero?

<i>s</i> ₁	d_1	d_2	d ₃	d ₄	d_5	d ₆	d ₇	d ₈	d ₉	d ₁₀	<i>s</i> ₂	e_1	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

▶ O maior valor possível para 16 bits

<i>s</i> ₁	d_1	d_2	d_3	d_4	d_5	d_6	d ₇	d ₈	d ₉	d ₁₀	<i>s</i> ₂	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄
0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1

ightharpoonup 0,11111111111 $\cdot 2^{1111} = 32.736$

▶ O menor valor possível para 16 bits

<i>s</i> ₁	d_1	d_2	d ₃	d ₄	d_5	d_6	d ₇	d ₈	d_9	d_{10}	<i>s</i> ₂	e_1	e_2	<i>e</i> ₃	e ₄
1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1

 $-0,111111111111 \cdot 2^{1111} = -32.736$

Qual é a representação do valor zero?

s_1	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d ₈	d_9	d ₁₀	<i>s</i> ₂	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Qual o menor valor possível maior de que zero?

s_1	d_1	d_2	<i>d</i> ₃	d_4	d_5	d ₆	d ₇	d ₈	d_9	d ₁₀	<i>s</i> ₂	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄
0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1

- $0,1000000000 \cdot 2^{-1111} = 0, 1 \cdot 2^{-15} = 0,000015259$
- ▶ Qual o **segundo menor** valor possível maior de que zero?

s_1	d_1	d_2	d ₃	d_4	d_5	d_6	d_7	d ₈	d_9	d ₁₀	s ₂	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄
0	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1

 $0,1000000001 \cdot 2^{-15} = 0,000015289$

Exercício

- Dado um sistema de 8 bits em que:
 - mantissa tem 4 bits
 - ightharpoonup menor expoente: $-7 = -111_2$
 - ightharpoonup maior expoente: $+7 = +111_2$
- ► Teremos: $x = (0, d_1 d_2 d_3 d_4) \cdot 2^e$

$s_1 \mid d_1 \mid d_2$	d ₃ d ₄	s ₂	e_1	e ₂	e ₃
-------------------------	-------------------------------	-----------------------	-------	-----------------------	-----------------------

- Represente o valor 13.

s ₁	d_1	d ₂	d ₃	d ₄	s ₂	<i>e</i> ₁	e ₂	e ₃
0	1	1	0	1	0	1	0	0

Exercícios

- 1. Considere o sistema de 8 bits do exercício anterior
 - ► Represente o valor 0₁₀.
 - Represente o valor 1_{10} .
 - Represente o valor 15_{10} .
 - Represente o valor 0,1₁₀.
- 2. Sejam m,e respectivamente a mantissa e o exponte obtidos da representação do número $0,1_{10}$ no sistema de 8 bits acima. Converta esse número binário de volta para decimal.
- 3. Qual é o menor número representável nesta máquina?
- 4. Qual é o segundo e o terceiro menor número representável nesta máquina?
- 5. Qual é o maior e o segundo maior número representável nesta máquina?