Exercícios — Métodos Numéricos

Henrique Hepp

11 de Julho de 2024

1 Interpolação

- 1. Dada a função $f(x) = 10x^4 + 2x + 1$ use a interpolação linear para os valores de f(0,1) e f(0,2) e determine $P_1(0,15)$. Calcule também o erro absoluto cometido.
- 2. Dada a função $f(x)=10x^4+2x+1$ use a interpolação quadrática para os valores de f(0,0), f(0,1) e f(0,2) e determine $P_1(0,15)$. Calcule também o erro absoluto cometido.
- 3. Calcule o calor específico aproximado da água a $31^{\circ}C$ usando os valores da tabela abaixo. Você poderá usar qualquer método.

x_i	x_0	x_1	x_2	x_3	x_4	x_5	x_6
Temperatura (°C)	20	25	30	35	40	45	50
Calor Específico	0,99907	0,99852	0,99826	0,99818	0,99828	0,99849	0,99878

- (a) Usando interpolação linear.
- (b) Usando interpolação quadrática (use os três pontos tabelados mais próximos).
- 4. Determine o polinômio interpolador na forma de Lagrange para a função conhecida pelos pontos tabelados abaixo e o resultado em P(0,5):

i	x_i	y_i
0	0	0
1	1	1
2	2	4

5. Determine o polinômio interpolador de Lagrange para a função conhecida pelos pontos da tabela abaixo e o resultado em P(1):

i	x_i	y_i	
0	-1	4	
1	0	1	
2	2	1	
3	3	16	

- 6. Resolva os problemas abaixo usando Interpolação de Newton com Diferenças Divididas.
 - (a) Obtenha f(40) usando um polinômio interpolador de Newton de grau 3 (polinômio cúbico, são necessários 4 pontos). Considere a seguinte tabela:

x_i	30	35	45	50	55
$f(x_i)$	0.5	0.574	0.707	0.766	0.819

(b) Obtenha f(0.47) usando um polinômio interpolador de Newton do segundo grau (polinômio quadrático, são necessários 3 pontos). Considere a seguinte tabela:

$$x_i$$
0.2
0.34
0.4
0.52
0.6
0.72

 $f(x_i)$
0.16
0.22
0.27
0.29
0.32
0.37

(c) Obtenha f(0.5) usando um polinômio interpolador de Newton de grau 4 (são necessários 5 pontos). Considere a seguinte tabela:

x_i	-1	0	1	2	3
$f(x_i)$	1	1	0	-1	-2

7. Quais problemas da Questão 6 podem ser resolvidos usando Interpolação de Gregory-Newton? Resolva eles usando esse método.