Tópicos em Complexidade Computacional Complexidade de Espaço

Professor Murilo V. G. da Silva

Departamento de Informática Universidade Federal do Paraná

07/07/2022

Complexidade de Espaço

Complexidade de Espaço

Seja $f:\{0,1\}^* \to \{0,1\}^*$ uma função computada por uma MT M e seja $s:\mathbb{N} \to \mathbb{N}.$

• M computa f em espaço s(n) se o número de células utilizadas nas fitas de leitura/escrita é s(|x|).

$SPACE(s(n)) \in NSPACE(s(n))$

Dada $s: \mathbb{N} \to \mathbb{N}$, a classe SPACE(s(n)) é o conjunto de toda linguagem L, tal que

• Existe uma MT M que decide L com complexidade de espaço $c \cdot s(n)$, para algum c > 0

A classe NSPACE(s(n)) é definida analogamente.

- Definição de *espaço-contrutível* é análoga (restrição muda para $s(n) > \log n$)
- Classes relevantes:

$$\frac{\text{PSPACE}}{c>0} = \bigcup_{c>0} \text{SPACE}(n^c) \qquad \qquad \frac{\text{NPSPACE}}{c>0} = \bigcup_{c>0} \text{NSPACE}(n^c)$$

 $L = SPACE(\log n)$

NL = NSPACE(log n)

Complexidade de Espaço

Teorema 9.1

Seja $s:\mathbb{N} \to \mathbb{N}$ uma função espaço construtível

$$\mathrm{DTIME}(s(n))\subseteq \mathrm{SPACE}(s(n))\subseteq \mathrm{NSPACE}(s(n))\subseteq DTIME(2^{\mathcal{O}(S(n))})$$

Ideia da prova: Para o caso mais difícil, i.e., $NSPACE(s(n)) \subseteq DTIME(2^{\mathcal{O}(S(n))})$:

- Ver que há limite para possíveis configurações da MT de espaço polinomial.
- Formalizado com idéia do "grafo de configurações"

Corolário 9.2: $P \subseteq PSPACE \subseteq NPSPACE \subseteq EXP$

Algoritmo para resolver 3SAT em espaço polinomial:

- Cada valoração precisa de espaço linear
- lacktriangle Teste valoração v_i , apague a fita, e vá para a próxima valoração v_{i+1}
- São 2ⁿ valorações (tempo exponencial)
- Mas o espaço usado é polinomial

Corolário 9.3: $NP \subseteq PSPACE$

Complexidade de Espaço

Teorema 9.4: Hierarquia de Espaço [Stearn/Hartmanis/Lewis 1965]

Se f e g são funções tempo construtíveis tal que f(n) = o(g(n)), então

 $SPACE(f(n)) \subseteq SPACE(g(n))$

PSPACE, NPSPACE e PSPACE-completude

- $L \in PSPACE$ -difícil: $\forall L' \in PSPACE$, $L' \leq_p L$
- L é PSPACE-completa: L é PSPACE-difícil e $L \in PSPACE$

Exercício 9.5: S-TMSAT = $\{\langle M, w, 1^n \rangle : M \text{ aceita } w \text{ em espaço } n\} \text{ \'e PSPACE-completo.}$

Problema mais interessante:

Fórmula Booleana Quantificada: Q_1x_1 Q_2x_2 Q_nx_n $\phi(x_1,...,x_n)$

- lacktriangle Cada Q_i é do tipo \forall ou \exists e toda variável deve estar quantificada
- Estamos assumindo fórmula em prenex (mas não precisávamos)
- Podemos (ou não) assumir que φ está em CNF
- Exemplo: $\forall x_1 \exists x_2 (x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2})$ é uma fórmula verdadeira

Problema: $TQBF = \{ \text{"f\'ormulas QBF verdadeiras"} \}$

Teorema 9.6 [Stockmeyer/Meyer (1973)]: TQBF é PSPACE-completo.

Teorema 9.7: PSPACE = NPSPACE

Ideia da Prova: A demonstração anterior funciona para NPSPACE

PSPACE, NPSPACE e PSPACE-completude

De fato, é possível simular espaço não determinístico com "overhead" quadrático:

```
Teorema 9.8 [Savich (1970)]: NSPACE(s(n)) \subseteq SPACE(s(n)^2). (s é espaço construtível)
```

Note: Isso também implica em PSPACE = NPSPACE

O jogo QBF:

- Tabuleiro é uma fórmula booleana $\phi(x_1, x_2, ..., x_{2n})$
- lacktriangle Jogadores escolhem valores 0,1 para x_1,x_2,\ldots alternadamente
- Jogador 1 ganha se no final $\phi(x_1, ..., x_{2n}) = 1$

Pergunta: O jogađor 1 tem estratégia vencedora? Ou seja, $\exists x_1 \ \forall x_2 \ \ \forall x_n \ \phi(x_1,...,x_{2n}) = 1$

Este problema é PSPACE-completo.

Espaço logarítmico

```
\begin{aligned} & \mathrm{PATH} = \{ \langle G, s, t \rangle \ : \ G \ \mathsf{possui} \ \mathsf{um} \ \mathsf{caminho} \ \mathsf{(direcionado)} \ \mathsf{ligando} \ s \ \grave{\mathsf{a}} \ t \} \\ & \mathrm{U-PATH} = \{ \langle G, s, t \rangle \ : \ G \ \mathsf{possui} \ \mathsf{um} \ \mathsf{caminho} \ \mathsf{(n\~{a}o} \ \mathsf{direcionado)} \ \mathsf{ligando} \ s \ \grave{\mathsf{a}} \ t \} \end{aligned}
```

Teorema 9.9: PATH é NL-completo (completude sob reduções de espaço logarítmico)

Corolário 9.10: Se PATH $\in L$, então L = NL

• Obs: Existe uma definição alternativa para NP em termos de certificados "read once"

```
Teorema 9.11 [Immerman-Szelepcsényi ('87, '88)]
```

 $\overline{\mathrm{PATH}} \in \mathit{NL}$

Corolário 9.12: NL = co-NL

Teorema 9.13 [Reingold (2004)]: U-PATH $\in L$

Teorema 9.14: $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP \subseteq NEXP$