Computação Quântica Aula 11

Murilo V. G. da Silva

DINF/UFPR

Entrada: Uma função 2-para-1 $f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que }$ se $x \neq y$ e f(x) = f(y), então $x \oplus s = y$ (i.e., $f(x \oplus s) = f(x)$).

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
Saida: Retornar a string s (obs: assumimos s \neq 0^n)
```

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
Saida: Retornar a string s (obs: assumimos s \neq 0^n)
```

Nota: novamente estamos no "modelo black box"

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
Saida: Retornar a string s (obs: assumimos s \neq 0^n)
```

Nota: novamente estamos no "modelo black box"

Nota: $N=2^n$.

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
Saida: Retornar a string s (obs: assumimos s \neq 0^n)
```

Nota: novamente estamos no "modelo black box"

Nota: $N = 2^n$.

Pergunta:

• Com um algoritmo clássico, quantas queries precisamos fazer?

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
Saida: Retornar a string s (obs: assumimos s \neq 0^n)
```

Nota: novamente estamos no "modelo black box"

Nota: $N = 2^n$.

Pergunta:

- Com um algoritmo clássico, quantas queries precisamos fazer?
- Podemos fazer melhor usando um algoritmo quântico?

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
Saida: Retornar a string s (obs: assumimos s \neq 0^n)
```

Nota: novamente estamos no "modelo *black box*"

Nota: $N = 2^n$.

Pergunta:

- Com um algoritmo clássico, quantas queries precisamos fazer?
- Podemos fazer melhor usando um algoritmo quântico?

Algoritmos clássicos:

• Determinístico: $\mathcal{O}(N) = \mathcal{O}(2^n)$

Entrada: Uma função 2-para-1 $f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que }$ se $x \neq y$ e f(x) = f(y), então $x \oplus s = y$ (i.e., $f(x \oplus s) = f(x)$).

Saida: Retornar a string s (obs: assumimos $s \neq 0^n$)

Nota: novamente estamos no "modelo *black box*" Nota: $N = 2^n$

Pergunta:

- Com um algoritmo clássico, quantas queries precisamos fazer?
- Podemos fazer melhor usando um algoritmo quântico?

Algoritmos clássicos:

- Determinístico: $\mathcal{O}(N) = \mathcal{O}(2^n)$
- Aleatorizado: $\mathcal{O}(\sqrt{N})$, lembrando que $\sqrt{N} = 2^{n/2}$

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
```

Saida: Retornar a string s (obs: assumimos $s \neq 0^n$)

Entrada: Uma função 2-para-1 $f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).$

Saida: Retornar a string s (obs: assumimos $s \neq 0^n$)

Passos do Algoritmo

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que } se \ x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
```

Saida: Retornar a string s (obs: assumimos $s \neq 0^n$)

Passos do Algoritmo

 Para algum r aleatório, criar o estado $\frac{1}{\sqrt{2}} \ket{r} + \frac{1}{\sqrt{2}} \ket{r \oplus s}$ (Assunto de hoje)

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
```

Saida: Retornar a string s (obs: assumimos $s \neq 0^n$)

Passos do Algoritmo

- Para algum r aleatório, criar o estado $\frac{1}{\sqrt{2}} \ket{r} + \frac{1}{\sqrt{2}} \ket{r \oplus s}$ (Assunto de hoje)
- A partir do estado acima, obter string y aleatória tal que $y \cdot s = 0 \pmod{2}$ (Assunto de hoje)

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
```

Saida: Retornar a string s (obs: assumimos $s \neq 0^n$)

Passos do Algoritmo

- Para algum r aleatório, criar o estado $\frac{1}{\sqrt{2}} \ket{r} + \frac{1}{\sqrt{2}} \ket{r \oplus s}$ (Assunto de hoje)
- A partir do estado acima, obter string y aleatória tal que $y \cdot s = 0 \pmod{2}$ (Assunto de hoje)
- Repetir isso para obter n 1 strings y com tal propriedade (Aula que vem)

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que } se \ x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
Saida: Retornar a string s (obs: assumimos s \neq 0^n)
```

Passos do Algoritmo

- Para algum r aleatório, criar o estado $\frac{1}{\sqrt{2}}\ket{r}+\frac{1}{\sqrt{2}}\ket{r\oplus s}$ (Assunto de hoje)
- A partir do estado acima, obter string y aleatória tal que $y \cdot s = 0 \pmod{2}$ (Assunto de hoje)
- Repetir isso para obter n − 1 strings y com tal propriedade (Aula que vem)

Ideia central do algoritmo:

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
```

Saida: Retornar a string s (obs: assumimos $s \neq 0^n$)

Passos do Algoritmo

- Para algum r aleatório, criar o estado $\frac{1}{\sqrt{2}} |r\rangle + \frac{1}{\sqrt{2}} |r \oplus s\rangle$ (Assunto de hoje)
- A partir do estado acima, obter string y aleatória tal que $y \cdot s = 0 \pmod{2}$ (Assunto de hoje)
- Repetir isso para obter n − 1 strings y com tal propriedade (Aula que vem)

Ideia central do algoritmo:

• cada string y nos dá a equação $y_1s_1 + y_2s_2 + ... + y_ns_n = 0 \pmod{2}$ (incógnitas $s_1, ..., s_n$ e coeficientes $y_1, ..., y_n$)

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que } se \ x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
Saida: Retornar a string s (obs: assumimos s \neq 0^n)
```

Passos do Algoritmo

- Para algum r aleatório, criar o estado $\frac{1}{\sqrt{2}} |r\rangle + \frac{1}{\sqrt{2}} |r \oplus s\rangle$ (Assunto de hoje)
- A partir do estado acima, obter string y aleatória tal que $y \cdot s = 0 \pmod{2}$ (Assunto de hoje)
- Repetir isso para obter n 1 strings y com tal propriedade (Aula que vem)

Ideia central do algoritmo:

- cada string y nos dá a equação $y_1s_1 + y_2s_2 + ... + y_ns_n = 0 \pmod{2}$ (incógnitas $s_1, ..., s_n$ e coeficientes $y_1, ..., y_n$)
- Se obtivermos n-1 equações, obtemos os valores $s_1, ..., s_n$ (ou seja os bits de s)

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
```

Saida: Retornar a string s (obs: assumimos $s \neq 0^n$)

Passos do Algoritmo

- Para algum r aleatório, criar o estado $\frac{1}{\sqrt{2}}\ket{r}+\frac{1}{\sqrt{2}}\ket{r\oplus s}$ (Assunto de hoje)
- A partir do estado acima, obter string y aleatória tal que $y \cdot s = 0 \pmod{2}$ (Assunto de hoje)
- Repetir isso para obter n − 1 strings y com tal propriedade (Aula que vem)

Ideia central do algoritmo:

- cada string y nos dá a equação $y_1s_1 + y_2s_2 + ... + y_ns_n = 0 \pmod{2}$ (incógnitas $s_1, ..., s_n$ e coeficientes $y_1, ..., y_n$)
- Se obtivermos n-1 equações, obtemos os valores $s_1,...,s_n$ (ou seja os bits de s)

Nota: como estamos trabalhando (MOD 2), há duas soluções: a solução trivial 0^n e a solução s, cujos bits são das variáveis s_1,\ldots,s_n e que pode ser obtida usando eliminação gaussiana módulo 2 que roda em tempo $\mathcal{O}(n^3)$

```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
```

Saida: Retornar a string s (obs: assumimos $s \neq 0^n$)

Passos do Algoritmo

- Para algum r aleatório, criar o estado $\frac{1}{\sqrt{2}} \ket{r} + \frac{1}{\sqrt{2}} \ket{r \oplus s}$ (Assunto de hoje)
- A partir do estado acima, obter string y aleatória tal que $y \cdot s = 0 \pmod{2}$ (Assunto de hoje)
- Repetir isso para obter n − 1 strings y com tal propriedade (Aula que vem)

Ideia central do algoritmo:

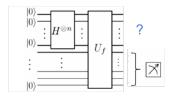
- cada string y nos dá a equação $y_1s_1 + y_2s_2 + ... + y_ns_n = 0 \pmod{2}$ (incógnitas $s_1, ..., s_n$ e coeficientes $y_1, ..., y_n$)
- Se obtivermos n-1 equações, obtemos os valores $s_1,...,s_n$ (ou seja os bits de s)

Nota: como estamos trabalhando (MOD 2), há duas soluções: a solução trivial 0^n e a solução s, cujos bits são das variáveis s_1,\ldots,s_n e que pode ser obtida usando eliminação gaussiana módulo 2 que roda em tempo $\mathcal{O}(n^3)$

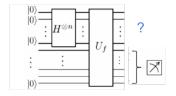
Cuidado extra: as equações obtidas devem ser linearmente independentes

(1) Como obter o estado
$$\frac{1}{\sqrt{2}}|r\rangle + \frac{1}{\sqrt{2}}|r \oplus s\rangle$$
?

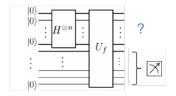
Considere o circuito abaixo:



Considere o circuito abaixo:



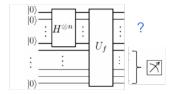
Considere o circuito abaixo:



Qual a saída dos n qubits da parte de cima do circuito?

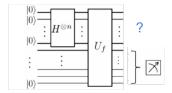
ullet Estado dos 2n qubits saindo de U_f antes da medida: $rac{1}{2^{n/2}}\sum_{x\in\{0,1\}}|x
angle\,|f(x)
angle$

Considere o circuito abaixo:



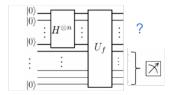
- Estado dos 2n qubits saindo de U_f antes da medida: $\frac{1}{2^{n/2}}\sum_{x\in\{0,1\}}|x\rangle\,|f(x)\rangle$
- Observe que a parte de cima do circuito contém x e a parte de baixo f(x)

Considere o circuito abaixo:



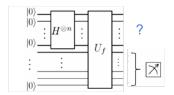
- ullet Estado dos 2n qubits saindo de U_f antes da medida: $rac{1}{2^{n/2}}\sum_{x\in\{0,1\}}|x
 angle\,|f(x)
 angle$
- Observe que a parte de cima do circuito contém x e a parte de baixo f(x)
- ullet Medindo os n qubits da parte de baixo, estes qubits colapsam em algum valor y

Considere o circuito abaixo:



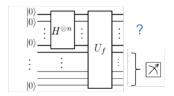
- ullet Estado dos 2n qubits saindo de U_f antes da medida: $rac{1}{2^{n/2}}\sum_{x\in\{0,1\}}\ket{x}\ket{f(x)}$
- Observe que a parte de cima do circuito contém x e a parte de baixo f(x)
- Medindo os n qubits da parte de baixo, estes qubits colapsam em algum valor y
- Observe que y = f(r), para algum valor aleatório r

Considere o circuito abaixo:



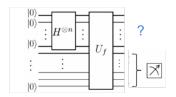
- ullet Estado dos 2n qubits saindo de U_f antes da medida: $rac{1}{2^{n/2}}\sum_{x\in\{0,1\}}\ket{x}\ket{f(x)}$
- Observe que a parte de cima do circuito contém x e a parte de baixo f(x)
- Medindo os n qubits da parte de baixo, estes qubits colapsam em algum valor y
- Observe que y = f(r), para algum valor aleatório r
- Na realidade, pela definição de f, dado $y=f(r)=f(r\oplus s)$, para um r aleatório

Considere o circuito abaixo:



- ullet Estado dos 2n qubits saindo de U_f antes da medida: $rac{1}{2^{n/2}}\sum_{x\in\{0,1\}}|x
 angle\,|f(x)
 angle$
- Observe que a parte de cima do circuito contém x e a parte de baixo f(x)
- Medindo os n qubits da parte de baixo, estes qubits colapsam em algum valor y
- Observe que y = f(r), para algum valor aleatório r
- Na realidade, pela definição de f, dado $y=f(r)=f(r\oplus s)$, para um r aleatório
- Depois da medida parcial o estado será condizente com os bits medidos, e portanto os 2n qubits serão $\frac{1}{\sqrt{2}}\sum_{x\in\{r,r\oplus s\}}|x\rangle\,|f(x)\rangle=\frac{1}{\sqrt{2}}\,|r\rangle+\frac{1}{\sqrt{2}}\,|r\oplus s\rangle\,|y\rangle$

Considere o circuito abaixo:



- ullet Estado dos 2n qubits saindo de U_f antes da medida: $rac{1}{2^{n/2}}\sum_{x\in\{0,1\}}|x
 angle\,|f(x)
 angle$
- Observe que a parte de cima do circuito contém x e a parte de baixo f(x)
- Medindo os n qubits da parte de baixo, estes qubits colapsam em algum valor y
- Observe que y = f(r), para algum valor aleatório r
- Na realidade, pela definição de f, dado $y=f(r)=f(r\oplus s)$, para um r aleatório
- Depois da medida parcial o estado será condizente com os bits medidos, e portanto os 2n qubits serão $\frac{1}{\sqrt{2}}\sum_{x\in\{r,r\oplus s\}}|x\rangle\,|f(x)\rangle=\frac{1}{\sqrt{2}}\,|r\rangle+\frac{1}{\sqrt{2}}\,|r\oplus s\rangle\,|y\rangle$
- Com isso o estado dos *n* qubits de cima é $\frac{1}{\sqrt{2}}|r\rangle + \frac{1}{\sqrt{2}}|r \oplus s\rangle$

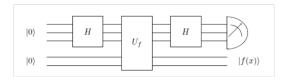
```
Entrada: Uma função 2-para-1 f: \{0,1\}^n \to \{0,1\}^n \text{ com } s \in \{0,1\}^n \text{ tal que se } x \neq y \text{ e } f(x) = f(y), \text{ então } x \oplus s = y \text{ (i.e., } f(x \oplus s) = f(x)).
Saida: Retornar a string s (obs: assumimos s \neq 0^n)
```

Passos do Algoritmo

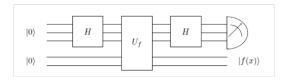
- Para algum r aleatório, criar o estado $\frac{1}{\sqrt{2}} |r\rangle + \frac{1}{\sqrt{2}} |r \oplus s\rangle$ (Resolvido!!)
- A partir do estado acima, obter string y aleatória tal que $y \cdot s = 0 \pmod{2}$ (Agora)
- Repetir isso para obter n − 1 strings y com tal propriedade (Aula que vem)

(2) Como obter string aleatória y, tal que $y \cdot s = 0$ (MOD 2)?

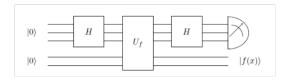
Obtendo string aleatória y com a propriedade $y \cdot s = 0$ (MOD 2):



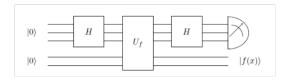
ullet Basta fazer uma amostragem de Fourier em $rac{1}{\sqrt{2}}\ket{r}+rac{1}{\sqrt{2}}\ket{r\oplus s}$



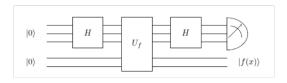
- Basta fazer uma amostragem de Fourier em $rac{1}{\sqrt{2}}\ket{r}+rac{1}{\sqrt{2}}\ket{r\oplus s}$
- Nos qubits de cima, depois de $H^{\otimes n}$ e antes da medida, temos uma superposição de estados $|y\rangle$, onde cada estado $|y\rangle$ tem amplitude β_{y}



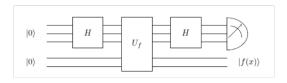
- ullet Basta fazer uma amostragem de Fourier em $rac{1}{\sqrt{2}}\ket{r}+rac{1}{\sqrt{2}}\ket{r\oplus s}$
- Nos qubits de cima, depois de $H^{\otimes n}$ e antes da medida, temos uma superposição de estados $|y\rangle$, onde cada estado $|y\rangle$ tem amplitude β_{y}
- Ideia: mostrar que os estados $|y\rangle$ indesejados tem amplitude $\beta_y=0$ (lembrando que os estados indesejados são os que tem $y\cdot s \neq 0$ (MOD 2))



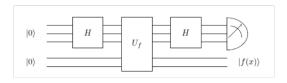
- Basta fazer uma amostragem de Fourier em $rac{1}{\sqrt{2}}\ket{r}+rac{1}{\sqrt{2}}\ket{r\oplus s}$
- Nos qubits de cima, depois de $H^{\otimes n}$ e antes da medida, temos uma superposição de estados $|y\rangle$, onde cada estado $|y\rangle$ tem amplitude β_y
- Ideia: mostrar que os estados $|y\rangle$ indesejados tem amplitude $\beta_y=0$ (lembrando que os estados indesejados são os que tem $y\cdot s \neq 0$ (MOD 2))
- Dado um y, temos $\beta_y =$



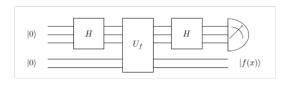
- Basta fazer uma amostragem de Fourier em $\frac{1}{\sqrt{2}}\ket{r}+\frac{1}{\sqrt{2}}\ket{r\oplus s}$
- Nos qubits de cima, depois de $H^{\otimes n}$ e antes da medida, temos uma superposição de estados $|y\rangle$, onde cada estado $|y\rangle$ tem amplitude β_y
- Ideia: mostrar que os estados $|y\rangle$ indesejados tem amplitude $\beta_y=0$ (lembrando que os estados indesejados são os que tem $y\cdot s \neq 0$ (MOD 2))
- Dado um y, temos $\beta_y = \frac{1}{\sqrt{2}} \frac{(-1)^{r \cdot y}}{2^{n/2}} + \frac{1}{\sqrt{2}} \frac{(-1)^{(r \oplus s) \cdot y}}{2^{n/2}} =$



- ullet Basta fazer uma amostragem de Fourier em $rac{1}{\sqrt{2}}\ket{r}+rac{1}{\sqrt{2}}\ket{r\oplus s}$
- Nos qubits de cima, depois de $H^{\otimes n}$ e antes da medida, temos uma superposição de estados $|y\rangle$, onde cada estado $|y\rangle$ tem amplitude β_{y}
- Ideia: mostrar que os estados $|y\rangle$ indesejados tem amplitude $\beta_y=0$ (lembrando que os estados indesejados são os que tem $y\cdot s \neq 0$ (MOD 2))
- Dado um y, temos $\beta_y = \frac{1}{\sqrt{2}} \frac{(-1)^{r \cdot y}}{2^{n/2}} + \frac{1}{\sqrt{2}} \frac{(-1)^{(r \oplus s) \cdot y}}{2^{n/2}} = \frac{(-1)^{r \cdot y}}{2^{(n+1)/2}} [1 + (-1)^{s \cdot y}]$



- Basta fazer uma amostragem de Fourier em $rac{1}{\sqrt{2}}\ket{r}+rac{1}{\sqrt{2}}\ket{r\oplus s}$
- Nos qubits de cima, depois de $H^{\otimes n}$ e antes da medida, temos uma superposição de estados $|y\rangle$, onde cada estado $|y\rangle$ tem amplitude β_y
- Ideia: mostrar que os estados $|y\rangle$ indesejados tem amplitude $\beta_y=0$ (lembrando que os estados indesejados são os que tem $y\cdot s \neq 0$ (MOD 2))
- Dado um y, temos $\beta_y = \frac{1}{\sqrt{2}} \frac{(-1)^{r \cdot y}}{2^{n/2}} + \frac{1}{\sqrt{2}} \frac{(-1)^{(r \oplus s) \cdot y}}{2^{n/2}} = \frac{(-1)^{r \cdot y}}{2^{(n+1)/2}} [1 + (-1)^{s \cdot y}]$
 - Caso 1: $y \cdot s = 0$ (MOD 2) $\longrightarrow \beta_y = \frac{(-1)^{r \cdot y}}{2(n-1)/2}$



- Basta fazer uma amostragem de Fourier em $rac{1}{\sqrt{2}}\ket{r}+rac{1}{\sqrt{2}}\ket{r\oplus s}$
- Nos qubits de cima, depois de $H^{\otimes n}$ e antes da medida, temos uma superposição de estados $|y\rangle$, onde cada estado $|y\rangle$ tem amplitude β_y
- Ideia: mostrar que os estados $|y\rangle$ indesejados tem amplitude $\beta_y=0$ (lembrando que os estados indesejados são os que tem $y\cdot s \neq 0$ (MOD 2))
- Dado um y, temos $\beta_y = \frac{1}{\sqrt{2}} \frac{(-1)^{r \cdot y}}{2^{n/2}} + \frac{1}{\sqrt{2}} \frac{(-1)^{(r \oplus s) \cdot y}}{2^{n/2}} = \frac{(-1)^{r \cdot y}}{2^{(n+1)/2}} [1 + (-1)^{s \cdot y}]$
 - Caso 1: $y \cdot s = 0$ (MOD 2) $\longrightarrow \beta_y = \frac{(-1)^{r \cdot y}}{2(n-1)/2}$
 - Caso 2: $y \cdot s = 1 \pmod{2} \longrightarrow \beta_y = 0$