Algoritmos e Teoria dos Grafos

Tópico 1: Primeiros Conceitos

Renato Carmo André Guedes Murilo Silva

Departamento de Informática da UFPR

2023

 ${\it C}$: conjunto

k: inteiro

C: conjunto

k: inteiro

 2^{C} : conjunto dos subconjuntos (ou conjunto das partes) de C

C: conjunto

k: inteiro

 2^{C} : conjunto dos subconjuntos (ou conjunto das partes) de C

$$2^C := \{S \mid S \subseteq C\}$$

C: conjunto

k: inteiro

2^C: conjunto dos subconjuntos (ou conjunto das partes) de C

$$2^C := \{S \mid S \subseteq C\}$$

 $\binom{C}{k}$: conjunto dos subconjuntos de C com exatamente k elementos

C: conjunto

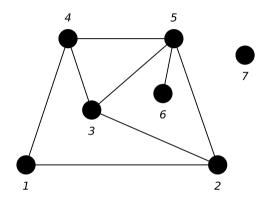
k: inteiro

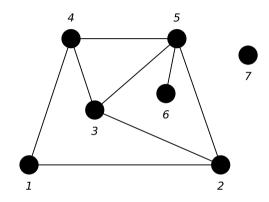
 2^{C} : conjunto dos subconjuntos (ou conjunto das partes) de C

$$2^C := \{ S \mid S \subseteq C \}$$

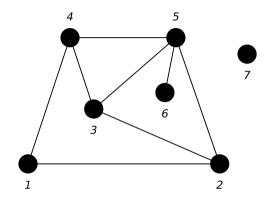
 $\binom{C}{k}$: conjunto dos subconjuntos de C com exatamente k elementos

$$\binom{C}{k} := \{S \subseteq C \mid |S| = k\}.$$



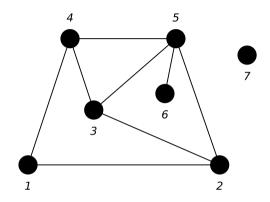


grafo G: par (V(G), E(G))



grafo
$$G$$
: par $(V(G), E(G))$
 $V(G)$: conjunto finito não vazio

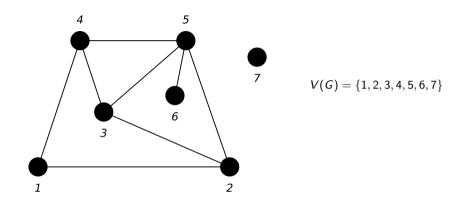
(vértices)



grafo
$$G$$
: par $(V(G), E(G))$

$$V(G)$$
: conjunto finito não vazio
$$E(G)$$
: $\subseteq \binom{V(G)}{2}$

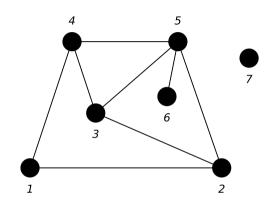
(vértices) (arestas)



grafo
$$G$$
: par $(V(G), E(G))$

$$V(G)$$
: conjunto finito não vazio
$$E(G)$$
: $\subseteq \binom{V(G)}{2}$

(vértices) (arestas)



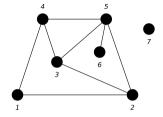
$$V(G) = \{1, 2, 3, 4, 5, 6, 7\}$$

$$E(G) = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}, \{2, 5\}, \{4, 5\}, \{5, 6\}\}$$

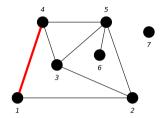
grafo
$$G$$
: par $(V(G), E(G))$

V(G): conjunto finito não vazio E(G): $\subseteq \binom{V(G)}{2}$

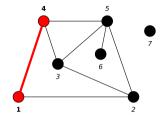
(vértices) (arestas)



G: grafo

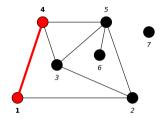


G: grafo $a = \{u, v\}$: aresta de G

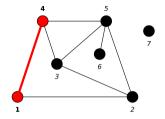


G: grafo $a = \{u, v\}$: aresta de G

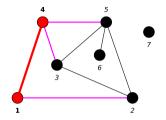
• u e v são as **pontas** da aresta a



- G: grafo $a = \{u, v\}$: aresta de G
 - u e v são as **pontas** da aresta a
 - $a \in incidente em u e em v$



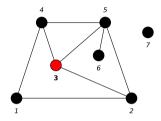
- G: grafo
- $a = \{u, v\}$: aresta de G
 - u e v são as **pontas** da aresta a
 - a é incidente em u e em v
 - os vértices u e v são vizinhos (ou adjacentes) em G



- G: grafo $a = \{u, v\}$: aresta de G
 - u e v são as **pontas** da aresta a
 - a é incidente em u e em v
 - os vértices u e v são vizinhos (ou adjacentes) em G

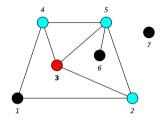
arestas adjacentes: tem ponta em comum

Vizinhança



vizinhança de v em G: conjunto dos vértices que são vizinhos de v em G

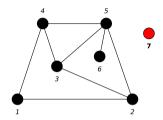
Vizinhança



vizinhança de v em G: conjunto dos vértices que são vizinhos de v em G

 $\Gamma_G(v) := \{u \in V(G) \mid u \text{ \'e vizinho de } v\}$

Vizinhança



vizinhança de v em G: conjunto dos vértices que são vizinhos de v em G

$$\Gamma_G(v) := \{u \in V(G) \mid u \text{ \'e vizinho de } v\}$$

vértice isolado: não tem vizinhos

grafo trivial: um único vértice e sem arestas

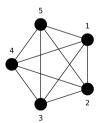
grafo trivial: um único vértice e sem arestas

grafo trivial: um único vértice e sem arestas

grafo completo: cada vértice é vizinho de todos os outros.

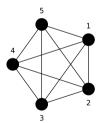
grafo trivial: um único vértice e sem arestas

grafo completo: cada vértice é vizinho de todos os outros.

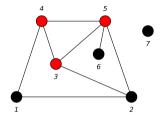


grafo trivial: um único vértice e sem arestas

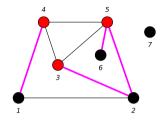
grafo completo: cada vértice é vizinho de todos os outros.



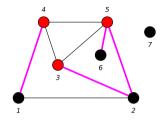
 $K_n := \text{grafo completo de } n \text{ vértices}$



X: conjunto de vértices

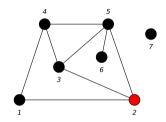


X: conjunto de vértices



X: conjunto de vértices

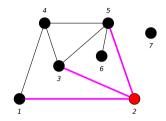
$$\partial_G(X) := \{\{x,y\} \in E(G) \mid x \in X \text{ e } y \notin X\}.$$



X: conjunto de vértices

$$\partial_G(X) := \{ \{x, y\} \in E(G) \mid x \in X \text{ e } y \notin X \}.$$

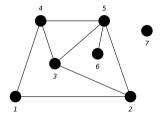
$$\partial_G(v) := \partial_G(\{v\}).$$

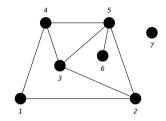


X: conjunto de vértices

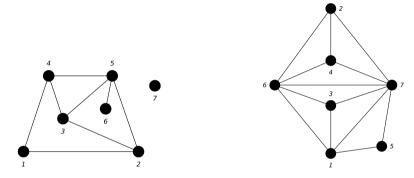
$$\partial_G(X) := \{ \{x, y\} \in E(G) \mid x \in X \text{ e } y \notin X \}.$$

$$\partial_G(v) := \partial_G(\{v\}).$$

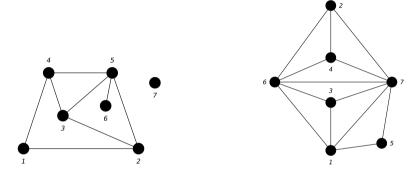




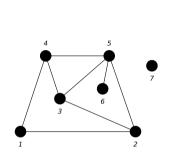
complemento (grafo complementar) de ${\cal G}$



complemento (grafo complementar) de G: "negativo" do grafo G



complemento (grafo complementar) de G: "negativo" do grafo G

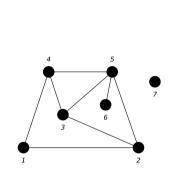


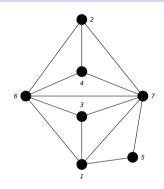


complemento (grafo complementar) de G: "negativo" do grafo G:

$$V(\overline{G}) := V(G)$$

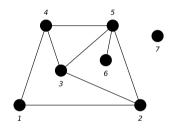
Complemento de um Grafo

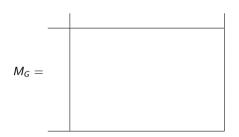


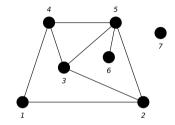


complemento (grafo complementar) de G: "negativo" do grafo G:

$$V(\overline{G}) := V(G),$$
 $E(\overline{G}) := {V(G) \choose 2} - E(G)$

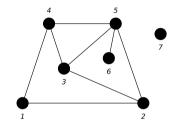






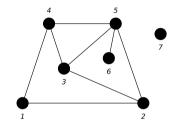
uma linha para cada vértice

$M_G =$	1	
	2	
	3	
	4	
	5	
	6	
	7	



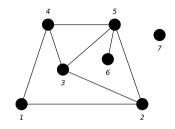
uma linha para cada vértice uma coluna para cada vértice

		1	2	3	4	5	6	7
$M_G =$	1							
	2							
	3							
	4							
	5							
	6							
	7							



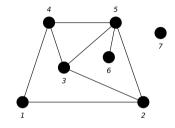
uma linha para cada vértice uma coluna para cada vértice na linha u, coluna v tem

		1	2	3	4	5	6	7
$M_G =$	1							
	2							
	3							
	4							
	5							
	6							
	7							



uma linha para cada vértice uma coluna para cada vértice na linha *u*, coluna *v* tem 1, se *u* e *v* são vizinhos

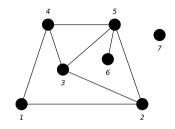
		1	2	3	4	5	6	7
$M_G =$	1 2 3 4 5 6							
	7							



		1	2	3	4	5	6	7
$M_G =$	1							
	2							
	3							
	4							
	5							
	6							
	7							

uma linha para cada vértice uma coluna para cada vértice na linha u, coluna v tem

> 1, se u e v são vizinhos 0, se u e v não são vizinhos



uma linha para cada vértice uma coluna para cada vértice na linha u, coluna v tem

1, se u e v são vizinhos 0, se u e v não são vizinhos

$$M_G[u,v] = \begin{cases} 0, & \text{se } \{u,v\} \notin E(G), \\ 1, & \text{se } \{u,v\} \in E(G). \end{cases}$$

G, H: grafos

G, H: grafos

 $G \cup H$

G, H: grafos

 $G \cup H$: união de G e H

G, H: grafos

 $G \cup H$: **união de** G **e** H grafo obtido da união dos conjuntos de vértices e arestas de G e H:

G, H: grafos

 $G \cup H$: **união de** G **e** H grafo obtido da união dos conjuntos de vértices e arestas de G e H:

$$V(G \cup H) := V(G) \cup V(H),$$

G, H: grafos

 $G \cup H$: união de G e H grafo obtido da união dos conjuntos de vértices e arestas de G e H:

$$V(G \cup H) := V(G) \cup V(H),$$

 $E(G \cup H) := E(G) \cup E(H).$

G: grafo $u, v \in V(G)$

G: grafo $u, v \in V(G)$

 $G + \{u, v\}$:

G: grafo $u, v \in V(G)$

 $G + \{u, v\}$: grafo obtido ao acrescentar a aresta $\{u, v\}$ a G

$$G$$
: grafo $u, v \in V(G)$

$$G + \{u,v\}$$
: grafo obtido ao acrescentar a aresta $\{u,v\}$ a G

$$V(G + \{u, v\}) := V(G),$$

 $E(G + \{u, v\}) := E(G) \cup \{u, v\}.$