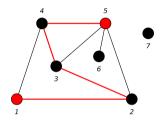
Algoritmos e Teoria dos Grafos

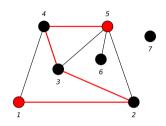
Tópico 13: Caminhos

Renato Carmo André Guedes Murilo Silva

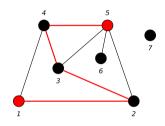
Departamento de Informática da UFPR

2023

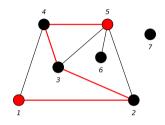




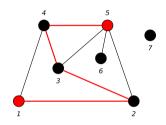
caminho



caminho: passeio cujos vértices são todos distintos

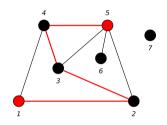


caminho: passeio cujos vértices são todos distintoscaminho



caminho: passeio cujos vértices são todos distintos

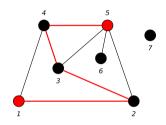
caminho: subgrafo induzido por passeio cujos vértices são todos distintos



caminho: passeio cujos vértices são todos distintos

caminho: subgrafo induzido por passeio cujos vértices são todos distintos

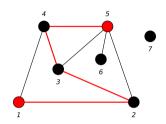
 P_n



caminho: passeio cujos vértices são todos distintos

caminho: subgrafo induzido por passeio cujos vértices são todos distintos

 P_n : grafo induzido por um caminho de n vértices

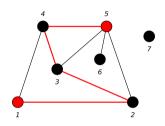


caminho: passeio cujos vértices são todos distintos

caminho: subgrafo induzido por passeio cujos vértices são todos distintos

 P_n : grafo induzido por um caminho de n vértices

uPv



caminho: passeio cujos vértices são todos distintos

caminho: subgrafo induzido por passeio cujos vértices são todos distintos

 P_n : grafo induzido por um caminho de n vértices

uPv: caminho de u a v que é segmento de P

P: caminho maximal em G

P: caminho maximal em G todos os vizinhos das pontas de P estão em P

P: caminho maximal em G todos os vizinhos das pontas de P estão em P

1.
$$P = (v_0, v_1, \ldots, v_n)$$

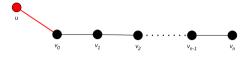
P: caminho maximal em G todos os vizinhos das pontas de P estão em P

Demonstração.

1. $P = (v_0, v_1, \dots, v_n)$: caminho maximal

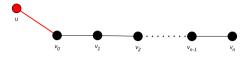
P: caminho maximal em G todos os vizinhos das pontas de P estão em P

- 1. $P = (v_0, v_1, \dots, v_n)$: caminho maximal
- 2. *u*



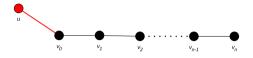
P: caminho maximal em G todos os vizinhos das pontas de P estão em P

- 1. $P = (v_0, v_1, \dots, v_n)$: caminho maximal
- 2. u: vizinho de v_0 fora de P



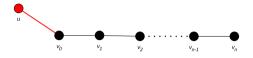
P: caminho maximal em G todos os vizinhos das pontas de P estão em P

- 1. $P = (v_0, v_1, \dots, v_n)$: caminho maximal
- 2. u: vizinho de v_0 fora de P
- 3. $Q = (u, v_0, v_1, \ldots, v_n)$



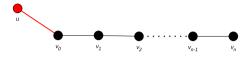
P: caminho maximal em G todos os vizinhos das pontas de P estão em P

- 1. $P = (v_0, v_1, \dots, v_n)$: caminho maximal
- 2. u: vizinho de v_0 fora de P
- 3. $Q = (u, v_0, v_1, \dots, v_n)$: caminho em G



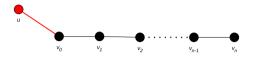
P: caminho maximal em G todos os vizinhos das pontas de P estão em P

- 1. $P = (v_0, v_1, \dots, v_n)$: caminho maximal
- 2. u: vizinho de v_0 fora de P
- 3. $Q = (u, v_0, v_1, ..., v_n)$: caminho em G
- 4. P é segmento próprio de Q



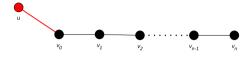
P: caminho maximal em G todos os vizinhos das pontas de P estão em P

- 1. $P = (v_0, v_1, \dots, v_n)$: caminho maximal
- 2. u: vizinho de v_0 fora de P
- 3. $Q = (u, v_0, v_1, ..., v_n)$: caminho em G
- 4. P é segmento próprio de Q
- 5. contradiz P ser maximal



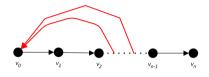
P: caminho maximal em G todos os vizinhos das pontas de P estão em P

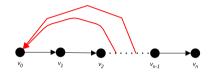
- 1. $P = (v_0, v_1, \dots, v_n)$: caminho maximal
- 2. u: vizinho de v_0 fora de P
- 3. $Q = (u, v_0, v_1, ..., v_n)$: caminho em G
- 4. P é segmento próprio de Q
- 5. contradiz P ser maximal
- 6. v_n não pode ter vizinhos fora de P



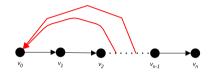
P: caminho maximal em G todos os vizinhos das pontas de P estão em P

- 1. $P = (v_0, v_1, \dots, v_n)$: caminho maximal
- 2. u: vizinho de v_0 fora de P
- 3. $Q = (u, v_0, v_1, ..., v_n)$: caminho em G
- 4. P é segmento próprio de Q
- 5. contradiz P ser maximal
- 6. v_n não pode ter vizinhos fora de P: mesmo raciocínio



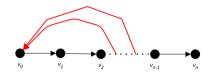


"versão" do Teorema 19 para grafos direcionados



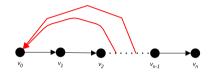
"versão" do Teorema 19 para grafos direcionados

P



"versão" do Teorema 19 para grafos direcionados

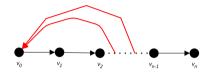
P: caminho direcionado maximal



"versão" do Teorema 19 para grafos direcionados

P: caminho direcionado maximal

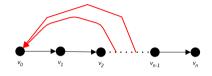
• todos os vizinhos de entrada do vértice inicial estão em P



"versão" do Teorema 19 para grafos direcionados

P: caminho direcionado maximal

- todos os vizinhos de entrada do vértice inicial estão em P
- todos os vizinhos de saída do vértice final estão em P



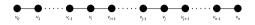
"versão" do Teorema 19 para grafos direcionados

P: caminho direcionado maximal

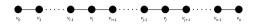
- todos os vizinhos de entrada do vértice inicial estão em P
- todos os vizinhos de saída do vértice final estão em P

Demonstração.

Exercício 54

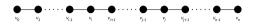


Todo passeio de tamanho mínimo é caminho



Todo passeio de tamanho mínimo é caminho

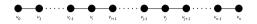
1.
$$P = (v_0, v_1, \ldots, v_{n-1}, v_n)$$



Todo passeio de tamanho mínimo é caminho

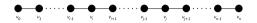
Demonstração.

1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n



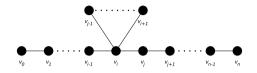
Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho



Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho \implies vértice repetido em P



Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho \implies vértice repetido em P
- 3. $v_i = v_j$, para algum $0 \le i < j \le n$

Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho \implies vértice repetido em P
- 3. $v_i = v_j$, para algum $0 \le i < j \le n$
- 4. $Q = (v_0, \ldots, v_{i-1}, v_i, v_{j+1}, \ldots, v_n)$

Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho \implies vértice repetido em P
- 3. $v_i = v_j$, para algum $0 \le i < j \le n$
- 4. $Q = (v_0, \dots, v_{i-1}, v_i, v_{j+1}, \dots, v_n)$: passeio de v_0 a v_n

Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho \implies vértice repetido em P
- 3. $v_i = v_j$, para algum $0 \le i < j \le n$
- 4. $Q=(v_0,\ldots,v_{i-1},v_i,v_{j+1},\ldots,v_n)$: passeio de v_0 a v_n de tamanho |Q|

Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho \implies vértice repetido em P
- 3. $v_i = v_j$, para algum $0 \le i < j \le n$
- 4. $Q=(v_0,\ldots,v_{i-1},v_i,v_{j+1},\ldots,v_n)$: passeio de v_0 a v_n de tamanho |Q|=|P|-(j-i+1)

Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho \implies vértice repetido em P
- 3. $v_i = v_j$, para algum $0 \le i < j \le n$
- 4. $Q=(v_0,\ldots,v_{i-1},v_i,v_{j+1},\ldots,v_n)$: passeio de v_0 a v_n de tamanho |Q|=|P|-(j-i+1)<|P|

Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho \implies vértice repetido em P
- 3. $v_i = v_j$, para algum $0 \le i < j \le n$
- 4. $Q=(v_0,\ldots,v_{i-1},v_i,v_{j+1},\ldots,v_n)$: passeio de v_0 a v_n de tamanho |Q|=|P|-(j-i+1)<|P| (i< j)

Todo passeio de tamanho mínimo é caminho

- 1. $P = (v_0, v_1, \dots, v_{n-1}, v_n)$: passeio de tamanho mínimo de v_0 a v_n
- 2. P não é caminho \implies vértice repetido em P
- 3. $v_i = v_j$, para algum $0 \le i < j \le n$
- 4. $Q=(v_0,\ldots,v_{i-1},v_i,v_{j+1},\ldots,v_n)$: passeio de v_0 a v_n de tamanho |Q|=|P|-(j-i+1)<|P| (i< j)
- 5. contradiz o fato de P ser passeio de tamanho mínimo de v_0 a v_n

Todo passeio direcionado de tamanho mínimo é caminho direcionado

Todo passeio direcionado de tamanho mínimo é caminho direcionado

Demonstração.

Exercício 56

caminho mínimo em ${\it G}$

caminho mínimo em G: caminho (direcionado) de tamanho mínimo entre suas pontas em G

caminho mínimo em G: caminho (direcionado) de tamanho mínimo entre suas pontas em G

caminho mínimo em grafo ponderado

caminho mínimo em G: caminho (direcionado) de tamanho mínimo entre suas pontas em G

caminho mínimo em grafo ponderado: caminho de peso mínimo no grafo

Todo segmento de caminho mínimo é caminho mínimo

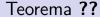
Todo segmento de caminho mínimo é caminho mínimo

Demonstração.

Exercício 51

Teorema ??

Todo segmento de caminho mínimo em um grafo direcionado é caminho mínimo



Todo segmento de caminho mínimo em um grafo direcionado é caminho mínimo

Demonstração.

Exercício 19