
Computer-Aided Design 92 (2017) 1–10

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

An optimal algorithm for 3D triangle mesh slicing
Rodrigo Minetto a,*, Neri Volpato b, Jorge Stolfi c, Rodrigo M.M.H. Gregori a,
Murilo V.G. da Silva a

a Department of Informatics, Federal University of Technology - Paraná (UTFPR), Brazil
b Department of Mechanical Engineering, Federal University of Technology - Paraná (UTFPR), Brazil
c Institute of Computing, University of Campinas (UNICAMP), Brazil

a r t i c l e i n f o

Article history:
Received 9 September 2015
Accepted 2 July 2017

Keywords:
Additive manufacturing
Triangle–plane intersection
Contour construction algorithm
Algorithm complexity
Process planning

a b s t r a c t

We describe an algorithm for slicing an unstructured triangular meshmodel by a series of parallel planes.
We prove that the algorithm is asymptotically optimal: its time complexity is O(n log k + k + m) for
irregularly spaced slicing planes, where n is the number of triangles, k is the number of slicing planes, and
m is the number of triangle–plane intersections segments. The time complexity reduces toO(n+k+m) if
the planes are uniformly spaced or the triangles of themesh are given in the proper order.We also describe
an asymptotically optimal linear time algorithm for constructing a set of polygons from the unsorted lists
of line segments produced by the slicing step. The proposed algorithms are compared both theoretically
and experimentally against known methods in the literature.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Additive layered manufacturing, also known as 3D printing, is
the technique of building a physical object by laying down suc-
cessive layers of material. The object is typically defined by a
three-dimensional geometric model created with a CAD sys-
tem, generated by computer tomography or magnetic resonance
data [1,2], or by other means.

Before being sent to the 3D printer, the geometric model must
undergo process planning, which means a sequence of tasks that
includes: orienting and positioning the object in the printer’s
workspace, cutting the geometric model into layers, adding sup-
port structures if required, and finally planning the printer’s tool-
path [3].

The slicing process can be divided into four sub-tasks as shown
in Fig. 1. These steps can consume up to 60% of the entire process
planning time [4].

This paper describes optimal algorithms to solve the mesh slic-
ing step (Section 3) and the contour construction step (Section 4).
For simplicity, in this paper, we will refer to the mesh slicing task
only as slicing.

1.1. Slicing

In the slicing step, the geometric model is intersected with
parallel planes to obtain the contour of eachmaterial layer. We are

* Corresponding author.
E-mail address: rminetto@dainf.ct.utfpr.edu.br (R. Minetto).

not concerned in this paper with the selection of these planes —
they need to be known a priori. See Fig. 2. This step can be done
with a constant layer thickness (uniform slicing) or with variable
layer thickness (adaptive slicing). Adaptive slicing provides better
surface quality in critical features of the printedmodelwhile saving
time in regions where rougher finish is acceptable [3].

For greater generality, 3D printing software commonly assumes
that the geometric model is reduced to an unordered and unstruc-
tured set of triangles that approximates the surface of the object.
This representation is a de facto industry standard, embodied in
the popular STereoLithography (STL) file format. Therefore, the
primary result of the slicing step is also an unordered and unstruc-
tured set of line segments on each slicing plane.

1.2. Contour construction

The segments produced by slicing must be organized into one
or more closed polygons that delimit the interior (i.e. the area
with and without material inside the part) of the object on the
corresponding layer. See Fig. 3.

This contour construction step is required because the genera-
tion ofmachine control code formost additive layeredmanufactur-
ing processes requires a polygonal description of the cross-section,
that provides both its perimeter (to accurately build the object’s
surface) and its enclosed region (to fill the object’s interior). More-
over, many processes require the computation of offset contours,
e. g. to compensate for nozzle, beam diameter, etc., or to deposit
an object shell of prescribed thickness or of different composition;
and offset algorithms typically require polygons, rather than un-
structured lists of segments.

http://dx.doi.org/10.1016/j.cad.2017.07.001
0010-4485/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cad.2017.07.001
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2017.07.001&domain=pdf
mailto:rminetto@dainf.ct.utfpr.edu.br
http://dx.doi.org/10.1016/j.cad.2017.07.001


2 R. Minetto et al. / Computer-Aided Design 92 (2017) 1–10

Fig. 1. Slicing sub-tasks.

1.3. Mesh consistency

For the purposes of additive layeredmanufacturing, the triangle
mesh must divide space into two regions, the interior and exterior
of the solid object. For that purpose it must be a closed orientable
2-manifold, without self-intersections or spurious contacts. In par-
ticular, the intersection between any two triangles must be either
empty, or a single edge of both, or a single vertex of both. Every
edge must be shared by exactly two triangles that use this edge in
opposite directions, and the triangles incident to any vertex must
form a single pyramidal cone [5].

Nevertheless, it is desirable that the software handling themesh
should be robust, that is, tolerant of defects of the input mesh, such
as those that may be created by acquisition and rounding errors,
contacts between different parts of the object, and mistakes in
previous processing steps. Even if the software does not correct
such defects, it should always terminate normally and produce a
well-formed output that preserves as much information as possi-
ble about the input mesh. For example, if the input mesh is not
closed, the output of the slicing and closing steps should be the
correct set of segments organized as open polygonal lines.

1.4. Contributions

The contributions of this paper are three-fold: (1) an optimal
algorithm for the triangle mesh slicing problem with arbitrary
layer thickness, that runs in O(n log k + k + m) where n is the
number of triangles, k is the number of planes, and m is the total
number of segments (plane–triangle intersections) for the model.
The algorithm runs in O(n + k + m) time if the layer thickness is
uniform, or if the triangles are previously sorted by z-coordinate;
(2) a proof that the lower bound for the unsorted non-uniform
slicing problem is Ω(n log k + k + m); and (3) an optimal (linear
time) algorithm for contour construction.

1.5. Structure of the paper

The remainder of the paper is organized as follows. Section 2
reviews some related work. The slicing and contour construction
algorithms are described in Sections 3 and 4, respectively. The
experimental comparison of both algorithms are reported in Sec-
tion 5. Section 6 states the conclusions.

Fig. 2. A triangle mesh of the surface of a 3D object model (a) and examples of
uniform slicing (b) and adaptive slicing (c).

2. Related work

In this sectionwe review the literature of additive layeredman-
ufacturing process planning that is closely related to the problems
considered here, namely, algorithms for triangle mesh slicing and
contour construction.

2.1. Mesh slicing

The survey of Pandey et al. [6] covers the main slicing algo-
rithms up to 2003. According to them, such algorithms can be
broadly divided into slicing of tessellated models, that take as inputs
a mesh of triangles, and direct slicing, that work directly on more
general CAD models, e.g. NURBS. The direct slicing strategy may
provide more accurate results, by avoiding the errors introduced
by the triangulation of the surface [7,8]. However, in some appli-
cations, the object model is obtained already in tessellated form.

The naive slicing algorithm, described by Chalasani and Grogan
in [9], consists in testing every cutting plane against every triangle.
Thus, its time-complexity is O(kn). This naive algorithm is still
widely used, and there are many papers that improve some of
its aspects, via parallelism [4] and optimization of memory us-
age [10,11]. However, relatively little work has been published on
reducing its computing time.

In 1998, Tata et al. [12] described a faster algorithm that uses
a two-level tree structure to reduce the number of triangle–
plane intersection tests. In their algorithm, triangles are sorted
by their minimum z-coordinates zmin, and then grouped so that
triangles with the same zmin value are clustered together. Each
group is then divided into sub-groups, according to theirmaximum
z-coordinates zmax. This tree can be constructed inO(n log n) time.
Then the nk triangle–plane intersection tests of the naive algorithm
are replacedbyplane–subgroup intersection tests, since eachplane
either intersects all triangles in a subgroup, or none of them. In
favorable situations (with many triangles in each subgroup) this
method can save substantial time. However, in the worst case
(when all vertices have distinct z-coordinates) the algorithm still
requires O(nk) time.

In 1999,McMains and Séquin [5], described a sweep-plane algo-
rithm for slicing a structured mesh. Their algorithm simulates the
process of continuously sweeping a plane across the trianglemesh,
maintaining the set of polygons that comprise its intersectionwith
the plane. These polygons are updated whenever the sweep plane
hits a vertex of the mesh, or coincides with one of the specified
slicing planes. The intersection of the model with the sweeping



R. Minetto et al. / Computer-Aided Design 92 (2017) 1–10 3

Fig. 3. Selected steps in the additive layered manufacturing process planning: (a) slicing the triangle mesh, generating a set (b) of line segments on each plane, that are
connected into closed loops (c).

plane is organized into a set of closed loops, thus dispensing with
a separate contour construction step. McMains and Séquin claim
that their algorithm runs in O(n log n + m) time for objects with
simple topology (low constant genus) but may take Ω(n2) time
for objects with genus Ω(n). On the other hand, this algorithm
requires an input mesh with full topological (adjacency and inci-
dence) information, not just a set of triangles. Béchet et al. [13],
described an algorithm to recover the topology of the mesh from
an STL file, by using a binary tree in which the vertices are stored
and sorted; this approach runs in timeO(n log n) in the worst case.

An ideal algorithmwould retrieve only the set of triangles sliced
by each plane, and the amount of work should be linear on the size
of this set, that isO(n+k+m) rather thanO(nk). For uniformslicing,
the algorithm of Huang et al. [14] (2012) achieves this optimal
time complexity. However, this algorithm depends on the layer
thickness being constant to determine the planes that intersect a
given triangle, and thus cannot be applied to adaptive slicing.

2.2. Contour construction

The naive contour construction algorithm starts with an arbi-
trary segment s, from the input list S. That segment becomes the
first side of a new polygon. Then one looks for another segment r
in S that has an endpoint coincident with one endpoint of s. Such
a segment must exist if the input is a slice of a well-formed 2-
manifold mesh. Once such a segment is found, it is reoriented as
needed, and appended to the polygon; and the search is repeated
with r in place of s until obtaining a closed loop. Segments are re-
moved from S as they are processed. The entire process is repeated
to get additional contours until S is empty. When applied tom line
segments, this approach requires O(m2) time.

In 2003, Park [15] proposed to use the Bentley–Ottmann [16]
sweep line algorithm to solve the contour construction problem.
The general Bentley–Ottmann algorithm runs in O((m + p) logm)
time, wherem is the number of line segments and p the number of
intersections between those segments. If the only intersections are
the segment endpoints (as is the case for well-formed inputs), then
p = 2m. Thus the Bentley-Ottmann algorithm can be simplified,
and runs in O(m logm) time.

Zeng et al. [8] and Qi et al. [17] proposed to convert the STL
model into layers of grids by using layer depth normal image (LDNI)
sampling decomposition, that is, each object layer is sampled by
a set of parallel rays in order to obtain a list of points. Then, by
using the neighborhood information, the points are connected for
the contour construction. As described by the authors, depending
of the STL model, it may be required to adopt a high sampling
resolution to preserve sharp features.

Fig. 4. Attributes of a triangle.

3. The slicing algorithm

3.1. Statement of the problem

Formally, the input for the slicing problem is assumed to con-
sists of n triangles T = (T [1], T [2], . . . , T [n]), in arbitrary order;
and k slicing planes, perpendicular to the Z axis, defined by a list of
increasing z-coordinates P = (P[1], P[2], . . . , P[k]), with constant
spacing between them (for uniform slicing) or arbitrary spacing
(for adaptive slicing).

Each triangle T [j] is defined by three vertices T [j].v1, T [j].v2 and
T [j].v3. For a given triangle, the lowest and highest z-coordinates
of the vertices are referred to as T [j].zmin and T [j].zmax respectively.
See Fig. 4.

The output of the slicing problem is a list S[i], containing the
line segments generated by all triangles that intersect plane P[i].

Let ni be the number of triangles that intersect the plane at
z-coordinate P[i], and kj be the number of planes that intersect
triangle T [j]. Also, let n be the average of the counts ni and k be
the average of the counts kj, that is

n =
1
k

k∑
i=1

ni k =
1
n

n∑
j=1

kj. (1)

Then the output of the slicing problem consists of m = nk = kn
segments, resulting from the triangle–plane intersections.

In the slicing algorithm, we assume that the Z-coordinates of all
slicing planes are distinct from the Z-coordinates of all vertices.We
ensure this condition while reading the input model, by rounding
all vertex coordinates to even multiples of some basic unit ϵ (say,
0.005 mm) and all plane z-coordinates to odd multiples of ϵ. Then
a triangle T [j] intersects P[i] if and only if P[i] is strictly between
T [j].zmin and T [j].zmax. Note that coordinates can be rounded al-
ready in the input mesh file.

We also discard any triangle that has two or more coincident
vertices. Note that this clean-up does not change the set of points
of 3-space that lie on the mesh.



4 R. Minetto et al. / Computer-Aided Design 92 (2017) 1–10

Fig. 5. An example of triangle grouping by zmin (depicted by black dots) in step 3
of Algorithm 1. The resulting lists are: L1 = {t1}, L2 = { }, L3 = {t2, t3, t4, t5}, L4 =
{t6, t7}, L5 = { } and L6 = {t8}. After step 7 with i = 4, the sweeping plane is
assumed to lie between P3 and P4 , and the active set will be A = {t5, t3, t6, t7}.

3.2. The main algorithm

Our slicing algorithm (Algorithm 1) uses a sweeping plane
strategy similar to that of McMains and Séquin [5], but highly sim-
plified and optimized for unstructured triangle sets. The input data
consists of the list of triangles T , the list of plane z-coordinates P ,
the layer thickness δ, and a Boolean parameter srt . The parameter
δ should be positive (and an even multiple of ϵ) if the planes have
uniform thickness, that is P[i] = P[i− 1] + δ for all i ∈ {2, . . . , k};
otherwise, the parameter δ should be set to zero. The Boolean
parameter srt should be true if and only if the triangle list T is
already sorted by the zmin coordinates.

Algorithm 1
1: function Incremental-Slicing (n, T [1 . . . n], k, P[1 . . . k], δ, srt)
2: //Split the triangle list.
3: L[1 . . . k+ 1] ← build-triangle-lists (n, T , k, P, δ, srt);
4: //Perform a plane sweep.
5: A← { };
6: for i ∈ {1, . . . , k} do
7: A← A ∪ L[i];
8: S[i] ← ∅;
9: for each t ∈ A do
10: if t.zmax < P[i] then
11: A← A \ {t};
12: else
13: (q1, q2)← compute-intersection (t, P[i]);
14: S[i] ← S[i] ∪ {(q1, q2)};
15: end if
16: end for
17: end for
18: return S[1 . . . k];
19: end function

In step 3 of Algorithm 1, the input triangle list T [1 . . . n] is
partitioned into k + 1 lists of triangles L[1], L[2], . . . , L[k + 1],
where L[i] consists of all triangles whose zmin lies between the z-
coordinates P[i−1] and P[i]; P[0] and P[k+1] being assumed to be
−∞ and+∞, respectively. This step is shown in Fig. 5 and detailed
in Section 3.3.

In steps 6–17 we compute the triangle–plane intersections for
each plane. Specifically,we simulate themarch of a plane sweeping
the mesh, jumping from each slicing plane to the next. During the
simulation, we keep a set A of the active triangles, those that may
intersectwith the next slicing plane at coordinate P[i]. In step 7,we
add to the active set A all triangles that have zmin between P[i− 1]
and P[i]. In step 11,we remove from the setA those triangleswhose

zmax lies below P[i], since they will not generate any intersection
with that plane or any subsequent plane. The remaining triangles
of A intersect the slicing plane at P[i] at a non-trivial line segment,
because t.zmin < P[i] < t.zmax. In steps 13 and 14, the intersection
segment {q1, q2} is computed and stored in the list of segments S[i]
of that plane.

3.3. Grouping the triangles

The procedure Build-Triangle-Lists, Algorithm 2, is used by
Algorithm 1 (step 3) to split the list T into the lists L[1 . . . k +
1], according to the triangle’s zmin field. There are three cases to
consider: uniform slicing, non-uniform slicing of previously sorted
triangles, and non-uniform slicing of unsorted triangles.

In the uniform slicing case (steps 3–9), the index i of the cor-
rect list for each triangle t is computed directly from the t.zmin
coordinate, the Z-coordinate P[1] of the first plane, and the layer
thickness δ, as described by Huang et al. [14]. Otherwise, if the
input list T is already sorted by the zmin field, the split can be
done by a single merge-style simultaneous traversal of the lists
T and P (steps 10–17). Otherwise, the Binary-Search procedure
(Algorithm 3) is used to locate the correct list index i for each
triangle t (steps 18–23).

Algorithm 2
1: function Build-Triangle-Lists (n, T [1 . . . n], k, P[1 . . . k], δ, srt)
2: L[1 . . . k+ 1] ← { };
3: if δ > 0 then //Uniform slicing.
4: for each t ∈ T [1 . . . n] do
5: if (t.zmin < P[1]) then { i← 1; }
6: else if (t.zmin > P[k]) then { i← k+ 1; }
7: else { i← ⌊(t.zmin − P[1])/δ⌋ + 1; }
8: L[i] ← L[i] ∪ {t};
9: end for
10: else if srt then //Pre-sorted triangles.
11: j← 1;
12: for i ∈ {1, . . . , k} do
13: while (T [j].zmin < P[i]) and (j ≤ n) do
14: L[i] ← L[i] ∪ {T [j]};
15: j← j+ 1;
16: end while
17: end for
18: else //General case.
19: for each t ∈ T [1 . . . n] do
20: i← binary-search (k, P, t);
21: L[i] ← L[i] ∪ {t};
22: end for
23: end if
24: return L[1 . . . k+ 1];
25: end function

3.4. Complexity

It is easy to see that every step of the Incremental-Slicing algo-
rithm, except step 3, takes a total time that is at most proportional
to n, k, m or sums of these variables. Namely, step 7 is executed
k times, and adds to the active set A every triangle exactly once
(except those in L[k + 1]), so its total cost is O(n + k). Step 11
is executed at most once for each triangle, and steps 13 and 14
are executed once for each output segment, therefore their cost
are O(n) and O(m) respectively; and the cost of step 10 is then
O(n+m).We conclude that Incremental-Slicing, except for step 3,
runs in O(n+ k+m) time.

As for Build-Triangle-Lists, if the input list T is already sorted
by zmin, or if the plane coordinates are uniformly spaced, the output



R. Minetto et al. / Computer-Aided Design 92 (2017) 1–10 5

Algorithm 3
1: function Binary-Search (k, P[1 . . . k], t)
2: if t.zmin > P[k] then return k+ 1; end if
3: l← 0; //Lowest plane.
4: r ← k; //Highest plane.
5: while r − l > 1 do
6: //Here P[l] < t.zmin < P[r] and l+ r ≥ 2.
7: m← ⌊(l+ r)/2⌋;
8: if t.zmin > P[m] then
9: l← m;
10: else
11: r ← m;
12: end if
13: end while
14: return r;
15: end function

lists are built inO(n+k) time. Otherwise they can be built inO(n+
k) time plus the cost of n calls to Binary-Search (Algorithm 3),
which runs in O(log k) time. Therefore, the total cost of Build-
Triangle-Lists in this case is O(n log k+ k+ n).

We conclude that the cost of Incremental-Slicing, including
step 3, is O(n + k + m) for uniform slicing or non-uniform slicing
with pre-sorted triangles, or O(n log k+ k+m) otherwise.

The worst case cost in terms of n and k is when every triangle
intersects every plane. In that case, m = nk, which dominates the
other terms; so the time complexity is Θ(nk). Since the algorithm
must output all those nk segments, it is asymptotically optimal
even in that case.

An alternative way to build the lists L[1 . . . k+ 1] in the general
case would be to sort the n values t.zmin in O(n log n) time, and
then proceed as in the sorted case. With this approach, the time
complexity would be O(n log n + n + k), which may seem to be
an improvement when n < k. However, it is easy to verify that
n log n+ n+ k > n log k, if n < k. Therefore, the asymptotic bound
would still be the same.

3.5. Optimality

We now show that our Incremental-Slicing is optimal in the
asymptotic, output-sensitive, worst case sense. Consider the fol-
lowingmultipoint search problem P. Each instance of P consists of a
given list of k distinct real values u1, u2, . . . , uk sorted in increasing
order, and a given list of n real values v1, v2, . . . , vn in arbitrary
order, where each vj is distinct from all ui and is less than uk. The
solution of that instance is a table giving, for each j in {1 . . . n}, the
smallest i in {1 . . . k} such that vj < ui. See Fig. 6.

Suppose that the only operations performed on the values vj, ui
are comparisons. Note that there are kn possible outputs, requiring
log2(kn) = nlog2k bits of information to identify the correct output
for a given instance. Since each comparison between ui and vj has
only 2 possible outcomes, it provides at most 1 bit of information
about the input data. Therefore the number of comparisons must
be at least nlog2k. We conclude that any algorithm that solves
problem P using only comparisons, requires at least Ω(n log k)
operations. The same conclusion holds if the algorithm is allowed
to perform arbitrary tests on the values vj and ui, if the output of
each test has O(1) possible outcomes.

Now, given an instance (k, u, n, v) of problem P, construct the
following instance of the triangle slicing problem: for each ui, take
a slicing plane P[i]with z coordinate ui; for each vj, take a triangle
T [j] with zmin = vj and extending upwards until just above the
next slicing plane. Solving the slicing problem for planes P[1 . . . k]
and triangles T [1 . . . n] gives a solution to the instance (k, u, n, v)

of P. Since this problem requiresΩ(n log k) operations to solve, the
slicing problem too must require that much work.

Any algorithm that solves the slicing problemmust also output
k lists containing the m segments, therefore a lower bound for the
non-uniform slicing problem is Ω(n log k + k + m). We conclude
that Algorithm 1 is asymptotically optimal.

4. Contour construction

As explained in Section 3, the output of Algorithm 1 is a list
S[i] for each plane in i = {1 . . . k}, containing the line segments
where the plane at z-coordinate P[i] intercepts the triangles of the
mesh. The next step of the additive layered manufacturing process
planning is to assemble those segments into a set of closed poly-
gons (this step can also be executed in parallel with Algorithm 1,
between steps 16 and 17).

4.1. Statement of the problem

The input of the contour construction problem is a list S[i]
of q line segments, in arbitrary order and orientation, resulting
from the intersection of the input triangles with a plane P[i]. The
output is a set of r contours C = (C[1], . . . , C[r]) comprising
those segments. Each contour is a polygonwhose sides are some of
the input segments, joined and oriented head-to-tail; so that each
input segment is in exactly one contour.

If the input triangles (after rounding) are a well-formed mesh
(a closed oriented 2D manifold without self-intersections), those
chains will be a set of pairwise disjoint closed-loops, some of
them interior to the object, some of them exterior to it. In this
case, the endpoints of each segment are distinct, no two segments
intersect except at a single endpoint, and each endpoint belongs
to exactly two segments. However, if the input triangles are not a
well-formed mesh, there may be endpoints shared by any number
of segments. The number will be odd if and only if that endpoint
is on the free border of the input mesh. In this case, some of the
chains must be open polygons.

4.2. Description of the algorithm

Our proposal for this step is described by the Contour-
Construction procedure (Algorithm 4). We use a hash table [18]
to solve this problem in linear time. Each entry in the hash table
has a key, which is a single point u of the slicing plane that is the
endpoint of one or more segments; and a value, that is a pair (v, w)
of points such that {u, v} and {u, w} are endpoints of two segments.
See Fig. 7.

In step 3 of Algorithm 4, the function new-hash (q) creates a
hash table large enough to store q entries. In steps 5 and 6, the
function insert-hash is called (twice) to insert each segment with
endpoints u and v in the hash table H , with keys u and v respec-
tively. Specifically, the call insert-hash (H, u, v) first locates the
entry of H with key u. If there is no such entry, it creates one and
sets its value to (v, •), where • denotes an invalid (null) point. If
the entry already exists, its value must be (w, •), where w is some
other point; in that case, the value is replaced by (w, v).

In steps 14–25 of Contour-Construction, the contours are
built one by one, removing their vertices from H , until H be-
comes empty. Specifically, in step 11 the function choose-key(H)
is supposed to return the key u of an arbitrary entry in H , which
becomes the starting vertex p1 of the polygon. In step 12, the
function remove-key finds and removes the corresponding entry.
Note that, at this moment, each unprocessed vertex should have
two unprocessed neighbors. One of the two points in that entry is
arbitrarily chosen to be the second vertex of the loop. See Fig. 8(a).



6 R. Minetto et al. / Computer-Aided Design 92 (2017) 1–10

Fig. 6. An instance of the multipoint search problem P (a) and its solution (b).

Algorithm 4
1: function Contour-Construction (q, S[1 . . . q])
2: //Insert the segments into the hash table.
3: H ← new-hash (q);
4: for each (u, v) ∈ S do
5: H ← insert-hash (H, u, v);
6: H ← insert-hash (H, v, u);
7: end for
8: //Build the closed polygons.
9: r ← 0;
10: while number-of-entries(H) > 0; do
11: p1 ← choose-key (H);
12: (p2, last)← remove-entry (H, p1);
13: j← 2;
14: repeat
15: (u, v)← remove-entry (H, pj)
16: if u = pj−1 then
17: pj+1 ← v;

18: else
19: pj+1 ← u;
20: end if
21: j← j+ 1;
22: until pj = last;
23: r ← r + 1;
24: C[r] ← (p1, p2, . . . , pj);
25: end while
26: return C[1 . . . r];
27: end function

The algorithm then repeatedly finds and removes the two
neighbors u, v of the current last vertex pj (step 15), finds which
one is the next vertex, and extends the polygon with the new
vertex pj+1 (steps 16–21). See Fig. 8(b). This iteration stops when
the polygon is closed, that is, when the current last vertex pj is the
neighbor last of p1 that was not chosen in step 12 (step 22).

The next step in the process would be to identify the sense
(clockwise or counterclockwise) of each loop. The point-in-
polygon method proposed by Volpato et al. [19] could be used.

4.3. Complexity

Steps 5 and 6 of the contour construction algorithm call Insert-
Hash two times to create q entries in H . The entries are removed
from the hash table as they are used in steps 12 and 15, which
are therefore executed a total of q times. Statements 23 and 24 are
executed once for each contour, and therefore atmost ⌊q/3⌋ times.
For a well dimensioned hash table, the expected time to search
for, add, or remove an entry is O(1) [18]. Therefore, the total time
complexity of algorithm Contour-Construction is O(q).

Note that the sum of q over all slicing planes is the parameter
m of Section 3, the total number of triangle–plane intersections.
Therefore, the total cost of the chaining step, for all slices, is O(m).

5. Experiments

In order to evaluate the performance of our algorithms, we
determined its running time on the 13 STLmodels listed on Table 1.

Fig. 7. (a) A set of segments produced by the mesh slicing algorithm for one plane;
(b) the hash table built by our contour construction algorithm from those segments.

Fig. 8. (a) State of the Contour-Construction algorithm after step 12; (b) state just
before step 21.

For tests with uniform slicing, we used a fixed layer thickness
of 0.032 mm (as used by the Stratasys Eden 250 printer). For
tests with adaptive slicing, we varied the layer thickness randomly
between 0.016 mm and 0.032 mm.

The execution timesweremeasured on an Intel Core i7machine
(3.4 GHz) with 32 GB of RAM, 256K of cache L2 and 8 MB of cache
L3, running the Linux operating system (64 bits). The source code
of our algorithms (in C++) is publicly available on our website [20].

5.1. Slicing

In this section we compared the running times of our
Incremental-Slicing algorithm on the models of Table 1 with our
C++ implementation of the trivial slicing algorithm as described
by Park [15] and with the first part of the slice function included
in the open source 3D slicing engine Slic3r. The latter is limited to
uniform slicing. See Table 2 and Fig. 9.

On all models, and for both uniform and adaptive slicing, our
Incremental-Slicing algorithmwasmany times faster than Park’s
slicing, that was found to process about 200–250 million triangle–
plane pairs per second, but only 0.5 million actual segments per
second, on the largest models. For uniform slicing, our procedure
was slightly better than Slic3r, which is probably using an asymp-
totically optimal algorithm. Theywere found to process about 8–11
and 6–8 million items (triangles, planes, or segments) per second,
respectively.



R. Minetto et al. / Computer-Aided Design 92 (2017) 1–10 7

Table 1
STL models used in the experiments, showing the number of triangles (n), the number of planes (k), the average number of plane intersections per triangle (k), and the
total number of triangle–plane intersections (m).

STL name n Size (MB) Uniform slicing Adaptive slicing

k k m k k m

01. Liver [21] 38,142 6.4 6242 61.4 2,341,955 8327 81.9 3,125,518
02. Femur 42,150 11.4 3155 28.0 1,180,994 4206 37.4 1,575,271
03. Bunny 270,021 12.9 1547 5.8 1,561,262 2060 7.7 2,077,024
04. Demon [22] 935,236 44.6 3126 7.3 6,846,219 4168 9.8 9,134,486
05. Sphenoid 983,134 47.0 1971 3.9 3,839,399 2623 5.2 5,129,972
06. Rider [22] 1,281,950 61.1 849 1.2 1,569,364 1127 1.6 2,085,785
07. Tesla 2,296,928 110.0 4547 4.9 11,309,068 6062 6.6 15,172,446
08. Sphere [21] 3,060,992 146.0 6038 6.2 19,083,782 8055 8.3 25,484,004
09. Soldier [22] 3,394,041 161.8 2390 3.4 11,663,621 3183 4.6 15,555,765
10. Bear 6,248,232 298.0 3961 6.9 43,346,582 5280 9.3 57,836,973
11. Warrior [23] 8,852,207 422.1 307 0.1 912,739 405 0.1 1,220,672
12. Robot [23] 12,274,288 585.3 1011 0.6 6,879,612 1344 0.7 9,144,887
13. Skull 16,668,257 795.0 4680 10.9 182,441,957 6240 14.6 243,094,438

Table 2
Running times (in seconds) of our implementation of Park’s algorithm, the slice function of Slic3r, and our optimal
slicing algorithm, for uniform and adaptive slicing. The boldface values are the minimum running time in each row, for
each type of problem. The Slic3r software is limited to uniform slicing.

STL Uniform slicing Adaptive slicing

Park Slic3r Proposed Park Slic3r Proposed

01. Liver 1.28 0.32 0.10 1.76 — 0.17
02. Femur 0.53 0.16 0.05 0.79 — 0.09
03. Bunny 2.70 0.29 0.13 3.52 — 0.22
04. Demon 20.12 1.28 0.53 23.65 — 1.23
05. Sphenoid 7.73 0.61 0.29 10.15 — 0.59
06. Rider 6.37 0.54 0.33 8.51 — 0.64
07. Tesla 39.12 1.60 0.56 53.09 — 2.73
08. Sphere 91.70 2.75 0.97 121.50 — 4.82
09. Soldier 45.45 2.24 1.28 60.13 — 2.61
10. Bear 95.71 6.07 2.49 126.87 — 7.96
11. Warrior 13.21 0.54 0.64 17.52 — 1.47
12. Robot 60.11 1.59 1.25 79.81 — 3.47
13. Skull 389.80 24.54 17.42 519.03 — 40.29

Fig. 9. Running times of the three slicing algorithms (Park, Slic3r, Proposed) for uniform slicing (left) and adaptive slicing (right), on the STL models of Table 1, as a function
of the respective asymptotic complexity parameters (n+ k+m and n log k+ k+m, respectively).

Fig. 10 shows two examples of slicing contours computed with
our algorithm.

5.2. Contour-construction

In this section we compare the performance of our Contour-
Construction algorithm against: (1) the trivial algorithm (see Sec-
tion 2.2) thatwe implemented in C++; (2) the Bentley-Ottmann line
sweep algorithm [16], as suggested by Park [15], and implemented
by the CGAL [24] library in C++; and (3) the algorithm for contour
construction by the open source 3D slicing engine Slic3r [25]. We
executed the four algorithms on the models of Table 1, sliced with

uniformly spaced planes. The number k of planes and the number
m of segments found are given in Table 1. The running times are
shown in Table 3 and Fig. 11.

As shown in Table 3, the proposed hash-based algorithm is
significantly faster than the other three (except on the smallest
models). The running time was almost exactly linear in m, at the
rate of about 1.8 million segments per second.

Surprisingly, the Park algorithm, which uses the Bentley–
Ottmann algorithm and should have theoretical worst-case bound
O(m logm), was much slower than the Trivial algorithm, which
could take asymptotic time Ω(m2): the speeds were 20–100 thou-
sand and 103–460 thousand segments per second, respectively.



8 R. Minetto et al. / Computer-Aided Design 92 (2017) 1–10

Fig. 10. Samples of STL models (Femur and Soldier) and mesh slicing (layer thickness of 1.0 mm and 2.0 mm for illustration purposes).

Table 3
Running times (in seconds) for the four contour-construction algorithms (Trivial,
Park, Slic3r, and Proposed) applied to the result models of Table 1.

Model Trivial Park Slic3r Proposed

01. Liver 0.80 35.97 3.57 1.03
02. Femur 0.38 16.59 2.00 0.50
03. Bunny 1.23 22.00 8.51 0.65
04. Demon 11.77 140.77 69.49 2.93
05. Sphenoid 7.81 73.26 38.24 1.64
06. Rider 2.03 27.82 25.02 0.61
07. Tesla 23.16 238.59 213.04 4.76
08. Sphere 63.79 407.57 405.08 8.63
09. Soldier 46.69 275.14 176.06 5.09
10. Bear 417.50 1,507.52 530.49 19.66
11. Warrior 0.38 6.69 48.30 0.14
12. Robot 14.85 75.05 251.59 1.50
13. Skull 8,094.36 — 2,165.11 101.04

Fig. 11. Running times of the four chaining implementations (Trivial, Park, Slic3r,
and Proposed) for the result of uniform slicing of the STL models of Table 1, as a
function of the number of segmentsm.

The Park procedure even ran out of memory before completing
the large Skull model. We conjecture that the CGAL library has
introduced excessive overhead.

The trivial procedure was alsomuch faster than Slic3r, that typ-
ically processed about 50 thousand segments per second; except
for the two largest models, Bear (when they almost tied) and Skull
(when Slic3r was about 4 times faster).

5.3. Total running time

Table 4 shows the combined running times of the slicing and
contour construction steps of (1) our implementation of Park’s

Table 4
Total running times (slicing and contour-construction steps), in seconds, for Park’s
algorithm, the Slic3r software, and the proposed approach, for the models of
Table 1, with uniform slicing. The boldface values are the minimum running time
in each row.

Model Park Slic3r Proposed

01. Liver 37.25 3.89 1.13
02. Femur 17.12 2.16 0.55
03. Bunny 24.70 8.80 0.78
04. Demon 160.89 70.77 3.46
05. Sphenoid 80.99 38.85 1.93
06. Rider 34.19 25.56 0.94
07. Tesla 277.71 214.64 5.32
08. Sphere 499.27 407.83 9.60
09. Soldier 320.59 178.30 6.37
10. Bear 1603.23 536.56 22.15
11. Warrior 19.90 48.84 0.78
12. Robot 135.16 253.18 2.75
13. Skull — 2189.65 118.46

algorithm, (2) the Slic3r software, (3) and the implementation
of the proposed optimal algorithms Incremental-Slicing and
Contour-Construction. We executed the algorithms on themod-
els of Table 1, sliced with uniformly spaced planes.

As the table shows, our algorithmwas faster than the other two
for allmodels, sometimes by a large factor. For example, Slic3r took
almost 36 min to process the Skull model, while our program did
it in less than 2 min. For most models, and all three programs, we
observed that the contour construction phase took 80%–90% of the
total running time. We note that the discrepancy in the running
time for theWarrior and Robotmodels are due to the large fraction
of small triangles that are entirely contained in the space between
successive slicing planes. Fig. 12 shows the total running time of
our algorithm relative to those of Park’s algorithm and of Slic3r, for
each of those models.

6. Conclusions

This paper describes novel algorithms for the trianglemesh slic-
ing problem and the contour construction problem. The proposed
slicing algorithm uses a sweeping plane strategy highly simplified
and optimized for unstructured triangle sets. Its time complexity
is proportional to O(n log k + k + m), where n is the number of
triangles, k is the number of slicing planes, and m is the number
of triangle–plane intersections segments for arbitrary layer thick-
ness. The time complexity reduces to O(n + k + m) if the planes
are uniformly spaced or the triangles of the mesh are given in the
proper order.Weproved that this time complexity is optimal in the
asymptotic output-sensitive sense. For the contour construction
problem we develop an optimal (linear time) algorithm by using
a hash-based strategy. The algorithms were compared both theo-
retically and experimentally against known algorithms and were



R. Minetto et al. / Computer-Aided Design 92 (2017) 1–10 9

Fig. 12. Total running time of our algorithm, expressed as percentages, relative to the running times of Park’s algorithm and of Slic3r, for each of the models of Table 1 with
uniform slicing.

evaluated with several representative STL files. Specially, when
considering a large number of triangles, planes and intersections
(models with large z-height), a remarkable improvement in exe-
cution time was achieved in relation to other algorithms from the
literature. This is especially relevant in process planning for areas
such as medicine where meshes have a large number of triangles.

Acknowledgments

This work was partially supported by the National Coun-
cil for Scientific and Technological Development (CNPq), Grant
444789/2014-6 and Fundação Araucária. The basis for the trivial
slicing algorithm was given by Raveh Gonen.

References

[1] Chua CK, Leong KF, Lim CS. Rapid prototyping: Principles and applications. 3rd
ed., USA: World Scientific Publishing Co., Inc., River Edge, NJ; 2010.

[2] Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies: Rapid
prototyping to direct digital manufacturing. 1st ed., MA: Boston, Springer US;
2010.

[3] Kulkarni P, Marsan A, Dutta D. A review of process planning techniques in
layered manufacturing. Rapid Prototyping J 2000;6(1):18–35.

[4] Kirschman C, Jara-Almonte C. A parallel slicing algorithm for solid freeform
fabrication processes. In: Solid freeform fabrication symposium; 1992.
p. 26–33.

[5] McMains S, Séquin C. A coherent sweep plane slicer for layeredmanufacturing.
In: ACMsymposiumon solidmodeling and applications. USA: ACMPress, New
York, New York; 1999. p. 285–95.

[6] Pandey PM, Reddy NV, Dhande SG. Slicing procedures in layered manufactur-
ing: a review. Rapid Prototyping J 2003;9(5):274–88.

[7] Ma W, But W-C, He P. NURBS-based adaptive slicing for efficient rapid proto-
typing. Computer-Aided Design (CAD) - Elsevier 2004;36(13):1309–25.

[8] Zeng L, Lai LM-L, Qi D, Lai Y-H, YuenMM-F. Efficient slicing procedure based on
adaptive layer depth normal image. Computer-Aided Design (CAD) - Elsevier
2011;43(12):1577–86.

[9] Chalasani KL, Grogan BN. An algorithm to slice 3D shapes for reconstruction in
prototyping systems. In: ASME computers in engineering conference; 1991.
p. 209–16.

[10] Choi SH, Kwok KT. A tolerant slicing algorithm for layered manufacturing.
Rapid Prototyping J 2002;8(3):161–79.

[11] Vatani M, Rahimi AR, Brazandeh F. An enhanced slicing algorithm using near-
est distance analysis for layermanufacturing. ProcWorld Acad Sci Eng Technol
2009; (25):721–6.

[12] Tata K, Fadel G, Bagchi A, Aziz N. Efficient slicing for layered manufacturing.
Rapid Prototyping J 1998;4(4):151–67.

[13] Béchet E, Cuilliere J-C, Trochu F. Generation of a finite element MESH from
stereolithography (STL) files. Computer-Aided Design (CAD) 2002;34(1):1–17.

[14] Huang X, Yao Y, Hu Q. Research on the rapid slicing algorithm for NC milling
based on STL model. In: Asia simulation conference; 2012. p. 263–71.

[15] Park SC. Tool-path generation for Z-constant contour machining. Computer-
Aided Design (CAD) - Elsevier 2003;35(1):27–36.

[16] Bentley JL, Ottmann TA. Algorithms for reporting and counting geometric
intersections. IEEE Trans Comput 1979;C-28(9):643–7.

[17] Qi D, Zeng L, Yuen MMF. Robust slicing procedure based on Surfel-grid.
Comput-Aided Des Appl 2013;10(6):965–81.
http://dx.doi.org/10.3722/cadaps.2013.965-981.

[18] Cormen TH, Stein C, Rivest RL, Leiserson CE. Introduction to algorithms. 2nd
ed., McGraw-Hill Higher Education; 2001.

[19] Volpato N, Franzoni A, Luvizon D, Schramm J. Identifying the directions of a set
of 2D contours for additive manufacturing process planning. Int J Adv Manuf
Technol 2013;68(1–4):33–43.

[20] Minetto Rodrigo. An optimal algorithm for 3D triangle mesh slicing and
loop-closure; 2015. http://www.dainf.ct.utfpr.edu.br/%7erminetto/projects/
slicing/.

[21] ASCII Stereolithography Files. http://people.sc.fsu.edu/~jburkardt/data/stla/
stla.html. [Accessed April 2015].

[22] Turbosquid 3DModels. http://www.turbosquid.com. [Accessed February 2015].
[23] CG Trader. http://www.cgtrader.com. [Accessed April 2015].
[24] CGAL: The Computational Geometry Algorithms Library. http://www.cgal.

org/. [Accessed August 2015].
[25] Slic3r: G-code generators for 3D printers. http://slic3r.org/. [Accessed August

2015].

Rodrigo Minetto works mainly in image processing and
computer vision. He received the Ph.D. degree in computer
science in 2012 from University of Campinas, Brazil and
Université Pierre et Marie Curie, France. Since 2012 he is
an assistant professor at Federal University of Technology
- Paraná (UTFPR) - Brazil.

Neri Volpato is a senior lecturer at the Federal University
of Technology - Paraná (UTFPR) - Brazil, and works in the
area of Additive Manufacturing, CAD/CAM and CNC ma-
chining. He got his Ph.D. in 2001 at the University of Leeds,
UK, from the department of Mechanical Engineering.

Jorge Stolfi is a full professor at University of Campinas
(UNICAMP), Brazil. He received the Ph.D. degree in com-
puter science fromUniversity of Stanford, USA, in 1989. He
also worked as a research engineer at the Digital Systems
Research Center from 1989 to 1992. His research inter-
ests include natural language processing, computational
geometry, computer graphics, numerical analysis, image
processing, and applications.

http://refhub.elsevier.com/S0010-4485(17)30121-5/sb1
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb1
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb1
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb1
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb1
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb1
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb1
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb1
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb1
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb2
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb3
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb4
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb5
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb6
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb7
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb8
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb9
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb10
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb11
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb12
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb13
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb14
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb15
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb16
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://dx.doi.org/10.3722/cadaps.2013.965-981
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb18
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://refhub.elsevier.com/S0010-4485(17)30121-5/sb19
http://www.dainf.ct.utfpr.edu.br/%7erminetto/projects/slicing/
http://www.dainf.ct.utfpr.edu.br/%7erminetto/projects/slicing/
http://www.dainf.ct.utfpr.edu.br/%7erminetto/projects/slicing/
http://people.sc.fsu.edu/%7Ejburkardt/data/stla/stla.html
http://people.sc.fsu.edu/%7Ejburkardt/data/stla/stla.html
http://people.sc.fsu.edu/%7Ejburkardt/data/stla/stla.html
http://www.turbosquid.com
http://www.cgtrader.com
http://www.cgal.org/
http://www.cgal.org/
http://www.cgal.org/
http://slic3r.org/


10 R. Minetto et al. / Computer-Aided Design 92 (2017) 1–10

Rodrigo Gregori received the M.Sc. degree in computer
science in 2013 from Federal University of Technology
- Paraná (UTFPR) - Brazil. His research interests are com-
putational geometry, algorithms and additive manufac-
turing.

Murilo da Silvaworksmainly in algorithms and complex-
ity. He obtained his Ph.D. in computer science in 2008
at the University of Leeds, UK. Since 2010 is an assistant
professor at Federal University of Technology - Paraná
(UTFPR) - Brazil. Currently he is a visiting scholar at Simon
Fraser University, Canada.


	An optimal algorithm for 3D triangle mesh slicing
	Introduction
	Slicing
	Contour construction
	Mesh consistency
	Contributions
	Structure of the paper

	Related work
	Mesh slicing
	Contour construction

	The slicing algorithm
	Statement of the problem
	The main algorithm
	Grouping the triangles
	Complexity
	Optimality

	Contour construction
	Statement of the problem
	Description of the algorithm
	Complexity

	Experiments
	Slicing
	Contour-construction
	Total running time

	Conclusions
	Acknowledgments
	References


