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Abstract

A graph is even-hole-free if it has no induced even cycles of length 4 or more. A cap is
a cycle of length at least 5 with exactly one chord and that chord creates a triangle with
the cycle. In this paper, we consider (cap, even hole)-free graphs, and more generally,
(cap, 4-hole)-free odd-signable graphs. We give an explicit construction of these graphs.
We prove that every such graph G has a vertex of degree at most 3

2ω(G)− 1, and hence
χ(G) ≤ 3

2ω(G), where ω(G) denotes the size of a largest clique in G and χ(G) denotes
the chromatic number of G. We give an O(nm) algorithm for q-coloring these graphs for
fixed q and an O(nm) algorithm for maximum weight stable set, where n is the number of
vertices and m is the number of edges of the input graph. We also give a polynomial-time
algorithm for minimum coloring.

Our algorithms are based on our results that triangle-free odd-signable graphs have
treewidth at most 5 and thus have clique-width at most 48, and that (cap, 4-hole)-free
odd-signable graphs G without clique cutsets have treewidth at most 6ω(G) − 1 and
clique-width at most 48.

Keywords: even-hole-free graph, structure theorem, decomposition, combinatorial optimiza-
tion, coloring, maximum weight stable set, treewidth, clique-width

1 Introduction

In this paper all graphs are finite and simple. We say that a graph G contains a graph F , if F
is isomorphic to an induced subgraph of G. A graph G is F -free if it does not contain F , and
for a family of graphs F , G is F-free if G is F -free for every F ∈ F . A hole is a chordless cycle
of length at least four. A hole is even (respectively, odd) if it has an even (respectively, odd)
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number of vertices. A cap is a graph that consists of a hole H and a vertex x that has exactly
two neighbors in H, that are furthermore adjacent. The graph Cn is a hole of length n, and
is also called an n-hole. In this paper we study the class of (cap, even hole)-free graphs, and
more generally the class of (cap, 4-hole)-free odd-signable graphs, which we define later.

Let G be a graph. We use n to denote the number of vertices of G and m the number of
edges of G. A set S ⊆ V (G) is a clique of G if all pairs of vertices of S are adjacent. The size
of a largest clique in a graph G is denoted by ω(G), and is sometimes called the clique number
of G. We say that G is a complete graph if V (G) is a clique. We denote by Kn the complete
graph on n vertices. The graph K3 is also called a triangle. A set S ⊆ V (G) is a stable set
of G if no two vertices of S are adjacent. The size of a largest stable set of G is denoted
by α(G). A q-coloring of G is a function c : V (G) −→ {1, . . . , q}, such that c(u) 6= c(v) for
every edge uv of G. The chromatic number of a graph G, denoted by χ(G), is the minimum
number q for which there exists a q-coloring of G.

The class of (cap, odd hole)-free graphs has been studied extensively in literature. This
is precisely the class of Meyniel graphs, where a graph G is Meyniel if every odd length cycle
of G, that is not a triangle, has at least two chords. These graphs were proven to be perfect
by Meyniel [30] and Markosyan and Karapetyan [28]. Burlet and Fonlupt [5] obtained the
first polynomial-time recognition algorithm for Meyniel graphs, by decomposing these graphs
with amalgams (that they introduced in the same paper). Subsequently, Roussel and Rusu
[33] obtained a faster algorithm for recognizing Meyniel graphs (of complexity O(m2)), that
is not decomposition-based. Hertz [23] gave an O(nm) algorithm for coloring and obtaining
a largest clique of a Meyniel graph. This algorithm is based on contractions of even pairs.
It is an improvement on the O(n8) algorithm of Hoàng [24]. Roussel and Rusu [34] gave
an O(n2) algorithm that colors a Meyniel graph without using even pairs. This algorithm
“simulates” even pair contractions and it is based on lexicographic breadth-first search and
greedy sequential coloring.

Algorithms have also been given which find a minimum coloring of a Meyniel graph, but
do not require that the input graph be known to be Meyniel. A Meyniel obstruction is an
induced subgraph which is an odd cycle with at most one chord. A strong stable set in a graph
G is a stable set which intersects every (inclusion-wise) maximal clique of G. Cameron and
Edmonds [6] gave an O(n2) algorithm which for any graph, finds either a strong stable set or
a Meyniel obstruction. This algorithm can be applied at most n times to find, in any graph,
either a clique and coloring of the same size or a Meyniel obstruction. Cameron, Lévêque and
Maffray [7] showed that a variant of the Roussel-Rusu coloring algorithm for Meyniel graphs
[34] can be enhanced to find, for any input graph, either a clique and coloring of the same
size or a Meyniel obstruction. The worst-case complexity of the algorithm is still O(n2).

In [11], Conforti, Cornuéjols, Kapoor and Vušković generalize Burlet and Fonlupt’s de-
composition theorem for Meyniel graphs [5] to the decomposition by amalgams of all cap-free
graphs. This theorem is the basis for polynomial-time recognition algorithms for cap-free
odd-signable graphs and (cap, even hole)-free graphs. Since triangle-free graphs are cap-free,
it follows that the problems of coloring and of finding the size of a largest stable set are both
NP-hard for cap-free graphs. In [14], Conforti, Gerards and Pashkovich show how to ob-
tain a polynomial-time algorithm for solving the maximum weight stable set problem on any
class of graphs that is decomposable by amalgams into basic graphs for which one can solve
the maximum weight stable set problem in polynomial time. This leads to the first known
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non-polyhedral algorithm for the maximum weight stable set problem for Meyniel graphs.
Furthermore, using the decomposition theorems from [11] and [12], they obtain a polynomial-
time algorithm for solving the maximum weight stable set problem for (cap, even hole)-free
graphs (and more generally cap-free odd-signable graphs). For a survey on even-hole-free
graphs and odd-signable graphs, see [39].

Aboulker, Charbit, Trotignon and Vušković [1] gave an O(nm)-time algorithm whose
input is a weighted graph G and whose output is a maximum weighted clique of G or a
certificate proving that G is not 4-hole-free odd-signable. (The crux of this algorithm was
actually developed by da Silva and Vušković in [20].)

In Section 3, we give an explicit construction of (cap, 4-hole)-free odd-signable graphs,
based on [11] and [12]. From this, in Section 4, we derive that every such graph G has a
vertex of degree at most 3

2ω(G) − 1, and hence χ(G) ≤ 3
2ω(G). It follows that G can be

colored with at most 3
2ω(G) colors using the greedy coloring algorithm.

In Section 5, we prove that triangle-free odd-signable graphs have treewidth at most
5 and thus have clique-width at most 48 [15]. We also prove that (cap, 4-hole)-free odd-
signable graphs G without clique cutsets have clique-width at most 48 and treewidth at most
6ω(G)− 1.

In Section 6, we give an O(nm) algorithm for q-coloring (cap, 4-hole)-free odd-signable
graphs. We give a (first known) polynomial-time algorithm for finding a minimum coloring
of these graphs (chromatic number). We also obtain an O(nm) algorithm for the maximum
weight stable set problem for (cap, 4-hole)-free odd-signable graphs. We observe that the
algorithm in [14] proceeds by first decomposing the graph by amalgams, a step that takes
O(n4m) time (O(n2m) to find an amalgam [16], which is called O(n2) times) and creates
O(n2) indecomposable graphs. For each indecomposable graph, O(n) maximum weight stable
set problems must be solved, each of which can be done in O(n+m) time. Thus the overall
complexity of their algorithm is O(n4m). Finally, we observe that all our algorithms are
robust in the sense that we do not need to assume that the input graph is (cap, 4-hole)-free
odd-signable.

It is known that planar even-hole-free graphs have treewidth at most 49 [35]. We observe
that (cap, even hole)-free graphs are not necessarily planar. It is not hard to check that the
graph in Figure 1 is (triangle, even hole)-free and has a K5-minor.

The complexity of the stable set problem and of the coloring problem remain open for
even-hole-free graphs.

2 Odd-signable graphs

We sign a graph by assigning 0, 1 weights to its edges. A graph is odd-signable if there exists a
signing that makes the sum of the weights in every chordless cycle (including triangles) odd.
Even-hole-free graphs are clearly odd-signable: assign weight 1 to each edge. To characterize
odd-signable graphs in terms of excluded induced subgraphs, we now introduce two types of
3-path configurations (3PC’s) and even wheels.

Let x and y be two distinct vertices of G. A 3PC(x, y) is a graph induced by three
chordless xy-paths, such that any two of them induce a hole. We say that a graph G contains
a 3PC(·, ·) if it contains a 3PC(x, y) for some x, y ∈ V (G). The 3PC(·, ·)’s are also known
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Figure 1: A (triangle even hole)-free graph that has a K5-minor.

as thetas.
Let x1, x2, x3, y1, y2, y3 be six distinct vertices of G such that {x1, x2, x3} and {y1, y2, y3}

induce triangles. A 3PC(x1x2x3, y1y2y3) is a graph induced by three chordless paths P1 =
x1, . . . , y1, P2 = x2, . . . , y2 and P3 = x3, . . . , y3, such that any two of them induce a hole.
We say that a graph G contains a 3PC(∆,∆) if it contains a 3PC(x1x2x3, y1y2y3) for some
x1, x2, x3, y1, y2, y3 ∈ V (G). The 3PC(∆,∆)’s are also known as prisms.

A wheel, denoted by (H,x), is a graph induced by a hole H and a vertex x 6∈ V (H) having
at least three neighbors in H, say x1, . . . , xr. A subpath of H connecting xi and xj is a sector
if it contains no intermediate vertex xl, 1 ≤ l ≤ r. A wheel (H,x) is even if it has an even
number of sectors.

It is easy to see that even wheels, thetas and prisms cannot be contained in even-hole-free
graphs. In fact they cannot be contained in odd-signable graphs. The following characteriza-
tion of odd-signable graphs states that the converse also holds, and it is an easy consequence
of a theorem of Truemper [38].

Theorem 2.1 ([11]) A graph is odd-signable if and only if it does not contain an even wheel,
a theta or a prism.

3 Construction of (cap, 4-hole)-free odd-signable graphs

Let G be a graph and S ⊆ V (G). The subgraph of G induced by S is denoted by G[S], and
G \S = G[V (G) \S]. We say that S is a vertex cutset of G if G \S is disconnected. A clique
cutset of G is a vertex cutset that is a clique of G. Note that an empty set is a clique, and
hence every disconnected graph has a clique cutset. An graph with no clique cutset is called
an atom.

Let G = (V,E) be a graph and K ⊆ V a clique cutset such that G \K is a disjoint union
of two subgraphs H1 and H2 of G. We let Gi be the subgraph of G induced by V (Hi)∪K for
i = 1, 2. We say that G is decomposed into G1 and G2 via K, and call this a decomposition
step. We then recursively decompose G1 and G2 via clique cutsets until no clique cutset
exists. This procedure can be represented by a rooted binary tree TG where G is the root
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and the leaves are induced subgraphs of G that do not contain clique cutsets (that is, atoms
of G). Tarjan [37] showed that for any graph G, TG can be found in O(nm) time. Moreover,
in each decomposition step Tarjan’s algorithm produces an atom, and consequently TG has
at most n− 1 leaves (or equivalently atoms).

Let A and B be disjoint subsets of vertices of a graph G. We say that A is complete to B
if every vertex of A is adjacent to every vertex of B, and A is anticomplete to B if no vertex
of A is adjacent to a vertex of B. A vertex which is adjacent to all other vertices is called
universal.

A connected graph G has an amalgam (V1, V2, A1, A2,K) if the following hold:

• V (G) = V1 ∪ V2 ∪K, where V1, V2 and K are disjoint sets, and |V1| ≥ 2, |V2| ≥ 2.

• K is a (possibly empty) clique of G.

• For i = 1, 2, ∅ 6= Ai ⊆ Vi.

• A1 is complete to A2, and these are the only edges with one end in V1 and the other in
V2.

• K is complete to A1∪A2 (note that vertices of K may have other neighbors in V1∪V2).

A graph is chordal if it is hole-free. A graph is 2-connected if it has at least 3 vertices
and remains connected whenever fewer than 2 vertices are removed. A basic cap-free graph
G is either a chordal graph or a 2-connected triangle-free graph together with at most one
additional vertex, that is adjacent to all other vertices of G.

Theorem 3.1 ([11]) A connected cap-free graph that is not basic has an amalgam.

A module (or homogeneous set) in a graph G is a set M ⊆ V (G), such that 2 ≤ |M | ≤
|V (G)| − 1 and every vertex of V (G) \M is either adjacent to all of M or none of M . Note
that a module with 2 ≤ |M | ≤ |V (G)| − 2 (i.e. a proper module) is a special case of an
amalgam. A clique module is a module that induces a clique.

Let G be a 4-hole-free graph and (V1, V2, A1, A2,K) an amalgam of G. Without loss of
generality we may assume that A1 induces a clique, and hence either A1∪K is a clique cutset
or A1 is a proper clique module. So, Theorem 3.1 particularized to 4-hole-free graphs, and
the well-known fact that every chordal graph that is not a clique has a clique cutset, gives
the following decomposition.

Theorem 3.2 If G is (cap, 4-hole)-free graph, then either G has a clique cutset or a proper
clique module, or G is a complete graph or a (triangle, 4-hole)-free graph together with at
most one additional vertex that is adjacent to all other vertices of G.

We now give a complete structural description of (cap, 4-hole)-free graphs that do not
have a clique cutset, by considering the proof of Theorem 3.1 from [11] particularized to
4-hole-free graphs.

An expanded hole consists of nonempty disjoint sets of vertices S1, . . . , Sk, k ≥ 4, not all
singletons, such that for all 1 ≤ i ≤ k, the graphs G[Si] are connected and, for i 6= j, Si is
complete to Sj if j = i + 1 or j = i − 1 (modulo k), and anticomplete otherwise. We also
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say that G[S] is an expanded hole. Note that if an expanded hole is 4-hole-free, then Si is
a clique for every i = 1, . . . , k. The following statement can be extracted from the proofs of
Lemma 5.1 and Theorem 7.1 in [11].

Lemma 3.3 Let G be a (cap, 4-hole)-free graph. Suppose that S = ∪ki=1Si is an inclusion-
wise maximal expanded hole of G such that |S2| ≥ 2. Let U be the set of vertices of G that
are complete to S. Then G has an amalgam (V1, V2, A1, A2,K) where S2 = A2 and K ⊆ U .
In particular, either K ∪ S2 is a clique cutset or S2 is a proper clique module.

Let M be a proper clique module of a graph G. The block of decomposition of G with
respect to M is the graph G′ = G \ (M \ {u}), where u is any vertex of M . For a graph
G and a vertex u of G, we denote NG(u) (or N(u) when clear from context) by the set of
neighbors of u in G. Also N [u] = N(u) ∪ {u}. The degree dG(u) of u is |NG(u)|.

Lemma 3.4 Let M be a proper clique module of a graph G, and let G′ be the block of
decomposition with respect to this module. If G does not have a clique cutset, then G′ does
not have a clique cutset.

Proof: Suppose K is a clique cutset of G′. Let u be the vertex of M that is in G′. If u 6∈ K
then NG′(u) \K is in the same connected component of G′ \K as u, and hence K is a clique
cutset of G. If u ∈ K then M ∪K is a clique cutset of G. 2

Theorem 3.5 Let G be a (cap, 4-hole)-free graph that contains a hole. Let F be a maximal
vertex subset of V (G) that induces a 2-connected triangle-free graph, U the set of vertices of
V (G) \ F that are complete to F , D the set of vertices of V (G) \ F that have at least two
neighbors in F but are not complete to F , and S = V (G) \ (F ∪ U ∪D). Then the following
hold:

(i) U is a clique.

(ii) U is complete to D ∪ F .

(iii) If G does not have a clique cutset, then for every d ∈ D, there is a vertex u ∈ F and
D′ ⊆ D that contains d such that D′ ∪ {u} is a clique module of G. In particular, for
every d′ ∈ D′, N [d′] = N [u].

(iv) If G does not have a clique cutset, then S = ∅.

(v) If G does not have a clique cutset, F does not have a clique cutset.

Proof: Since G is 4-hole-free and F contains nonadjacent vertices, clearly U must be a clique,
and hence (i) holds.

Claim: For every d ∈ D, G[F ] contains a hole H such that G[V (H) ∪ {d}] is an expanded
hole of G.
Proof of the Claim: Let d be any vertex of D, and assume that there is no hole H contained
in G[F ] such that G[V (H) ∪ {d}] is an expanded hole. Note that G[F ∪ {d}] contains a
triangle d, x, y, for otherwise the maximality of F is contradicted. Since G[F ] is 2-connected
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and triangle-free, x and y are contained in a hole H of G[F ]. It is easy to see that since
G is cap-free and we are assuming that G[V (H) ∪ {d}] is not an expanded hole, it follows
that d is complete to V (H). Let F ′ be a maximal subset of F such that G[F ′] contains H, is
2-connected and d is complete to F ′. Since F 6= F ′ and both G[F ] and G[F ′] are 2-connected,
some z ∈ F \F ′ belongs to a hole H ′ that contains an edge of G[F ′]. As before, it follows that
d is complete to V (H ′), and hence F ′ ∪ V (H ′) contradicts the choice of F ′. This completes
the proof of the Claim.

By the Claim, every vertex d of D has two nonadjacent neighbors in F , and since G is
4-hole-free, it follows that every vertex of U is adjacent to d. Therefore, (ii) holds.

Now suppose that G does not contain a clique cutset. By the Claim and Lemma 3.3, (iii)
holds. Let D′ ∪ {u} be a proper clique module from (iii). Then the block of decomposition
with respect to this module is the graph G\D′. So by performing a sequence of clique module
decompositions, we get the graph G′ = G \ D. By Lemma 3.4, G′ does not have a clique
cutset. Suppose that S 6= ∅. Note that every vertex in S has at most one neighbor in F . Let
C be a connected component of G[S]. By the maximality of F , there is at most one vertex
in F , say y, that has a neighbor in C. So U ∪ {y} is a clique cutset of G′, a contradiction.
If no component of G[S] is adjacent to a vertex of F , then U is a clique cutset of G′, a
contradiction. Therefore, (iv) holds. Finally, suppose that F has a clique cutset K. Then by
(i) and (iv), K ∪ U is a clique cutset of G′, a contradiction. Therefore, (v) holds. 2

We say that the graph G′ is obtained from a graph G by blowing up vertices of G into
cliques if G′ consists of the disjoint union of cliques Ku, for every u ∈ V (G), and all edges
between cliques Ku and Kv if and only if uv ∈ E(G). This is also referred to as substituting
clique Ku for vertex u (for all u). The graph G′ is obtained from a graph G by adding a
universal clique if G′ consists of G together with (a possibly empty) clique K, and all edges
between vertices of K and vertices of G. Note that both of these operations preserve being
(cap, 4-hole)-free, i.e., G is (cap, 4-hole)-free if and only if G′ is (cap, 4-hole)-free.

Theorem 3.6 Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique
cutset. Let F be any maximal induced subgraph of G with at least 3 vertices that is triangle-
free and has no clique cutset. Then G is obtained from F by first blowing up vertices of F
into cliques, and then adding a universal clique. Furthermore, any graph obtained by this
sequence of operations starting from a (triangle, 4-hole)-free graph with at least 3 vertices
and no clique cutset is (cap, 4-hole)-free and has no clique cutset.

Proof: Let F ′ be a maximal 2-connected triangle-free induced subgraph of G that contains
F . By Theorem 3.5 (v), F ′ does not have a clique cutset, and hence F ′ = F . So the first
statement follows from Theorem 3.5. The second statement follows from an easy observation
that blowing up vertices into cliques and adding a universal clique preserves being (cap,
4-hole)-free and having no clique cutset. 2

Triangle-free odd-signable graphs were studied in [12] where the following construction
was obtained. A chordless xz-path P is an ear of a hole H contained in a graph G if
V (P ) \ {x, z} ⊆ V (G) \ V (H), vertices x, z ∈ V (H) have a common neighbor y in H, and
(V (H)\{y})∪V (P ) induces a hole H ′ in G. The vertices x and z are the attachments of P in
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H, and H ′ is said to be obtained by augmenting H with P . A graph G is said to be obtained
from a graph G′ by an ear addition if the vertices of G \ G′ are the intermediate vertices of
an ear of some hole H in G′, say an ear P with attachments x and z in H, and the graph G
contains no edge connecting a vertex of V (P ) \ {x, z} to a vertex of V (G′) \ {x, y, z}, where
y ∈ V (H) is adjacent to x and z. An ear addition is good if

• y has an odd number of neighbors in P ,

• G′ contains no wheel (H1, v), where x, y, z ∈ V (H1) and v is adjacent to y, and

• G′ contains no wheel (H2, y), where x, z are neighbors of y in H2.

The complete bipartite graph K4,4 with a perfect matching removed is called the cube.
Note that the cube contains 4-holes.

Theorem 3.7 (Theorem 6.4 in [12]) Let G be a triangle-free graph with at least three
vertices that is not the cube and has no clique cutset. Then, G is odd-signable if and only if
it can be obtained, starting from a hole, by a sequence of good ear additions.

4 Bound on the chromatic number

It is well-known that the class of (triangle, 4-hole)-free graphs has unbounded chromatic
number [25]. In [29] it is shown that (triangle, even hole)-free graphs have a vertex of degree
at most 2. We now show that (triangle, 4-hole)-free odd-signable graphs that contain at least
one edge have an edge whose ends each have degree at most 2. This will imply that every
(cap, 4-hole)-free odd-signable graph (and in particular every (cap, even hole)-free graph) G
has a vertex of degree at most 3

2ω(G) − 1, and hence that every graph in this class has a
proper coloring that uses at most 3

2ω(G) colors.

Theorem 4.1 Every (cap, 4-hole)-free odd-signable graph G has a vertex of degree at most
3
2ω(G)− 1.

Proof: Given a graph G, let us say that a vertex v of G is nice if its degree is at most
3
2ω(G) − 1. We prove that if G is a (cap, 4-hole)-free odd-signable graph, then either G is
complete or it has at least two nonadjacent nice vertices. Assume that this does not hold and
let G be a minimum counterexample.

Suppose that G has a clique cutset K. Let C1, . . . , Ck be the connected components of
G \K, and for i = 1, . . . , k, let Gi = G[Ci ∪K]. Since G is a minimum counterexample, for
every i, Gi is either a complete graph or it has at least two nonadjacent nice vertices. So
there is a vertex vi ∈ Ci that is nice in Gi, and hence in G as well. But then G has at least
two nonadjacent nice vertices, a contradiction. Therefore, G does not have a clique cutset.

This also implies that G cannot be chordal, since every chordal graph is either complete
or has a clique cutset. So, G contains a hole. Let F be a maximal induced subgraph of G
that is triangle-free and has no clique cutset. By Theorem 3.6, G is obtained from F by
blowing up vertices of F into cliques and adding a universal clique U . Note that if a vertex
u is nice in G \ U , then it is nice in G, and hence by the choice of G, U = ∅. For u ∈ V (F ),
let Ku be the clique that the vertex u is blown up into.
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Claim: If u1, u, v, v1 is a path of F such that u and v are each of degree 2 in F , then u or v
is nice in G.

Proof of the Claim: Since |Ku|+ |Kv| ≤ ω(G), we may assume that |Ku| ≤ 1
2ω(G). But then

dG(v) = |Ku|+ |Kv| − 1 + |Kv1 | ≤ 3
2ω(G)− 1. This completes the proof of the Claim.

By Theorem 3.7 we consider the last ear P in the construction of F . Say that P is an ear
of hole H and its attachments in H are x and z. Let y be the common neighbor of x and z
in H. Since P is a good ear, y has an odd number of neighbors in P . Let y1, . . . , yk be the
neighbors of y in P in the order when traversing P from x to z (so y1 = x and yk = z). Since
F is (triangle, 4-hole)-free, both the y1y2-subpath of P and the yk−1yk-subpath of P contain
an edge whose ends are each of degree 2. It then follows by the Claim that G has at least
two nonadjacent nice vertices, a contradiction. 2

Corollary 4.2 If G is a (cap, 4-hole)-free odd-signable graph, then χ(G) ≤ 3
2ω(G).

Proof: It follows immediately from Theorem 4.1. 2

Theorem 4.1 immediately gives a 3
2 -approximation algorithm for coloring (cap, 4-hole)-

free odd-signable graphs. The algorithm greedily colors a particular ordering of vertices
v1, v2, . . . , vn, where vi is a vertex of minimum degree in G[v1, . . . , vi]. It is clear that this
ordering of vertices can be found in O(n2) time. Therefore, Theorem 4.1 ensures that the
greedy algorithm properly colors the graph using at most 3

2ω(G) colors in O(n2) time.

5 Treewidth and clique-width

A triangulation T (G) of a graph G is obtained from G by adding edges until no holes remain.
Clearly, T (G) is a chordal graph on the same vertex set as G which contains all edges of G.
The treewidth of a graph G is the minimum of ω(T (G)) − 1 over all triangulations T (G) of
G. Treewidth k is equivalent to having a tree decomposition of width k, which is generally
used in algorithms. Bodlaender [3] gave an algorithm which for fixed k, recognizes graphs of
treewidth at most k, and constructs a width k tree decomposition; the algorithm is linear in
n = |V (G)| but exponential in k.

The clique-width of a graph G is the minimum number of labels required to construct G
using the following four operations: creating a new vertex with label i, joining each vertex
with label i to each vertex with label j, changing the label of every vertex labelled i to
j, and taking the disjoint union of two labelled graphs. A sequence of these operations
which constructs the graph using at most k labels is called a k-expression or clique-width
k-expression.

Treewidth and clique-width have similar algorithmic implications. Problems that can be
expressed in monadic second-order logic MSO2 can be solved in linear time for any class of
graphs with treewidth at most k [17]. Problems that can be expressed in the subset MSO1

of MSO2 which does not allow quantification over edge-sets can be solved in linear time for
any class of graphs of clique-width at most k [18]. Kobler and Rotics [27] showed that certain
other problems including chromatic number can be solved in polynomial time for any class
of graphs of clique-width at most k [27]. All these algorithms are exponential in k, and those
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using clique-width require a k-expression as part of the input. This latter requirement was
removed by Oum and Seymour [32] and then more efficiently by Oum [31], who gave an O(n3)
algorithm which, for any input graph and fixed integer k, finds a clique-width 8k-expression
or states that the clique-width is greater than k.

Corneil and Rotics [15] improved a result of Courcelle and Olariu [19] to show that the
clique-width of a graph G is at most 3×2tw(G)−1. Further, they construct, in polynomial time,
a k-expression of the stated size. Espelage, Gurski, and Wanke [21] gave an algorithm that
takes as input a tree decomposition with width k, and gives a clique-width 2O(k)-expression
[21] in linear time.

A chord of a cycle is called short if it creates a triangle with the cycle.

Theorem 5.1 Every triangle-free odd-signable graph has treewidth at most 5.

Proof: Let G∗ be a triangle-free odd-signable graph. Apply the clique cutset decomposition
algorithm to decompose G∗ into atoms. We will show that each atom is contained in a
chordal graph that has clique number at most 6. Gluing these chordal graphs together along
the clique cutsets used to decompose G∗ gives a chordal graph containing G∗ with clique
number at most 6, and this proves the theorem.

It is easy to check that the cube is contained in a chordal graph with clique number 4. So
we may assume that an atom G has at least 3 vertices and is not the cube. Then by Theorem
3.7, G can be obtained from a hole H by a sequence of good ear additions. Let P1, . . . , Pq be
the sequence of ears in the construction, with Pq being the last ear added. For each i, let Hi

be the hole Pi is attached to, let xi and zi be the attachments of Pi in Hi, and let yi be the
common neighbor of xi and zi in Hi.

We now obtain a triangulation T of G with clique number at most 6. We construct
T as follows. For each ear Pi, make xi, yi and zi complete to Pi \ {xi, zi}, and add the
edge xizi. Call the edges xizi type 1 edges. Choose any edge uv of H, and join u and v
to all the vertices of H \ {u, v}; call these type 2 edges. For each i, let Si = {xi, yi, zi},
Gi = G[V (H) ∪ V (P1) ∪ · · · ∪ V (Pi)] and Ti = T [V (H) ∪ V (P1) ∪ · · · ∪ V (Pi)].

Claim 1: For 1 ≤ j ≤ q, Sj is a clique cutset in T that separates Hj \ Sj from Pj \ Sj.

Proof of Claim 1: To prove the claim we prove by induction on i the following state-
ment: for 1 ≤ j ≤ i ≤ q, Sj is a cutset in Ti that separates Hj \ Sj from Pj \ Sj.

By construction, the statement clearly holds for i = 1. Let i > 1, and inductively assume
that for 1 ≤ j ≤ i−1, Sj is a cutset in Ti−1 that separates Hj \Sj from Pj \Sj . Suppose that
for some j ≤ i, Sj is not a cutset in Ti that separates Hj \ Sj from Pj \ Sj . Then clearly (by
construction), j ≤ i − 1. By the induction hypothesis, Sj is a cutset in Ti−1 that separates
Hj \ Sj from Pj \ Sj . Let CHj (respectively, CPj ) be the connected component of Ti−1 \ Sj
that contains Hj \ Sj (respectively, Pj \ Sj). Then, without loss of generality, xi ∈ CHj and
zi ∈ CPj . Since Hi is a hole of Gi−1 that contains xi and zi, and Sj is a cutset in Gi−1 which
separates xi and zi, and yj is adjacent to xj and zj , it follows that Hi ∩ Sj = {xj , zj}. So,
without loss of generality, yi = xj . But then since Hi ∪ {yj} cannot induce a theta in Gi−1,
(Hi, yj) is a wheel in Gi−1, which contradicts the fact that Pi is a good ear. This completes
the proof of Claim 1.
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Claim 2: T is chordal and ω(T ) ≤ 6.

Proof of Claim 2: By Claim 1, it suffices to show that T [H], and, for 1 ≤ i ≤ q,
T [V (Pi) ∪ {yi}] are all chordal and have clique number at most 6. Let G0 = G[H], and
observe that,
(*) since G is triangle-free, for every 1 ≤ i ≤ q, every interior vertex of Pi has at most one
neighbor in Gi−1.

Let H = v1, . . . , vk, v1, and without loss of generality we assume that u = v1 and v =
v2. Suppose C is a hole contained in T [H]. Since, by construction, {u, v} is complete to
V (H) \ {u, v}, V (C) ∩ {u, v} = ∅. Let vi be the smallest-indexed vertex of C. So i ≥ 3. It
follows that the edges of C are either edges of H or are of type 1 and hence, by the above
observation (*), are short chords of H. It follows by the choice of vi that vi+1 and vi+2 are
the neighbors of vi in C. But then vi+1vi+2 is a chord of C, a contradiction. Therefore T [H]
is chordal. Since the edges of T [V (H) \ {u, v}] are either edges of H or short chords of H,
ω(T [V (H) \ {u, v}]) ≤ 3, and hence ω(T [V (H)]) ≤ 5.

Now consider an ear Pi. Suppose that T [V (Pi)∪{yi}] contains a hole C. By construction,
Si is a clique of T [V (Pi)∪{yi}] that is complete to V (Pi)\{xi, zi}, and hence V (C)∩Si = ∅.
So V (C) ⊆ V (Pi) \ {xi, zi}. Recall that Pi is a chordless path in G, and that every edge of
T [V (Pi) \ {xi, zi}] that is not an edge of Pi is of type 1. Let xjzj be such a type 1 edge, and
suppose that yj is not a vertex of Pi. Then j > i. By the above observation (*), yj cannot
be an interior vertex of Pk where k > i. So yj is a vertex of Gi−1, and since the only vertex
of Gi−1 that can be adjacent in Gi to two interior vertices of Pi is yi, it follows that yj = yi.
Let H ′ be the hole obtained by augmenting Hi with Pi. Then the wheel (H ′, yj) is contained
in Gj−1 and contradicts Pj being a good ear. Therefore yj ∈ V (Pi), and so every type 1 edge
of T [V (Pi) \ {xi, zi}] is a short chord of Pi. This contradicts the assumption that C is a hole
of T [V (Pi) \ {xi, zi}]. Hence, T [V (Pi) ∪ {yi}] is chordal. Since T [V (Pi) \ {xi, zi}] consists of
edges of Pi and short chords of Pi, it follows that ω(T [V (Pi) \ {xi, zi}]) ≤ 3, and therefore
ω([V (Pi) ∪ {yi}]) ≤ 6. This completes the proof of Claim 2.

By Claim 2, it follows that there is a triangulation of G∗ with clique number at most 6,
and hence the treewidth of G∗ is at most 5. 2

As mentioned above, Corneil and Rotics [15] proved that the clique-width of a graph G
is at most 3× 2tw(G)−1, and so the following is a direct corollary of Theorem 5.1.

Corollary 5.2 Triangle-free odd-signable graphs have clique-width at most 48.

Theorem 5.3 If G is (cap, 4-hole)-free odd-signable graph with no clique cutset, then G has
clique-width at most 48.

Proof: Let G be a (cap, 4-hole)-free odd-signable graph with no clique cutset. Let U be the
set of universal vertices. We may assume that G \ U contains a hole, since otherwise G \ U
is a clique and so its clique-width is 2. Let F be a maximal induced subgraph of G \ U
that is triangle-free and has no clique cutset. By Theorem 3.6, G \ U is obtained from F by
substituting cliques for vertices of F . Since F is triangle-free odd-signable, it follows from
Corollary 5.2 that the clique-width of F is at most 48. Substituting a graph G2 for a vertex
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of a graph G1 gives a graph with clique-width at most the maximum of the clique-widths
of G1 and G2 [19], [22]. A clique of size at least 2 has clique-width 2. Thus it follows that
G \ U has clique-width at most 48. Adding a universal vertex to a graph with at least one
edge does not change the clique-width. Thus G has clique-width at most 48. 2

Theorem 5.4 If G is a (cap, 4-hole)-free odd-signable graph with no clique cutset, then G
has treewidth at most 6ω(G)− 1.

Proof: Let G be a (cap, 4-hole)-free odd-signable graph with no clique cutset. We may
assume that G contains a hole, since otherwise G is a clique and so the treewidth of G is
|V (G)| − 1 = ω(G) − 1. Let U be the set of universal vertices of G, and note that G \ U
has no clique cutset. Let F be a maximal induced subgraph of G \ U that is triangle-free
and has no clique cutset. By Theorem 3.6, G \ U is obtained from F by, for each vertex v,
substituting a clique Kv. Since F is triangle-free odd-signable, it follows from Theorem 5.1
that the treewidth of F is at most 5. In particular, there is a triangulation T of F with clique
number at most 6. We can obtain a triangulation T ′ of G \U by substituting the cliques Kv

for the vertices v of T . Each of these cliques Kv has size at most ω(G)− |U |, so the size of a
largest clique in T ′ is at most 6(ω(G) − |U |). We obtain a triangulation T ′′ of G by adding
to T ′ the clique U and joining every vertex of U to every vertex of T ′. The largest clique in
T ′′ has size at most 6(ω(G)− |U |) + |U | = 6ω(G)− 5|U | ≤ 6ω(G). Thus G has treewidth at
most 6ω(G)− 1. 2

6 Algorithms for coloring and maximum weight stable set

In this section, we give polynomial-time algorithms for maximum weight stable set, q-coloring
(that is, coloring with a fixed number q of colors), and chromatic number restricted to (cap,
4-hole)-free odd-signable graphs (and in particular, (cap, even hole)-free graphs). Our algo-
rithms will take the following general approach.

1. Decompose the input graph G via clique cutsets into subgraphs that do not
contain clique cutsets. These subgraphs are called atoms.

2. Find the solution for each atom using Theorems 3.6, 5.1, 5.3, 5.4.

3. Combine solutions to atoms along the clique cutsets to obtain a solution for G.

6.1 Clique cutset decomposition

Let k ≥ 1 be a fixed integer. Tarjan [37] observed that G is k-colorable if and only if each
atom of G is k-colorable. This implies that if one can solve q-coloring or chromatic number
for atoms, then one can also solve these problems for G. It is straightforward to check that
once a k-coloring of each atom is found, then it takes O(n2) time to combine these colorings
to obtain a k-coloring of G.
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In a slightly more complicated fashion, Tarjan [37] showed that once the maximum weight
stable set problem is solved for atoms, one can solve the problem for G. Let G = (V,E) be a
graph with a weight function w : V → R. For a given subset S ⊆ V , we let w(S) =

∑
v∈S w(v),

and denote the maximum weight of a stable set of G by αw(G). Suppose that G is decomposed
into A and B via a clique cutset S, where A is an atom. We now explain Tarjan’s approach.
To compute a stable set of weight αw(G), we do the following.

(i) Compute a maximum weight stable set I ′ of A \ S.
(ii) For each vertex v ∈ S, compute a maximum weight stable set Iv of A \N [v].
(iii) Re-define the weight of v ∈ S as w′(v) = w(v) + w(Iv)− w(I ′).
(iv) Compute the maximum weight stable set I ′′ of B with respect to the new weight w′.

If I ′′ ∩ S = {v}, then let I = Iv ∪ I ′′; otherwise let I = I ′ ∪ I ′′.
It is easy to see that αw(G) = w(I). This divide-and-conquer approach can be applied top-

down on TG to obtain a solution for G by solving O(n2) subproblems on induced subgraphs
of atoms, as there are O(n) decomposition steps and each step amounts to solving O(n)
subproblems as explained in (i)-(iv).

Therefore, it suffices to explain how to solve coloring and maximum weight stable set for
atoms of (cap, 4-hole)-free odd-signable graphs. We do this below.

6.2 Skeleton

We say that two vertices u and v of a graph G are true twins if NG[u] = NG[v]. In particular,
any pair of true twins are adjacent. It is clear that the binary relation on V (G) defined
by being true twins is an equivalence relation and therefore V (G) can be partitioned into
equivalence classes of true twins. Let U be the set of universal vertices of graph G; the
skeleton of G is the subgraph of G \ U induced by a set of vertices consisting of one vertex
from each equivalence class of true twins.

Let G be a (cap, 4-hole)-free odd-signable graph without clique cutsets. By Theorem 3.6,
G is obtained from a (triangle, 4-hole)-free induced subgraph F that has no clique cutset
by first blowing up vertices v ∈ V (F ) into cliques Kv, and then adding a (possibly empty)
universal clique U . The cliques Kv (v ∈ V (F )) and U are equivalence classes of true twins,
and F is the skeleton of G.

Our algorithm relies on finding equivalence classes efficiently. The following theorem is
left as an exercise in [36]. We give a proof. We say that a vertex u distinguishes vertices v
and w if u is adjacent to exactly one of v and w.

Theorem 6.1 Given a graph G with n vertices and m edges, one can find all equivalence
classes of true twins in O(n+m) time.

Proof: Suppose that V (G) = {v1, v2, . . . , vn}. We think of each vertex being adjacent to itself,
and consequently any vertex v does not distinguish v and any neighbor of v. The idea is to
start with the trivial partition P0 = {V (G)} and obtain a sequence of partitions P1, . . . ,Pn
of V (G) such that Pi is a refinement of Pi−1 and is obtained as follows: for each set S ∈ Pi−1,
we partition S into two subsets S′ = S ∩N [vi] and S′′ = S \ S′, and Pi = ∪S∈Pi−1{S′, S′′}.
It can be easily proved by induction that for each i it holds that (i) any pair of vertices in a
set S ∈ Pi are not distinguished by any of v1, . . . , vi; (ii) vertices from different sets in Pi are
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distinguished by one of v1, . . . , vi. Therefore, the equivalence classes of true twins are exactly
the non-empty sets in Pn.

It remains to show that this can be implemented in O(n+m) time. In the algorithm, we
do not actually maintain the sets in a partition. Instead, we use an array s[vi] to keep track
of which subset vi belongs to. Initially, we set s[vi] = 0 for all i and this takes O(n) time.
Then we do the following: for each 1 ≤ i ≤ n, we set s[u] = s[u] + 2i−1 for each u ∈ N [vi].
Clearly, this takes

∑
vi
O(d(vi)) = O(m) time. In the end, we group vertices with the same

s-value by scanning the array once and this takes O(n) time. Therefore, the total running
time is O(n+m). 2

In the following algorithms, we assume that G is the input graph. We first use Tarjan’s
algorithm to find TG in O(nm) time. For any atom A of G, we let nA and mA be the number
of vertices and the number of edges of A, respectively. By Theorem 6.1 we can find the
skeleton F of A, Kv and U in O(nA+mA) time. Therefore, it takes O(n)O(n+m) = O(nm)
time to find skeletons for all atoms of G. So, we fix an atom A and assume that the skeleton
F of A, Kv (v ∈ V (F )) and U are given.

6.3 Solving chromatic number using clique-width

It follows from Theorem 5.1 and Theorem 5.3 that F has treewidth at most 5 and clique-
width at most 48. We first find a tree decomposition of F with width at most 5 in linear
time by Bodlaendar [3], and then feed this decomposition into the algorithm of Espelage,
Gurski, and Wanke [21] which outputs in linear time a k-expression of F for some constant
k (k could be larger than 48). Then we construct from F , Kv (v ∈ V (F )) and U in linear
time a k-expression of G [19]. Finally, we find the chromatic number of A in polynomial
time by Kobler and Rotics [27]. We solve chromatic number for every atom of G in this way.
The total running time is dominated by Kobler and Rotics’s algorithm [27] which runs in

O(23k+1k2n2
2k+1+1) time.

6.4 Solving q-coloring using treewidth

We first find the clique number ω(G) of G in O(nm) time [1]. If ω(G) > q, then G is not
q-colorable, and we are done. Otherwise, ω(G) ≤ q and so every atom A also has ω(A) ≤ q.
By Theorem 5.4, the treewidth of A is at most 6q − 1. We then use Bodlaender’s algorithm
[3] to find a tree decomposition with width 6q − 1 in O(nA) time. Finally, q-coloring can be
solved in O(nA) time for A [4, 17]. Since there are O(n) atoms, the running time for find
all colorings of atoms is O(n)O(n) = O(n2). Recall that combining colorings of atoms can
also be done in O(n2) time, and so the total running time is dominated by finding TG and
skeletons, that is, O(nm).

6.5 Solving maximum weight stable set using treewidth

For maximum weight stable set, we let v′ ∈ Kv be the vertex with maximum weight among
vertices in Kv. Similarly, if U 6= ∅ then let u′ ∈ U be the vertex with largest weight among
vertices in U . Let F ′ = {u′} ∪ {v′ : v ∈ V (F )} if U 6= ∅, and F ′ = {v′ : v ∈ V (F )} if
U = ∅. Note that F ′ is obtained from F by adding at most one universal vertex. Moreover,
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the maximum weight of a stable set in A equals the maximum weight of a stable set in
F ′. It follows from Theorem 5.1 that F has treewidth at most 5, and so F ′ has treewidth
at most 6. Let SA be the clique cutset used in the decomposition step that yields A, and
n′A = |V (A \ SA)|. Recall that, for each atom A, we need to solve O(n) subproblems on
induced subgraphs of A \ SA. Each such subproblem can be solved in O(n′A) time by first
finding a tree decomposition with width at most 6 in O(n′A) time by Bodlaender [3], and
then solving maximum weight stable set in O(n′A) time [4]. Note that for two different atoms
A and B, the subgraphs of A for which the subproblems need to be solved are vertex-disjoint
from the subgraphs of B for which the subproblems need to be solved. This implies that it
takes O(n)

∑
A nA = O(n2) time to solve all these subproblems, where the summation goes

over all atoms of G. So, the total running time is dominated by finding TG and skeletons,
that is, O(nm).

An important feature of our algorithms is that they are robust in the sense that we do
not need to assume that the input graph is (cap, 4-hole)-free odd-signable. Our algorithms
either report that the graph is not (cap, 4-hole)-free odd-signable or solve the problems (in
which case the input graph may or may not be (cap, 4-hole)-free odd-signable): for any input
graph G, we find the skeleton F of each atom A of G and test if F has treewidth at most 5.
If for some atom, the answer is no, then G is not (cap, 4-hole)-free odd signable by Theorem
5.1; otherwise we use the above algorithms to solve coloring or maximum weight stable set.
Note that we can test if the treewidth is at most 5 in linear time [3], so this does not increase
the complexity of the algorithms.

6.6 Recognition

Even-hole-free graphs were first shown to be recognizable in polynomial time in [13]. Cur-
rently, the fastest known recognition algorithm for this class has complexity O(n11) [9]. In
[12], an O(n4) algorithm is given for recognizing triangle-free odd-signable graphs (and in
particular (triangle, even hole)-free graphs). In [11] an O(n6) algorithm is given for recog-
nizing cap-free odd-signable graphs (and in particular (cap, even hole)-free graphs). We now
show how to do this in O(n5)-time.

Lemma 6.2 There is an O(nm2) time algorithm to decide if a graph contains a cap.

Proof: We first guess an edge e = uv and a vertex w such that w is the vertex that is
adjacent to u and v which are in a hole not containing w. Clearly, there are m choices
for e and at most n choices for w. We then test if u and v are in the same component of
G′ = G \ ((N [w] \ {u, v}) ∪ (N(u) ∩N(v)) ∪ {e}). This can be done in O(n+m) time using
breadth-first search. Therefore, the total running time is O(m)O(n)O(n + m) = O(nm2).
The correctness follows from the fact that if there is a cap that consists of a hole H going
through u and v, and the vertex w that is not on H, then there must exist a uv-path in G′.
2

Lemma 6.3 Let G be a graph that contains a universal vertex u. Then G is odd-signable if
and only if G \ {u} is even-hole-free.
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Proof: Suppose that G is odd-signable. Then G does not contain thetas, prisms or even
wheels by Theorem 2.1. The fact that u is universal implies that G \ {u} is even-hole-free.
Conversely, if G \ {u} is even-hole-free, then clearly G has no even wheels. Furthermore,
G \ {u} has no prisms and thetas, as it is even-hole-free. Note that thetas and prisms do not
contain universal vertices, and so adding a universal vertex to G\{u} does not create a theta
or prism. This shows that G is odd-signable by Theorem 2.1. 2

Theorem 6.4 There exists an O(n5) time algorithm to decide if a graph is (cap, 4-hole)-free
odd-signable (resp. (cap, even hole)-free).

Proof: Let G be a graph. We first test if G contains a 4-hole using brute force, and this
takes O(n4) time. If G contains a 4-hole, then we stop. Therefore, we now assume that G
is 4-hole-free. Secondly, we apply Lemma 6.2 to see if G contains a cap in O(nm2) = O(n5)
time. If G contains a cap, we stop. So, we may assume that G is (cap, 4-hole)-free.

We then apply Tarjan’s algorithm to find the clique cutset decomposition tree TG in
O(nm) time. It is easy to see that G is odd-signable if and only if each atom is. For each
atom A, we find its skeleton F , Kv for v ∈ V (F ) and U in O(n + m) time by Theorem 6.1.
If U = ∅, then A is odd-signable if and only if F is odd-signable, since adding twin vertices
preserves being odd-signable; if U 6= ∅, i.e., A contains a universal vertex, then it follows from
Lemma 6.3 that A is odd-signable if and only if F is even-hole-free. We finally apply the
O(n4) time recognition algorithm from [12] for triangle-free odd-signable graphs or (triangle,
even hole)-free graphs to F depending on whether U is empty or not. If the algorithm returns
no for the skeleton F of some atom, then G is not odd-signable; otherwise G is odd-signable.
The running time for testing all atoms is O(n)O(n4) = O(n5). Therefore, the total running
time for recognizing (cap, 4-hole)-free odd-signable graphs is O(n5). Similarly, (cap, even
hole)-free graphs can be recognized with the same time complexity. 2

7 Open Problems

The bound given by Corollary 4.2 is attained by odd holes and the Hajós graph (see Figure
2). Note that these graphs have clique number at most 3. For graphs with large clique
number, we do not have an example showing that the bound is tight. Nevertheless, the
optimal constant is at least 5

4 . For any integer k ≥ 1, let Gk be the graph obtained from a
5-hole by substituting a clique of size 2k for each vertex of the 5-hole. Clearly, |V (Gk)| = 10k,

α(Gk) = 2 and ω(Gk) = 4k. Hence, χ(Gk) ≥ |V (Gk)|
α(Gk)

= 5k. Moreover, it is easy to see that

Gk does admit a 5k-coloring. So, χ(Gk) = 5k = 5
4ω(Gk). A natural question is whether or

not one can reduce the constant from 3
2 to 5

4 .

Problem: Is it true that χ(G) ≤ d54ω(G)e for every (cap, even hole)-free graph G?

It was shown in [10] that this is true for the class of (C4, P5)-free graphs, which is a
subclass of the class of (cap, even hole)-free graphs.

Even-hole-free graphs are also known to be χ-bounded. In [2] it is shown that every
even-hole-free graph has a vertex whose neighborhood is a union of two cliques. This implies
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Figure 2: The Hajós graph.

that if G is even-hole-free, then χ(G) ≤ 2ω(G)− 1. It remains open whether a better bound
is possible.

The complexity of 3-coloring, q-coloring, and minimum coloring is unknown for even-
hole-free graphs, 4-hole-free odd-signable graphs, and odd-signable graphs. Polynomial-time
algorithms for minimum coloring have been given for (diamond, even hole)-free graphs [26]
and (pan, even hole)-free graphs [8].

The clique covering problem is to find a minimum number of cliques which partition
the vertices of a graph. This problem is the same as finding a minimum coloring of the
complementary graph. The complexity of this problem is unknown for the following classes
of graphs: (cap, even hole)-free graphs, (cap, 4-hole)-free odd-signable graphs, 4-hole-free
odd-signable graphs, even-hole-free graphs, and odd-signable graphs.
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[7] K. Cameron, B. Lévêque and F. Maffray, Coloring vertices of a graph or finding a Meyniel
obstruction, Theoret. Comput. Sci. 428 (2012) 10-17.
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Recognition algorithm, Journal of Graph Theory 40 (2002) 238-266.

[14] M. Conforti, B. Gerards and K. Pashkovich, Stable sets and graphs with no even hole,
Math. Program., Ser. B 153 (2015) 13-39.

[15] D. G. Corneil and U. Rotics, On the relationship between clique-width and treewidth,
SIAM J. Comput. 34 (2005) no. 4, 825-847.
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[26] T. Kloks, H. Müller and K. Vušković, Even-hole-free graphs that do not contain dia-
monds: a structure theorem and its consequences, J. Combin. Theory Ser. B 99 (2009)
no. 5, 733800.

[27] D. Kobler and U. Rotics, Edge dominating set and colorings on graphs with fixed clique-
width, Discrete Appl. Math. 126 (2003) no. 2-3, 197-221.

[28] S. E. Markosjan and I. A. Karapetjan, Perfect graphs, Akad. Nauk Armjan. SSR. Dokl.
63 (1976) 292-296.

[29] S. E. Markossian, G. S. Gasparian and B. A. Reed, β-perfect graphs, Journal of Combi-
natorial Theory B 67 (1996) 1-11.

[30] H. Meyniel, On the perfect graph conjecture, Discrete Mathematics 16 (1976) 339-342.

[31] S. Oum, Approximating rank-width and clique-width quickly, ACM Trans. Algorithms 5
(2009) no. 1, Art. 10, 20 pp.

[32] S. Oum and P. D. Seymour, Approximating clique-width and branchwidth, Journal of
Combinatorial Theory, Series B, 96 (2006) no. 4, 514-528.

[33] F. Roussel and I. Rusu, Holes and dominoes in Meyniel graphs, Internat. J. Found.
Comput. Sci. 10 (1999) 127-146.

[34] F. Roussel and I. Rusu, An O(n2) algorithm to color Meyniel graphs, Discrete Mathe-
matics (2001) 107-123.

[35] A. Silva, A. A. da Silva and C. Linhares Sales, A bound on tree width of planar even-
hole-free graphs, Discrete Applied Mathematics 158 (12) 1229-1239.

[36] J. P. Spinrad, Efficient Graph Representations, American Mathematical Society, 2003.

[37] R. E. Tarjan, Decomposition by clique separators, Discrete Mathematics (1985) 221-232.

[38] K. Truemper, Alpha-balanced graphs and matrices and GF(3)-representability of ma-
troids, Journal of Combinatorial Theory B 32 (1982) 112-139.
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