
A randomness-efficient algorithm for sampling

quadratic residues modulo N

Nicollas M. Sdroievski Murilo V. G. da Silva
André L. Vignatti

March 7, 2020

Abstract

An indexing of a finite set S is a bijection D : {1, ..., |S|} → S. We
present an indexing for the set of quadratic residues modulo N that is
decodable in polynomial time in the size of N , given the factorization of
N . One consequence of this result is a procedure for sampling quadratic
residues modulo N , when the factorization of N is known, that runs in
strict polynomial-time and requires the theoretical minimum amount of
random bits (i.e., log (φ(N)/2r) bits, where φ(N) is Euler’s totient func-
tion and r is the number of distinct prime factors of N). A previously
known procedure for this same problem runs in expected (not strict) poly-
nomial time and requires more random bits.

1 Introduction

The problem of testing whether a number is a quadratic residue modulo a com-
posite N is believed to be computationally hard. Various cryptographic pro-
tocols rely on this hardness assumption [3, 4] and many applications, such as
the Goldwasser-Micali cryptosystem [7] require sampling uniformly distributed
quadratic residues modulo an integer N . Moreover, this problem plays an im-
portant role in computational complexity, in particular, being the first such
problem known to admit a zero-knowledge proof [6].

An encoding is a representation of objects from a finite set. Although there
are various ways of representing these objects, in this paper we are interested
in assigning, for each object, a positive integer in a given range. When this
range size is equal to the size of the set being encoded, we say that the encoding
is an indexing, the positive integer assigned to the object is an index, and the
procedure that, given an index, outputs the object, is a decoding procedure.

Some encodings are interesting even when the computation required for de-
coding is unfeasible or the corresponding set is infinite, such as the effective
enumeration of Turing Machines in [10]. By itself, the definition of an encoding
does not deal with the time complexity required to decode an index. But, it

1

is usually desirable for an encoding to be efficiently (i.e., polynomial-time) de-
codable. There are, however, some caveats on how to come up with a precise
definition for efficiency. Asymptotically, it makes sense to talk about ensembles
of encodings, each uniquely identified by a string x. So the polynomial time
requirement should be in function of the size of x. This is the schema used
in [2]. In Section 2.2 we provide precise definitions for such concepts.

In this paper we show an indexing for the set of quadratic residues modulo
N that is decodable in polynomial time in the size of N , when the factorization
of N is given. If such factorization is not given in the input, the procedure
can be seen as a non-uniform polynomial-time algorithm, such as a circuit that
has the factorization hardcoded. We note that in many applications regarding
quadratic residues, usually N = PQ for two primes P and Q. Nevertheless the
results presented here are applicable to any N ∈ N.

A consequence of the indexing presented here is the possibility of sampling
uniformly distributed quadratic residues modulo N in strict polynomial time
and requiring the theoretical minimum amount of random bits. A previously
known procedure for this same problem runs in expected (not strict) polynomial
time and requires more random bits [6].

2 Preliminaries

2.1 Number Theory

Define the set Z∗
N = {1 ≤ x ≤ N − 1 | gcd(x,N) = 1} for N ∈ N. Given

N and its prime factorization pk1
1 . . . pkr

r , the size of Z∗
N is given by Euler’s

totient function φ(N) =
∏r

i=1(pi − 1)pki−1
i . Z∗

N forms a group under modular
multiplication.

A quadratic residue modulo N is an integer z such that z ≡ x2 (mod N)
for an integer value of x. The set of quadratic residues modulo N is defined as
QR(N) = {z ∈ Z∗

N | ∃x ∈ Z∗
N s.t. z ≡ x2 (mod N)}. When z ≡ x2 (mod N)

for x ∈ Z∗
N , we call x a square root of z modulo N .

When N = n1n2 . . . nk, where each of the ni are pairwise coprime, the Chi-
nese Remainder Theorem establishes a group isomorphism between the groups
Z∗
N and the direct product Z∗

n1
×Z∗

n2
× · · · ×Z∗

nk
. This mapping is computable

in time o(log3N), since it requires running the Extended Euclidean Algorithm,
of time complexity o(log2N), at most k ≤ logN times (see for example [11, pp.
107-109]).

2.2 Coding Theory

There are various notions of encoding in coding theory. Following [2], we define
encodings from a set of integers to arbitrary sets via a decoder function D.
Given N ∈ N, let [N] be the set {1, 2, . . . , N}.

Definition 1. (encoding and indexing). Let S be a finite set. An encoding of
S is a function D : [I] → S such that for every s ∈ S there exists i ∈ [I] such

2

that D(i) = s. An indexing is an encoding with I = |S|.

An ensemble of encodings {Dx} is an infinite sequence of encodings, each
uniquely identified by a string x. As discussed in Section 1, we require the
decoding algorithm to run in polynomial time in the size of x.

Note that there may be a polynomial-time decoder algorithm that takes a
polynomial size extra information, which may not be computable in polynomial
time in the size of x. That is our case, since our decoding algorithm requires
knowledge of the factorization of N . This notion is captured by non-uniform
computation (algorithms that take advice or, equivalently, circuit families).

Following [2], we say that an ensemble of encodings {Dx} is decodable by
polynomial size circuits if for each x there is a circuit of size poly(|x|) that
computes Dx(i) for every i ∈ [Nx]. In the case where the function (x, i) 7→ Dx(i)
is (uniformly) computable in time poly(|x|), we call the ensemble uniformly
decodable in polynomial time. Note that there may be a different circuit for
each x that indexes the ensemble, which differentiates this definition from the
usual definition of circuit families, where there may be a different circuit for
each input size.

Examples of indexings that are uniformly decodable in polynomial time are
the Lehmer Code for permutations (see for example [8, pp. 12-13]) and the
encodings of cosets of permutation subgroups presented by [2]. An example
of an encoding that, up to this date, is decodable by polynomial size circuits
however is not known to be uniformly decodable in polynomial time is the one
implicit in the Encoding Lemma of [1].

3 Indexing Quadratic Residues

In this section we present our main contribution, an indexing for the set of
quadratic residues modulo any N ∈ N that is decodable by polynomial size cir-
cuits. In our demonstration we use several classical results regarding quadratic
residues that can be found in ([12, pp. 63-71]). Formally, we present an ensem-
ble of encodings {DN}, indexed by 〈N〉, the binary representation of a natural
number N , such that DN : [IN] → QR(N), where IN = |QR(N)|, that is
decodable by polynomial size circuits.

We now present Proposition 1 involving mixed radix encoding (for further
details see [9, pp. 327]).

Proposition 1. (Mixed Radix Encoding) Let x1, x2, . . . , xr and p1, p2, . . . , pr
be natural numbers such that xi < pi for 1 ≤ i ≤ r, also let N = p1p2 . . . pr.
There is a way to encode all of x1, x2, . . . , xr into a single natural w ∈ [N] such
that each xi can be recovered, given w and the values of p1, p2, . . . , pr, in time
o(log3N).

Note that since there are exactly p1p2 . . . pr = N possibilities for the values
of (x1, x2, . . . , xr), Proposition 1 actually establishes a bijection between [N] and
the possible values of (x1, x2, . . . , xr). We also present a restatement of Hensel’s
Lemma restricted to quadratic residues (see for example [5, pp. 179-183]).

3

Lemma 1. (Hensel’s Lemma, restated) Let p be a prime number and z ≡ x2
(mod p). For all k > 1, there exists y ∈ Z∗

pk , such that z ≡ y2 (mod pk) and

x ≡ y (mod p).

Next, in Theorem 1, we state our main result.

Theorem 1. There is an ensemble of encodings {DN}, indexed by 〈N〉, the
binary representation of a natural number N , such that DN : [IN] → QR(N)
for IN = |QR(N)|, that is decodable by polynomial size circuits.

First we present the general proof idea, then formalize it. We observe that
to retrieve a quadratic residue z ∈ QR(N) it suffices to know one square root
of z modulo each of the distinct prime powers dividing N . These square roots
can then be recombined through the Chinese Remainder Theorem to obtain a
square root x ∈ Z∗

N of z, which is then squared modulo N to obtain z.
If the factor is a power of 2, such as 2k, let y ∈ Z∗

2k be a square root of z
modulo 2k. In case k ≤ 3, there is only one quadratic residue, the number 1,
and we can hard code (on the decoder algorithm) y = 1 as a square root. When
k > 3, there is a square root y of z such that y < 2k−2 (since all such numbers
are incongruent modulo 2k when squared), and then there is only the need to
know the value c < 2k−3 such that y = 1 + 2c, since y is always odd.

On the other hand, if the factor is a power of an odd prime number pki
i , we

need to know a square root yi ∈ Z∗
p
ki
i

of z modulo pki
i . Modulo pi, there will

always be a square root xi of z such that xi ≤ (pi − 1)/2, in case ki = 1, this
information suffices. However, in case ki > 1, we need more information. In
this case, by Hensel’s Lemma, there exists a square root of yi modulo pki

i of z

such that xi ≡ yi (mod pi). Then we have yi = xi + cipi for ci < pki−1
i . It

suffices then to know both xi and ci to recover yi.

Proof. We present an encoding DN : [IN] → QR(N) for IN = |QR(N)| and
a polynomial size circuit that computes DN (Z) for an index Z ∈ [IN]. Let
N = 2kpk1

1 . . . pkr
r be the prime factorization of N , where k ≥ 0, each pi is a

distinct odd prime and ki ≥ 1 for all i. Also let z ∈ QR(N).
First we analyze the case where N is an odd number (i.e., k = 0). Let xi

and ci for 1 ≤ i ≤ r be the numbers in the discussion above. Also from the same
discussion, note that these values, together with the factorization of N , allow us
to recover the quadratic residue z. We encode the values of xi− 1, since xi ≥ 1,
and ci for all i into a single value Z ∈ [IN] using mixed radix encoding. Since
xi − 1 < (pi − 1)/2 and ci < pki−1

i for all i, we have

Z ≤
r∏

i=1

(
pi − 1

2

)
pki−1
i

=
1

2r

r∏
i=1

(pi − 1)pki−1
i

=
φ(N)

2r
,

4

which is precisely the size of QR(N) for odd N . This also applies for the case
where k ≤ 3, since the value of y is fixed to 1 by the algorithm, and there is no
need to store it in Z.

In case N is an even number and k > 3, we also encode into the value of Z
the value of c < 2k−3, and then

Z ≤ 2k−3
r∏

i=1

(
pi − 1

2

)
pki−1
i

=
1

2r+2
2k−1

r∏
i=1

(pi − 1)pki−1
i

=
φ(N)

2r+2
,

which, again, is precisely the size of QR(N) for even N divisible by 2k.
The final step of the proof is to show that the ensemble {DN} is decodable by

polynomial size circuits. We show that by providing a polynomial-time decoder
algorithm that receives as advice the complete factorization of N .

Decoder Algorithm - receives as advice the factorization of N = 2kpk1
1 . . . pkr

r

and as input an index Z ∈ [IN]

1: If 0 ≤ k ≤ 3, let y = 1.
2: Recover from Z the values of xi, ci (and c, when k > 3), using mixed radix

encoding together with the values of (pi − 1)/2 and pki−1
i for all i.

3: If k > 3, let y = 1 + 2c.
4: Let yi = xi + cipi for all i.
5: Recover x ∈ Z∗

N using the Chinese Remainder Theorem and the values of
yi for all i (and y when k > 3).

6: Output x2 (mod N)

Steps 2 and 4 require at most logN multiplications or divisions, which run
in time o(log2N). Steps 2 takes time o(log3N) by Proposition 1. Step 5 also
takes time o(log3N) to run the Chinese remainder algorithm. The other steps
are easily seen to be of lower time complexity. Therefore, the running time of
the decoder algorithm is bounded by o(log3N).

4 A Consequence of the Indexing

The usual way to sample uniformly distributed quadratic residues is to randomly
select a number x between 1 and N − 1, testing if gcd(x,N) = 1 (repeating
the process if the test fails), then squaring x modulo N . This procedure is
known to take expected polynomial time [6] and requires around logN random
bits to obtain a sample, more than the information theoretical minimum of
log (φ(N)/2r) for odd N with r distinct prime factors.

5

Using the indexing presented in this paper, one can sample quadratic residues
modulo N when the factorization of N is known by sampling a uniformly dis-
tributed number in [φ(N)/2r] and running the decoder algorithm, this requires
log (φ(N)/2r) random bits. This procedure attains the information theoretical
minimum amount of randomness required to sample a uniformly distributed
quadratic residue modulo N . Furthermore, this procedure allows for strict,
instead of expected, polynomial-time sampling of quadratic residues.

5 Conclusion and Open Problems

We have shown a non-uniform efficiently decodable indexing for the set of
quadratic residues modulo any natural N , when the factorization of N is known.
While our objective is mainly in the information theoretical aspects of quadratic
residues, there may be some practical consequences for sampling procedures. In
many applications where quadratic residues sampling is necessary, the factors of
N are already known [7, 3]. In such cases, our procedure for generating random
quadratic residues can be effectively applied.

It is a natural open question whether there exists an indexing that is uni-
formly and efficiently decodable. Since our construction relies on the knowledge
of the factorization of N , and given the difficulty of the factoring and quadratic
residuosity problems, it might be unlikely that such an indexing exists. Con-
sidering that, it would be interesting to directly relate the existence of such an
indexing to the difficulty of these problems. Note, however, that even if there
was such an indexing, it is not even clear whether it would allow for sampling
of quadratic residues without the need to factor N , since until now there is
no known efficient way to compute the size of QR(N), that currently relies on
knowing both φ(N) and the number of distinct prime factors of N .

6 Acknowledgements

The first author acknowledges a scholarship from the National Council for Sci-
entific and Technological Development (CNPq).

References

[1] Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher
Moore, and Andrew Morgan. Minimum circuit size, graph isomorphism,
and related problems. Technical Report TR17-158, Electronic Colloquium
on Computational Complexity (ECCC), 2017.

[2] Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher
Moore, and Andrew Morgan. Minimum Circuit Size, Graph Isomorphism,
and Related Problems. In Anna R. Karlin, editor, 9th Innovations in The-
oretical Computer Science Conference (ITCS 2018), volume 94 of Leib-

6

niz International Proceedings in Informatics (LIPIcs), pages 20:1–20:20,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[3] Lenore Blum, Manuel Blum, and Mike Shub. Comparison of two pseudo-
random number generators. In Advances in Cryptology: Proceedings of
CRYPTO ’82, pages 61–78. Plenum, 1982.

[4] Manuel Blum. Coin flipping by telephone a protocol for solving impossible
problems. SIGACT News, 15(1):23–27, January 1983.

[5] D. Eisenbud. Commutative Algebra: With a View Toward Algebraic Ge-
ometry. Graduate Texts in Mathematics. Springer, 1995.

[6] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, February 1989.

[7] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270 – 299, 1984.

[8] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison-Wesley., 1973.

[9] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[10] M. Li and P.M.B. Vitányi. An introduction to Kolmogorov complexity and
its applications. Springer-Verlag, 2 edition, 1997.

[11] K.H. Rosen. Elementary Number Theory and Its Applications. Pearson,
2011.

[12] W.C. Waterhouse, J. Brinkhuis, A.A. Clarke, C.F. Gauss, and C. Greiter.
Disquisitiones Arithmeticae. Springer New York, 1986.

7

