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A Minimum Vertex Cover is the smallest set of vertices whose removal completely dis-
connects a graph. In this paper we perform experiments on a number of graphs from

standard complex networks databases addressing the problem of finding a “good” vertex
cover (finding an optimum is a NP-Hard problem). In particular, we take advantage of
the ubiquitous power law distribution present on many complex networks. In our exper-
iments we show that running a greedy algorithm in a power law graph we can obtain

a very small vertex cover typically about 1.02 times the theoretical optimum. This is
an interesting practical result since theoretically we know that: (1) In a general graph
on n vertices a greedy approach cannot guarantee a factor better than lnn; (2) The

best approximation algorithm known at the moment is very involved and has a much
larger factor of 2−Θ( 1√

logn
). In fact, in the context of approximation within a constant

factor, it is conjectured that there is no (2−ϵ)-approximation algorithm for the problem;
(3) Even restricted to power law graphs and probabilistic guarantees, the best known

approximation rate is 1.5.
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1. Introduction

The study of large real world graphs, also commonly called complex networks,

grew enormously in last decade bringing together physicists, mathematicians, com-

puter scientists and many other researchers 1. In this area many experimental work
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has been performed by experimentalists 2,3,4,5,6,7 as well as a number of analytical

models have been proposed by the community akin to mathematics and theoretical

computer science 8.

A crucial point in this field is that many networks from different domains (social,

economic, technological and biological networks, etc) share some common proper-

ties. Some of the most notable common properties among a variety of complex

networks are small diameter (the “small world phenomenon”), the power law dis-

tribution (see Table 1 for a list with few examples of power law graphs according

to 10), high clustering coefficient among a few others 10,9.

In this paper, generally speaking, we are interested in the following (quite broad)

question: can we explore these properties common to most real world networks in

order to obtain more efficient algorithms for combinatorial optimization problems?

This is an interesting practical question that still has to be explored more thor-

oughly. In our work we pick a particular optimization problem, the Minimum Ver-

tex Cover, and conduct experiments taking advantage of one particular property

of complex networks: the Power Law Distribution. We define these concepts in the

next section.

Table 1. Examples of power law networks according to Barabasi and Bonabeau 8.

Networks Nodes # Links

Hollywood Actors Appearance in the same movie.
Internet Routers Optical and physical connections.
Protein regulatory network Proteins Interactions among proteins.
Research collaborations Scientists Co-autorship of papers.

Sexual relationships People Sexual contact.
World Wide Web Web pages URLs.
Celular Metabolism Molecules involved in burning Participation in the same

food for energy biochemical reaction

The main point in our work is that since power law graphs contain a few very

large “hubs”, i.e., vertices of very high degree, naturally one might expect that a

greedy approach (i.e., choosing first these hubs for the covering) would perform

well. Although this idea is obviously quite natural, the authors are not aware of

any experimental or analytical work to confirm this expectation. More importantly,

a question that has also not being answered – as far as we are aware – is how

well (quantitatively) a greedy algorithm would perform on real world power law

networks. We have run such experiments on a number of graphs from different

domains from standard complex networks databases and we obtained coverings very

close to the optimum, more precisely around 1.02 times the optimum (the larger

obtained value was 1.05). We present this and other related results on Section

4. In Sections 2 and 3 we define the problem and discuss how the experimental

results obtained in this paper relate to the theoretical guarantees for approximation

algorithms for the vertex cover problem.
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2. Power Law Graphs and Combinatorial Optimization

Barabasi and Albert 10 and also others 8 observed that in many real-world graphs,

the vertex degree sequence has a power law distribution, i.e., the fraction of vertices

with degree d is proportional to d−λ, where λ is a constant independent of the size

of the graph. The authors modelled such real world networks using a preferential at-

tachment scheme which became well known in the field. Other researchers proposed

a number of other different approaches to model such networks 8. Experimental

work in the field had pointed the λ mentioned above is 2.9± 0.1 and Bollobás et al
11 in 2001 presented an analytical argument pointing that such parameter is in fact

3. In our paper we will use the common designation “Power Law Graph” for graphs

with such distribution for the vertex degree sequence. In Figure 1 we give two ex-

amples the of vertex degree distribution from networks used in our experiments.

(a) Cpan authors (log-log plot) (b) Cpan authors (binned log-log plot)

(c) Oclinks (log-log plot) (d) Oclinks (binned log-log plot)

Fig. 1. Vertex degree distribution. The x-axis is the degree distribution from 0 to maximum value
and the y-axis is the number of vertices of such degree.

In the light of the fact that many networks from real world are in fact power law

graphs, many researchers in the field have been exploring this property structurally

and algorithmically 12,13,14. Recently, some work also has been done on power law
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graphs aiming to lower the average factor of approximation algorithms for NP-

hard combinatorial problems 15,16,17. To be more precise, in the case of the vertex

cover problem, although it is believed that 2 is the smallest constant factor for

an approximation algorithm, in the particular case of power law graphs, Gast and

Hauptmann proposes an algorithm which outputs an expected vertex cover not

larger than 1.5 times the optimum 15. These analytical results are exactly in line

with what we propose experimentally in this paper. In particular, we show that in

practice simpler algorithms can achieve much smaller factors of approximation.

3. The vertex cover problem

A cover in a graph is a set of vertices whose removal completely disconnects a grapha.

A Minimum Vertex Cover is a smallest set with such property. Figure 2 depicts an

example of a minimum vertex cover in a graph. This problem is a classical NP-Hard

problem 18 which remains intractable even for cubic graphs and planar graphs with

maximum degree at most three 18. Therefore approximation algorithms for finding

“good” solutions in polynomial time are of great interest. We discuss in the next

section the two most common approximation approaches in this direction.

(a) Graph G with 15 vertices and 20 edges (b) The minimum vertex cover of G is the set of
highlighted vertices.

Fig. 2. Example of a Minimum Vertex Cover of a graph G: If the set of vertices highlighted in
(b) are removed from G, the resulting graph has no edges.

aA completely disconnected graph is a graph with no edges. Alternatively a vertex cover S is a set
of vertices such that every edge in the graph has an end in S.
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3.1. Simple ideas for approximation algorithms

• Greedy Algorithm: Given a graph G, pick the vertex v with the highest

degree and insert it in the cover S and remove v from G. Repeat the same

strategy in the remaining graph iteratively until there are no more edges.

Such approach always finds a vertex cover S such that |S| is at most lnn

times the optimum, where n is the number of vertices in input graph G.

For a general graph this upper bound is tight 19.

• 2-Approximation Algorithm: Given a graph G, pick an arbitrary edge

uv, insert uv in the set M and remove both u and v from G. Repeat the

same strategy in the remaining graph iteratively until there are no more

edges b. In the next step include in the vertex cover S both ends of each

edge in the set X. This approach leads to a cover S of size at most twice

the optimum 19 (i.e., this is an approximation algorithm with factor 2).

The 2-approximation algorithm presented above is known for about 40 years

and it is one of the best known until now for general graphs 20. It is known

that no algorithm can guarantee a factor better than 1.36 21 (unless P=NP). In

fact it is conjectured an even stronger assertion: For any constant ϵ, there is no

(2− ϵ)-approximation algorithm for the problem 22. Furthermore, even for non con-

stant guarantees, very small improvements on the factor 2 require very involved

algorithms. At the moment the best known approximation algorithm, proposed by

Karakostas 23, has a factor of 2−Θ( 1√
logn

) which is much larger than the numbers

that we obtained experimentally using the greedy approach.

In the domain of power law graphs, Gast and Hauptmann recently proposed an

algorithm and proved that it outputs on average a vertex cover of size 1.5 times the

optimum on the (α, β)-model of power law graphs proposed by Aiello 15. This result

is the only one that we found on the topic of vertex cover in power law graphs.

4. Results for Real Networks and Discussion

In this section we present our experimental results addressing the minimum vertex

cover problem on 25 power law complex networks from well known graph databases
24,25,26. The size of the networks range from a few hundred to about 75000 vertices.

In 15 of these networks we had the value of the optimum cover for comparison. In

these 15 networks our experiments show that a greedy approach outputs a typical

vertex cover of size around 1.02 times the optimum. The size of the coverings found

by the greedy algorithm are shown in the column named Greedy in Table 2 and the

rate of approximation in the column named Greedy/Opt in Table 3. Theoretically a

greedy approach can output results with a factor as bad as lnn, so the point here

bNote that at the end of this process M is a maximal matching in G, i.e., M is a set of edges in

G such that for every distinct e, e′ ∈ M , edges e and e′ have no endnodes in common and there is
no other set of edges M ′ in G such that M ⊂ M ′.
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is of course that such “obstructions” which would bring to a larger approximation

factor are not typical in power law graphs. So for that reason in practice the greedy

approach does very well.

We also implemented the 2-approximation algorithm discussed in the section

3.1 and obtained significantly worst results than the greedy algorithm. A typical

vertex covering obtained by the 2-approximation algorithm was around 1.56 times

the optimum. Again, these results were obtained from the 15 graphs for which we

had the optimum for comparison. These results are presented in Tables 2 and 3.

We note that we ran both the greedy algorithm and the 2-approximation algorithm

on all 25 networks (i.e., not only on the networks where we had the optimum for

comparison) and the results pointed that the greedy approach obtained a typical

vertex cover of size 0.66 times the size of the competing algorithm. These results are

presented in the column named Greedy / 2-App in Table 3. We included Table 4 to

refer to the well known databases from where the networks used in our experiments

were obtained. For the sake of completeness we also included the number of edges

for each network.

In order to obtain the optimum value for the vertex cover, we used the well

known SAGE Library 27. We managed to obtain minimum coverings for graphs up

to about 10000 vertices, but for the 10 largest graphs we were not able to obtain

these values due to the exponential nature of the algorithm. It is still somewhat sur-

prising that the optimum value could be computed for graphs sizing almost 10000

vertices. So it is very important to point out that although the optimum algorithm

is exponential, due to the intricate process in which particular graphs are explored,

successful executions for relatively large data were possible c.

Finally, we would like to add two remarks: (1) In the literature of complex

networks, in particular in the context of network robustness, some authors refer to

the sequence of vertices obtained by the greedy strategy described in this paper as

high degree adaptive attack 28. (2) In a final note, as we have mentioned before, in

our experiments we also computed the ratio between the size of the cover obtained

by the greedy algorithm divided by the size of the cover cover obtained by the 2-

approximation algorithm and the results show that the cover obtained by the greedy

algorithm is about 66% of the size of the other approach (Table 3). It should also

be pointed that this number seems to be invariant to the size of the graph. This

fact might give us some indication that even for the 10 largest graphs (for which

the optimum values were not available for comparison) the size of the coverings

obtained by the greedy algorithm might still be very close to the optimum as well.

cWe ran our experiments on a R710 DELL sever running a Intel Xenon Quad Core 5500 y 5600

and a 60GB Swap Memory + 12GB Physical Memory. The smallest graph for which the SAGE
exponential approach “crashed” was running for about 12 hours and stopped due to lack of memory



Vertex Cover in Complex Networks:Experimental Results 7

Table 2. Algorithms for Vertex Cover in Complex Networks: (1) First column is the ID of

the graph. We use it to refer to the same graphs on other tables. (2) Second column is the
name of the file available on the databases. (3) Third column is the number of vertices of the
network. (4) Forth column is the size of the minimum vertex cover. We used the algorithm
from SAGE Library for computing these values. Data for larger graphs could not be obtained

due to the exponential nature of the algorithm (see section 4 for details). (5) Fifth column is
the vertex cover obtained by the greedy algorithm implemented by us. (6) Sixth column is
the vertex cover obtained by the 2-approximation algorithm implemented by us. (7) Seventh
column indicates the type of the network.

Net ID Network file # of vertices Opt Greedy 2-Aprox Network type

1 Airlines 235 96 97 146 Technological

2 US Air 332 149 151 230 Technological
3 Codeminer 724 191 196 334 Social Net.
4 Cpan authors 839 116 117 196 Social Net.

5 EuroSis 1285 597 608 896 Information
6 Oclinks 1899 749 763 1100 Information
7 YeastS 2284 763 773 1240 Biologic
8 CA-GrQc 5241 2783 2795 3960 Citation

9 p2p-Gnutella08 6301 2054 2070 3366 Communication
10 Wiki-Vote1 7115 2249 2370 3460 Social Net.
11 p2p-Gnutella09 8114 2574 2589 4238 Information
12 p2p-Gnutella06 8717 3405 3484 5352 Information

13 p2p-Gnutella05 8846 3428 3475 5412 Information
14 CA-HepTh 9875 4981 5003 7240 Citation
15 p2p-Gnutella04 10876 4348 4428 6624 Collaboration
16 CA-AstroPh 18771 n.a 12044 15194 Collaboration

17 p2p-Gnutella25 22687 n.a 6055 9800 Information
18 CA-CondMat 23133 n.a 13561 18150 Collaboration
19 p2p-Gnutella24 26518 n.a 7250 11624 Information

20 Cit-HepTh 27769 n.a 18225 23396 Citation
21 p2p-Gnutella30 36682 n.a 9321 15096 Information
22 Email-Enron 36692 n.a 14477 20674 Communication
23 Brightkite-edges 58228 n.a 22177 34814 Social Net.

24 p2p-Gnutella31 62586 n.a 15864 25582 Information
25 soc-Epinions1 75879 n.a 22418 35964 Social Net.
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Table 3. (1) First column is the graph ID. (2)

Second column shows the rate of approximation
obtained by the greedy algorithm (i.e., the value
obtained by the algorithm divided by the opti-
mum). (3) Third column shows the rate of ap-

proximation obtained by the 2-approximation. (4)
Forth column shows the size of the cover ob-
tained by the greedy algorithm divided by the
size of the cover obtained by the 2-approximation.

In the bottom of the table we include the aver-
age and the standard deviation for each column.

ID Greedy 2-App Greedy
/Opt /Opt /2-App

1 1,01 1,52 0,66

2 1,01 1,54 0,66
3 1,03 1,75 0,59
4 1,01 1,69 0,60
5 1,02 1,50 0,68

6 1,02 1,47 0,69
7 1,01 1,63 0,62
8 1,00 1,42 0,71
9 1,01 1,64 0,61

10 1,05 1,54 0,68
11 1,01 1,65 0,61
12 1,02 1,57 0,65
13 1,01 1,58 0,64

14 1,00 1,45 0,69
15 1,02 1,52 0,67
16 n.a n.a 0,79

17 n.a n.a 0,62
18 n.a n.a 0,75
19 n.a n.a 0,62
20 n.a n.a 0,78

21 n.a n.a 0,62
22 n.a n.a 0,70
23 n.a n.a 0,64
24 n.a n.a 0,62

25 n.a n.a 0,62

average 1,02 1,56 0,66
st. dev. 0,01 0,09 0,05

Table 4. In this table we indicate the
databases from where networks were

obtained. For the sake of completeness
we also include the size of the ver-
tex set and edge set for each network.

ID Database Vertices Edges
1 Gephi 235 1295
2 Pajek 332 2126
3 Gephi 724 1015

4 Gephi 839 2112
5 Gephi 1285 6462
6 Gephi 1899 13821

7 Pajek 2284 6646
8 Stanford 5241 14484
9 Stanford 6301 20776
10 Stanford 7115 100729

11 Stanford 8114 26013
12 Stanford 8717 31523
13 Stanford 8846 31837
14 Stanford 9875 25973

15 Stanford 10876 39993
16 Stanford 18771 198050
17 Stanford 22687 54705
18 Stanford 23133 93439

19 Stanford 26518 65368
20 Stanford 27769 352285
21 Stanford 36682 88328
22 Stanford 36692 183811

23 Stanford 58228 214023
24 Stanford 62586 147890
25 Stanford 75879 404953
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