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Abstract
Given a network N and a set of nodes that are the starting point for the spread of misinformation across N and an integer k, 
in the influence blocking maximization problem the goal is to find k nodes in N as the starting point for a competing infor-
mation (say, a correct information) across N such that the reach of the misinformation is minimized. In this paper, we deal 
with a generalized version of this problem that corresponds to a more realistic scenario, where different nodes have different 
costs and the counter strategy has a “budget” for picking nodes for a solution. Our experimental results show that the success 
of a given strategy varies substantially depending on the cost function in the model. In particular, we investigate the cost 
function implicitly used in all previous works in the field (i.e., all nodes have cost 1), and a cost function that assigns higher 
costs to higher-degree nodes. We show that, even though strategies that perform well in these two diverse cases are very 
different from each other, both correlate well with simple (but different) strategies: greedily choose high-degree nodes and 
choose nodes uniformly at random. Furthermore, we show properties and approximations results for the influence function 
in several diffusion models .

Keywords  Influence blocking maximization · Misinformation · Complex networks

1  Introduction

The spread of misinformation is not a new phenomenon; 
however, with the prevalence of social media this problem 
seems to have being gaining more momentum (Lazer et al. 
2018). There is evidence that people tend to believe in infor-
mation that matches their perception of social narratives 
and to discredit narratives that deconstruct that perception 
(Lewandowsky et al. 2012). In this way, social media, due to 
its structure and ways of disseminating information, could 
expand the circulation of misinformation. Vosoughi et al. 
(2018) show that in Twitter there is a 70% greater chance 
that fake news will be shared rather than real one.

Recently, several studies showed how the spread of mis-
information has potential to influence the behavior of the 
society. Allcott and Gentzkow (2017) present an analysis 

of how misinformation may have affected the result of the 
2016 United States presidential elections. Another example 
is the number of questionable sources on the main social 
platforms regarding the outbreak of COVID-19, as shown 
by Cinelli et al. (2020).

The algorithmic aspects of a problem originally from 
the field of “viral marketing” were investigated by Kempe 
et al. (2003). The proposed computational problem, known 
as influence maximization in networks, is the following. 
Given a network where a node corresponds to a person and 
an edge corresponds to the connection between two people, 
the goal is to select the best individuals to advertise a prod-
uct, such that the information about that product reaches 
the largest number of people. From this problem, a line of 
research arose addressing the problem of finding a counter 
strategy for the spread of such influence (He et al. 2012). In 
our paper, we assume that we are dealing with the spread of 
misinformation and the counter strategy seeks to spread the 
correct information (or a counter narrative). This computa-
tional problem, called influence blocking maximization, is 
the following. Given a set of nodes as starting point for the 
spread of misinformation across the network and an integer 
k, the goal is to find k nodes for the spread of the correct 
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information across the network so the reach of the misinfor-
mation is minimized .

In the previous work in this field (He et al. 2012; Araz-
khani et al. 2019b, a; Wu and Pan 2017) (we discuss these 
works in detail in Section II), given k, the counter strategy is 
able to pick any set of nodes of size k for blocking the mis-
information. We note that this scenario might be unrealistic, 
since choosing a node with very high degree might be much 
more expensive than a node of degree one, for example. In 
all previous works using models based on the independent 
cascade, the proposed strategies for choosing the set of k 
nodes for the counter strategy perform only marginally bet-
ter than choosing nodes of high degree. (The algorithms are 
about 1% more effective than picking high-degree nodes.) 
So, in our work we generalize the problem so that different 
nodes might have different costs and the counter strategy has 
a “budget” k for finding a set of nodes such that the total cost 
of the nodes in the set stays within that budget. Note that the 
previous works in the literature fall into the particular case of 
our problem where the cost function assigns cost 1 to every 
node in the network.

In our paper, we investigate counter strategies in this 
generalized scenario using two distinct cost functions. Our 
experimental results show that the success of a given strat-
egy varies substantially depending on the cost function in the 
model. The counter strategies used in our experiments are 
four node properties well known in the literature: between-
ness centrality, percolation centrality, PageRank, and clus-
tering coefficient. The two different cost functions that we 
compare are the uniform cost function, which is the cost 
function implicitly used in all previous works in the field, 
and the degree penalty cost function, which assigns a higher 
cost to a higher-degree node. This second cost function may 
be a more realistic since nodes of high degree in a network 
might be more expensive. In consonance with previous 
works, we show that for the uniform cost function the win-
ning strategies (betweenness, percolation, and PageRank) 
correlate well with simply choosing high-degree nodes. In 
the degree penalty cost function, we show that the winning 
strategy (choosing nodes with high clustering coefficient) 
does not correlate at all with the previous strategy. Inter-
estingly, we note that there is also a simple strategy in this 
scenario: picking nodes uniformly at random the solution. 
This article is an extended version of the Erd et al. (2020). 
In addition to the previous version, we explore properties 
regarding the influence function that ensures approximations 
for the most studied dissemination models, and we added 
experiments with different spreading probabilities.

The rest of this article is organized as follows: A brief 
review of recent studies is provided in Sect. 2. Section 3 
presents the MCICM information dissemination model. The 
problem definition is described in Sect. 4. In Sect. 5, we 
show properties and approximations results for the proposed 

problem. The methodology used for our results is discussed 
in Sect. 6. Experimental results on some well-known data-
sets are reported in Sect. 7. Finally, Sect. 8 concludes the 
work.

2 � Related work

The influence maximization problem in a network is the 
computational problem of finding a set of nodes of size k, 
for a given integer k that is part of the input, as the starting 
point for the spread of information in this network so that 
the maximum number of nodes is reached. There are two 
models widely used to simulate the dissemination of infor-
mation in the network, namely the independent cascade (IC) 
model and the linear threshold (LT) model, both proposed 
by Kempe et al. (2003).

In this paper, we deal with a version of the influence 
maximization problem where there are two types of compet-
ing information being disseminated in the network, referred 
here as the misinformation and the correct information. The 
competitive version of the influence maximization problem 
is formally proposed by He et al. (2012). In this scenario, 
the input consists of a network with k specified nodes for 
the spread of the misinformation and the goal is to find k 
nodes for the spread the correct information so that number 
of nodes reached by the misinformation is minimized. Using 
a variation of the linear threshold model, called competi-
tive linear threshold model (CLT), the authors show that the 
problem is submodular and monotonic, which guarantees an 
approximation of 1 − 1∕e of the optimal solution using a hill 
climbing strategy. Also, they propose the CLDAG algorithm, 
based on the LDAG (Chen et al. 2010) algorithm which was 
previously used for the influence maximization problem.

The first work analyzing the problem with the independ-
ent cascade model in the competitive version is from Budak 
et al. (2011) who proposed the eventual influence limitation 
(EIL) problem, where the cascade of negative (false) infor-
mation propagates alone in the network for a given number 
of steps, and only after that the cascade of positive informa-
tion begins to spread through the network. Budak’s main 
contribution is a proof that the function is submodular and 
monotonic over the campaign-oblivious independent cas-
cade model (COICM). In addition, Budak showed that using 
the multi-campaign independent cascade model (MCICM) 
when the probabilities of positive and negative dissemina-
tion are arbitrary, they do not possess submodularity prop-
erty, but when the probability of positive dissemination is 1 
for all edges, the model can guarantee an approximation to 
the optimal solution.

In the MCICM, Arazkhani et al. (2019b) used a metric 
based on some centrality measures, such as degree, between-
ness, and closeness, in order to choose the set of positive 
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seed nodes. In a later study, Arazkhani et al. (2019a) com-
bined the centralities in a pre-processing method to find the 
largest k communities using fuzzy clustering, which chooses 
a node with the highest degree, betweenness, or closeness 
of each community as being the positive seed. Regarding 
the dissemination taking place on the COICM, Wu and Pan 
(2017) used the structure of maximum influence arbores-
cence (MIA) proposing two heuristics, CMIA-H and CMIA-
O. In the same work, they consider the MCICM in the par-
ticular case where the probability of positive dissemination 
is 1 for all edges.

A variant of the influence maximization problem pro-
posed by Kempe et al. (2003) considers costs for selecting 
each node in the network. For example, the budgeted influ-
ence maximization problem studied by Nguyen and Zheng 
(2013), each node v is associated with an arbitrary cost c(v). 
The goal of such problem is to select a set S of nodes so 
that the cost of those nodes in S is at most a budget b, and S 
maximizes the spread of information though the network. In 
the budgeted competitive influence maximization problem 
proposed by Pham et al. (2019), the goal is to maximize the 
spread of one product over another, given a budget. Finally, 
the work (Leskovec et al. 2007) proposes the outbreak detec-
tion problem under the context of water distribution. The 
contamination starts at some point, and from the moment the 
contamination passes through a sensor, an alarm is triggered. 
The goal is to select the best sensor placement for monitor-
ing the quality that respects the budget.

3 � Diffusion model

In this work, we use the multi-campaign independent cas-
cade model (MCICM) introduced by Budak et al. (2011), 
which is similar to the independent cascade model proposed 
by Kempe et al. (2003). In MCICM, given a directed or 
undirected graph G = (V ,E) there are two spreading cas-
cades P and N representing the positive and negative cas-
cades, respectively, two initial sets S ⊆ V  and N0 ⊆ V  of 
positive and negative seeds, respectively. The negative seeds 
are the starting point for the misinformation, and the posi-
tive seeds are the starting point for the correct information. 
Each node assumes three different states: positive, negative, 
or inactive, and in the starting configuration, the nodes in 
S are set as positive, those in N0 are set as negative and the 
rest of the nodes are set as inactive. In addition, each edge 
(u, v) ∈ E has two weights, w+

u,v
 and w−

u,v
 in the range [0, 1], 

which denote the probabilities of u activating, respectively, 
positively or negatively the node v. The simulation occurs 
in discrete time steps, and if u is activated in step t by the 
cascade of P or N, it has only one chance to positively or 
negatively activate a neighbor v during the simulation. As 
a tiebreaker rule, if the P cascade and the N cascade in the 

same step t try to activate the same inactive node, the N 
cascade has preference for the activation. The step t finishes 
when all nodes activated during step t − 1 try to activate their 
inactive neighbors, and simulation ends in step t when no 
node is activated by the cascades.

Another model is the campaign-oblivious independent 
cascade model (COICM) also used by Budak et al. In such 
model, each edge has a single probability value, meaning 
that both positive and negative information has the same 
propagation probabilities, and the rest of the model is similar 
to MCICM. Although the MCICM is the main model dealt 
with in this article, some of our results in Sect. 5 refer to 
the COICM.

4 � Problem definition

Let NT be the set of negative nodes that is the outcome of 
an execution of the stochastic process of diffusion (in our 
case, dictated by the MCICM). The outcome NT depends 
on the graph G, the probabilities w+ and w− , and the initial 
negative and positive seed sets N0 and S. Thus, given an 
integer k, the probability that |NT| = k depends on the same 
input variables, but in the notation we only make it explicit 
the dependence on the initial positive seed set S, writing 
Pr
(
|NT| = k || S

)
.

Now, given the initial positive seed set S, the expected 
size of the negative nodes NT is,

We can measure the impact of an initial positive seed set S 
by considering the difference between two scenarios, when 
the initial positive seed set is S, and when the initial positive 
seed set is empty. This is called the expected blocked nega-
tive influence of S and is formally defined as

and we want to maximize this quantity. We can now define 
the problem.

Problem 1  (Generalized Influence Blocking Maximization 
(GIBM)) Given a graph G(V, E) with costs c(v) for each 
v ∈ V  , propagation probabilities w+ and w− , a negative seed 
set N0 , and a positive integer k, the GIBM problem aims 
to find the positive seed set S that maximizes �(S) where ∑

v∈S c(v) ≤ k.

We note that in a real scenario, receiving the correct input 
parameters—e.g., detecting the negative seeds N0 , obtain-
ing the propagation probabilities w− and w+ , and defining 

�
[
|NT| || S

]
=

|V|∑

k=0

k ⋅ Pr
(
|NT| = k || S

)
.

�(S) = �
[
|NT| || {�}

]
− �

[
|NT| || S

]
,
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the costs c(v)—is a problem on its own. Therefore, since 
our main focus in this work is the investigation of the algo-
rithmic aspects of misinformation diffusion and blocking 
in networks, we assume that the algorithms in this paper 
receive the correct input.

4.1 � Particular cases

In this work, we are interested in two particular cases for the 
cost function. The first is the case, which we call the uniform 
cost function, all nodes have the same cost, w.l.o.g., say, 
c(v) = 1 for each v ∈ V  . This cost function has been used in 
previous works (He et al. 2012; Arazkhani et al. 2019b, a; 
Wu and Pan 2017) for the particular problem called influ-
ence blocking maximization. Let �(v) be the degree of a 
node v. The second cost function investigated in our work 
c(v) = �(v) for each v ∈ V  , which we call the degree penalty 
cost function.

5 � Properties and approximations

According to Nguyen and Zheng (2013), the budgeted influ-
ence maximization problem can be understood as the budget 
version of the problem influence maximization proposed by 
Kempe et al. (2003). The problem has as input a directed 
graph G(V, E), a cost function C ∶ V(G) → ℤ

+, and a budget 
B ∈ ℤ

+ . The cost function C assigns a non-uniform selection 
cost to each node of the network, which is the cost to be paid 
to select a given node for starting the spreading in the graph. 
The goal is to select a set of nodes within the budget that 
maximizes the spread of influence over the network. More 
formally, the goal is to select a set S where 

∑
u∈S C(u) ≤ B 

such that, for any set S′ where 
∑

u∈S� C(u) ≤ B,
�(S) ≥ �(S�).
Nguyen and Zheng proposed a greedy algorithm where 

the selection criteria are the largest cost–benefit ratio of 
a node, whereas other studies propose greedy algorithms 
where a node is chosen if it maximizes the reach without 
considering the cost. However, when considering only 
the cost–benefit criteria, the algorithm has an unbounded 

approximation factor. Thus, the authors proposed a new 
algorithm, which chooses the maximum between two cases: 
the approach that considers the cost and the one that consid-
ers only the reach and ignores the cost. Such algorithm has a 
(1 − 1∕

√
e) approximation factor for the budgeted influence 

maximization problem. This approximation result can be 
extended to the GIBM problem. The idea is that, given an 
input graph G for the GIBM problem, we build a graph G′′ 
based on G that serves as the input for the budgeted influ-
ence maximization problem, such that the solution in G′′ can 
be used for G in GIBM problem. Such result is presented in 
Theorem 1.

Theorem 1  The GIBM problem has a (1 − 1∕
√
e)-approxi-

mation in the COICM.

Proof  Our approach is similar to the one by Budak et al. 
(2011) for the eventual influence limitation problem. The 
spreading process that occurs on an edge can be seen as 
a coin toss, where the positive and negative spread on an 
edge (u, v) occurs as coin tosses with probability of success, 
respectively, w+

u,v
 and w−

u,v
 . As pointed out by Kempe et al. 

(2003) and Budak et al. (2011), it does not matter if the 
coins are tossed at the exact moment when a node u tries to 
activate its neighbor v, or if the coins are pre-tossed and their 
results are stored only to be used when u tries to activate v. 
We use the idea that all coins were previously tossed to cre-
ate the graph G′ below.

Let G be the input graph for the GIBM problem (see, e.g., 
Fig. 1). The first step is to create a graph G�(V ,E�) where 
E′ is the set of activated edges, previously determined by 
pre-tossed coins. The graph G′ has the paths of both posi-
tive and negative dissemination, since the edge activation 
in the COICM indicates that it can send positive or nega-
tive information, whichever comes first. Given N0 , the set of 
nodes that are reachable from N0 by the activation process 
is referred to as N′ . Note that, in G′ , as we pre-tossed the 
coins, it is easy to the identify the nodes belonging to N′ 
(see, e.g., Fig. 1).

Next, we create a graph G′′ that represents where 
the positive spread arrive before the negative one. Let 

Fig. 1   An example of the input 
graph G for the GIBM problem, 
where N0 = {v0, v5} . For 
simplicity, we suppose in this 
example that all edges become 
active by the pre-tossing activa-
tion process. So, the graph G′ is 
equal to G and the set N′ is all 
V except for those belonging to 
the set N0

v0 v1

v2

v3

v4 v5

v6

v7

v8



Social Network Analysis and Mining (2021) 11:55	

1 3

Page 5 of 17  55

P(u, v) be the set of edges of the shortest paths from u 
to v in G′ . Let P(N0, v) be the set of edges of the short-
est paths from the closest node in N0 to v in G′ . Formally, 
P(N0, v) = {P(u, v) ∶ u = argmin u�∈N0

|P(u�, v)|} .  Then , 
G��(N��,E��) is defined as

Intuitively, G′′ adds the shortest paths from u to v in G′ if 
such paths arrives before a node from N0 to v. (See Tables 1, 
2, and 3 for a step-by-step construction of E′′ based on the 
example of Fig. 1. Also, Fig. 2 shows the final graph G′′ for 
this example.) The idea is that G′′ is the graph where the 
positive spread arrives before the negative.

Now, it is clear that solving the GIBM problem is equiva-
lent to maximizing the number of nodes reachable from of 
an initial set S in G′′ , but the latter is precisely the budgeted 
influence maximization problem. 	�  ◻

A well-known result (Cornuejols et al. (1977), G. L. 
Nemhauser et al. (1978)) says that if the influence func-
tion is submodular and monotonic (see Definitions 1 and 
2 ), then a general greedy procedure leads to a (1 − 1

e
)

-approximation guarantee. Theorem 2 shows that it is not 
possible to use such greedy procedure on GIBM problem 
based on the MCICM because the submodularity property 
does not hold for this case.

Definition 1  Let S, T and U be sets, such that S ⊆ T ⊆ U 
and f ∶ 2U → ℝ

+ . We say that f is submodular if 
f (S ∪ {w}) − f (S) ≥ f (T ∪ {w}) − f (T) for all w ∈ U ⧵ T .

Definition 2  Let S and T be sets, such that S ⊆ T  and 
f ∶ 2T → ℝ

+ . We say that f is monotonic if f (S) ≤ f (T).

Theorem 2  The influence function in GIBM problem is not 
submodular on the MCICM.

N�� =V ⧵ N0

E�� =
{
P(u, v) ∶ |P(u, v)| < |P(N0, v)| ∀ v ∈ N�, u ∈ N��

}
.

Table 1   The distances between 
the nodes from N′′ to N′ , based 
on the example of Fig. 1

N′

N′′ v1 v2 v3 v4 v6 v7 v8

v1 X 1 1 1 2 2 3
v2 1 X 2 1 3 3 4
v3 1 2 X 2 1 1 2
v4 1 1 2 X 3 3 4
v6 2 3 1 3 X 1 1
v7 2 3 1 3 1 X 2
v8 3 4 2 4 1 2 X

Table 2   The distances between nodes from N0 to N′ , based on the 
example of Fig.  1. In this way, |P(N0, v)| is the minimum value of 
each column

N′

N0 v1 v2 v3 v4 v6 v7 v8

v0 1 2 2 2 3 3 4
v5 1 1 1 2 2 2 3
|P(N0, v)| 1 1 1 2 2 2 3

Table 3   This table shows the added edges in G′′ , based on the values 
of Tables 1 and 2 . For example, for node v4 , the shortest path from 
N0 to it is 2 (i.e., the value |P(N0, v4)| , recovered from Table 2), such 
that all the shortest paths P(u, v) with distance less than 2 (such dis-
tances are recovered from Table  1) are added in E′′ —in this case, 
v1 → v4 and v2 → v4 . This means that, when choosing v1 or v2 as posi-
tive seeders, the positive spread arrive before the negative in v4

v ∈ N� |P(N0, v)| Added paths in G′′ (if 
|P(u, v)| < |P(N0, v)|,∀u ∈ N��)

v1 1 X
v2 1 X
v3 1 X
v4 2 v1 → v4, v2 → v4

v6 2 v3 → v6, v7 → v6, v8 → v6

v7 2 v3 → v7, v6 → v7

v8 3 v3 → v8, v6 → v8, v7 → v8

Fig. 2   G′′ Graph, note that in 
this graph we want to maximize 
the reach, as it is the graph 
where the positive spread 
arrives before negative spread. 
So we want to choose the best 
set that is within a budget that 
increases the reach in that graph 
and that is the problem of budg-
eted influence maximization

v1

v2

v3

v4

v6

v7

v8
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Proof  Our proof is similar to the one by Budak et al. (2011), 
but assuming the case where the negative spreading has pref-
erence over the positive.

We present an input where the submodularity property 
does not hold. Figure 3 shows the graph G used as the input 
graph for the problem, where N0 = {v1} . The first step is to 
create a graph GP(V ,EP) where EP are the previously acti-
vated edges that send the positive information before the 
simulation starts (defined by the pre-tossed coins idea, as 
discussed before). Suppose GP is the graph of Fig. 4, i.e., 
the only activated edges are ( v3 , v4 ) and ( v9 , v10 ). In a similar 
way, a graph GN(V ,EN) is created that contains only the pre-
viously activated edges that send the negative information; 
such graph is shown in Fig. 5.

In GP, we see that v3 and v10 are the only nodes available to 
add to the solution set S. If the problem input budget allows 
adding v3 to S, then f ({v3}) = 1 , as the only saved node is v4 . 
Similarly, when S = {v10} , f ({v10}) = 1 , as the only saved 
node is v9 . However, if the budget allows the choice of both 

nodes, i.e., S = {v3, v10} , then f ({v3, v10}) = 3 , because 
{v4, v8, v9} are saved. Let S = � , T = {v3} and v = v10 , then 
the submodularity property holds if

but this contradicts the submodularity property. 	�  ◻

In addition, it is possible to extend the proof of He et al. 
(2012) to the GIBM problem, when treated on the competi-
tive linear threshold (CLT) model. In this case, the influence 
blocking maximization problem is the uniform case of the 
GIBM problem we address here. Thus, we claim that the 
GIBM problem is also submodular, as long as the budget 
allows to choose the k nodes that maximizes the reduction of 
the negative spread, since in the proof of the submodularity 

f (S ∪ {v}) − f (S) ≥ f (T ∪ {v}) − f (T)

f (� ∪ {v10}) − f (�) ≥ f ({v3} ∪ {v10}) − f ({v3})

1 − 0 ≥ 3 − 1

1 ≥ 2

Fig. 3   The graph G used in 
the proof of Theorem 2, where 
N0 = {v1}

v0 v1 v2

v5v4v3 v6 v7

v8 v9 v10

Fig. 4   Graph GP with the 
pre-activated edges that send 
positive information

v0 v1 v2

v5v4v3 v6 v7

v8 v9 v10
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the budget does not matter. Such facts lead to the statement 
of Theorem 3.

Theorem 3  The GIBM problem has a (1 − 1

e
)-approximation 

in the CLT model, if the budget allows selecting the nodes 
that optimize the dissemination.

The proof of Theorem 3 is omitted as it is identical to the 
analogous statement proved in He et al. (2012).

6 � Methodology

Our goal is to investigate several measures of centrality to 
be used as strategies to solve the problem under the uniform 
and degree penalty cost functions cases. In the former case, 
we mimic the (somewhat unrealistic) case that has already 
been considered in previous works, while in the latter we 
seek a more realistic scenario where the cost of a node is 
proportional to its degree. For both cost functions cases, 
we perform simulations on directed and undirected graphs, 
with the goal of analyzing the behavior between the two 
types of graphs.

If the input graph is not connected, we take into consid-
eration only the largest connected component (resp. largest 
weakly connected component for directed graphs) of the 
graph. This is a common practice in the field since both the 
correct information and the misinformation cannot “jump” 
from one component to another. In the simulations, we ana-
lyzed three different scenarios for the probability of an infor-
mation/misinformation being propagated. More precisely, 
we run experiments for probabilities w+ and w− as follows:

low spread: w+ and w− are chosen in the interval [0, 0.2]
normal spread: w+ and w− are chosen in the interval [0, 1].

high spread: w+ and w− are chosen in the interval 
[0.75, 1].

In all three cases, the values w+ and w− are chosen inde-
pendently and randomly from the uniform distribution. The 
nodes of the negative seed set N0 are positioned uniformly 
at random in the graph. Various sizes of N0 are considered 
in the experiments (more details in Sect. 7).

For the experiments, we choose three real-world data-
sets, among which are two networks of citations (DBLP 
and CORA) and the Wikipedia Election dataset. The 
DBLP citation network (Ley 2012) is a dataset of scien-
tific publications, such as papers and books, where a node 
represents a publication and an edge represent a citation, 
that is, there is an edge from A to B if paper A cites pub-
lication B. The original DBLP database has 12,590 nodes 
and 49,749 edges. The Cora dataset (Šubelj and Bajec 
2013) contains more than 23,000 nodes and approximately 
90,000 edges. Similar to DBLP, this dataset represents 
citations in articles from a platform of scientific articles, 
where the nodes are articles and the edges are citations 
between them. The Wikipedia Elections dataset (Lesko-
vec et al. 2010) represents the English Wikipedia social 
network, of users who voted for and against each other in 
admin elections, nodes represent users and an edge repre-
sents a user who voted for another. All datasets originally 
describe directed graphs. The same datasets were used 
in the experiments on undirected graphs, but the direc-
tion of the edges was ignored. The choice to ignore the 
direction of the edges instead of using others originally 
undirected datasets allows a more straightforward compar-
ison between the directed and non-directed cases. Table 4 
shows the comparison of the three datasets after the pre-
processing to find the giant component.

For each proposed scenario, we use the following net-
work metrics as a counter strategy:

Fig. 5   Graph GN with pre-
activated edges that send 
negative information. Note 
that N0 = {v1} reaches a large 
number of the nodes

v0 v1 v2

v5v4v3 v6 v7

v8 v9 v10
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Clustering coefficient (Fagiolo 2007),
PageRank (Page et al. 1999),
Betweenness (Brandes 2004),
Percolation (Piraveenan et al. 2013).

In addition to measures above, we use two strategies for 
experiment control: choosing high-degree nodes first 
(greedily) and choosing nodes at random.

The percolation centrality requires weights for nodes 
reflecting a certain degree of “contamination,” so we use 
this measure in our experiments in the following way. Let 
d(v,N0) be the distance from v to the nearest node in N0 . 
Thus, the percolation weight for a node v is defined as

The idea is that the nodes initially in N0 are 100% percolated 
(in this case, d(v,N0) = 0 ), and as a node is further away 
from N0 , its percolation weight decreases.

The experiments were launched in an Intel(R) 
Core(TM) i7-6700 CPU @ 3.40GHz and 8 GB RAM. The 
scripts were implemented in Python 3.6.9 language. For 
graph manipulations, we use the NetworkX 2.3 library 
(Hagberg et al. 2008). The implementation of all the net-
works measures considered in this work is available in 
NetworkX as well.

7 � Experiments and results

In this section, we evaluate the performance of different 
strategies for finding a solution for the GIBM problem. 
Since MCICM is a probabilistic model, we run repeated 
experiments for the spreading over the initial sets N0 and 
S in order to obtain the average behavior. In each different 
scenario, we perform the simulation 1000 times to obtain 
the average of the positively and negatively contaminated 
sets.

Initially, we compare four different scenarios, as shown in 
Table 5. We remember that for each scenario there are three 
cases for the spreading probability.

perc(v) =
1

d(v,N0) + 1
.

7.1 � Uniform cost function

In this section, we show and analyze the results obtained for 
the uniform cost function. For these experiments, we set the 
size of N0 to be 1% of the number of nodes of each dataset, 
and we vary the parameter k (here the size of the output set 
S for positive seeds equals k) between 0.1%, 0.5%, 1%, 1.5%, 
and 2.0% of the number of nodes in each dataset. We analyze 
the undirected and directed cases. In each plot, we show 
the average results for the three datasets. The vertical axis 
we show the percentage of negatively contaminated nodes, 
therefore, the lower the values, the better the network metric 
works as a strategy for the problem. The absolute number 
of nodes as a function of the percentage is given in Table 6.

In Figs. 6, 7, and 8, we present the results for the uni-
form cost function on undirected graphs with, respectively, 
low, normal, and high spreading probability. In the case of 
low spreading probability (Fig. 6), we see that the percola-
tion, betweenness, degree, and PageRank measures behave 
similarly, and also, they perform better than other strategies. 
In the setting of normal spreading probability (Fig. 7), we 
have a greater negative spreading compared to the case of 
low probability (which is expected, since the probability of 
spread is greater), but the quality of the strategies remains 
consistent with the previous case. In the case where the 
network is highly influenceable (Fig. 8), we notice that the 
degree centrality has a decreased performance compared to 
previous cases and with the betweenness, percolation, and 
PageRank centralities. Finally, the clustering and the random 
strategies present poor results in all three cases.

In the case of directed graphs, the number of positively 
influenced nodes decreases in comparison with the undi-
rected version, as shown in Figs. 9, 10, and 11. In the low 
probability scenario (Fig.  9), there is a slight improve-
ment in the quality of the degree centrality; however, we 
can consider that the percolation, degree, betweenness, and 

Table 4   Dataset statistics.

Network Giant component 
nodes

Giant 
component 
edges

CORA 23,166 89,157
DBLP 12,495 49,578
Wikipedia Election 7,066 100,721

Table 5   Experiments scenarios

Cost function Graph type Spreading probability

Uniform Undirected [0,0.2], [0, 1], and [0.75,1]
Uniform Directed [0,0.2], [0, 1], and [0.75,1]
Degree Penalty Undirected [0,0.2], [0, 1], and [0.75,1]
Degree Penalty Directed [0,0.2], [0, 1], and [0.75,1]

Table 6   Size of k (as a function of the % of |V|)

Network 0.1% 0.5% 1% 1.5% 2%

CORA 23 115 231 347 463
DBLP 12 62 124 187 249
Wiki 7 35 70 105 141
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PageRank strategies again have statistically equivalent per-
formances within a small margin of error. With normal prob-
ability of spread (Fig. 10), PageRank’s behavior apparently 
worsens in comparison with the previous cases. The last case 

for directed graphs on the uniform cost function (Fig. 11) 
is similar to the previous case (normal probability), with 
the only difference being the greater number of negatively 
influenced nodes.

Fig. 6   Uniform cost function 
in undirected graphs with low 
spread

Fig. 7   Uniform cost function in 
undirected graphs with normal 
spread



	 Social Network Analysis and Mining (2021) 11:55

1 3

55  Page 10 of 17

We hypothesize that the similar behaviors between 
degree, betweenness, PageRank, and percolation come from 
the fact that the set of positive seeds chosen by these strate-
gies are similar. In order to test this hypothesis, we take the 

set of positive seeds of the degree centrality as a basis for 
the comparison and measure the similarity between the sets 
returned by the other strategies. More formally, let S1 and 
S2 be the sets returned by using, respectively, the degree 

Fig. 8   Uniform cost function 
in undirected graphs with high 
spread

Fig. 9   Uniform cost function in 
directed graphs with low spread
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centrality and some other strategy. To measure the similarity 
between the sets, we use the overlap coefficient, defined as

|S1 ∩ S2|
min{|S1|, |S2|}

.

Fig. 10   Uniform cost function 
in directed graph with normal 
spread

Fig. 11   Uniform cost function 
in directed graph with high 
spread
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Figure 12 shows the results of the similarities between the 
solutions on the DBLP dataset. On the vertical axis, we have 
the overlap coefficient, taking the degree centrality as the 
base comparison. The horizontal axis represents the size 
of the set, and we show solutions up to 250 nodes since 
this is roughly the size of the largest sets for the solutions 
in the experiments and, additionally, with the solution size 
approaching the entire node set obviously they have a large 
overlap. We note that solutions using betweenness, percola-
tion, and PageRank as strategies have a high overlap coef-
ficient. This means that the solution sets returned by these 
strategies are similar to the degree centrality strategy. On the 
other hand, solutions obtained using clustering coefficient 
and random sampling as strategy have a very small overlap, 
so they are very different from the set nodes with highest 
degree.

7.2 � Degree penalty cost function

In this section, we analyze the results for the degree penalty 
cost function. In this case, the costs are directly proportional 
to the degree, so we define the sizes of N0 and S as a fraction 
of the sum of the degrees (i.e., twice the number of edges). 
More specifically, we set the size of N0 to be equal to 1% of 
the sum of the degrees and choose k to be 0.1%, 0.5%, 1%, 
1.5%, and 2% of that same sum. In Table 7, we show the 
parameter k for each percentage scenario.

Initially, we analyze the results for undirected graphs. 
Differently from the case with uniform cost function where 
the node degree is the central attribute that characterize the 
success of a given strategy, in the degree penalty cost func-
tion the node weight “amortizes” the advantage that the 
degree exerts in these strategies where high-degree nodes 
are prioritized, i.e., betweenness, percolation, and PageRank 
(recall Fig. 12 where we show the overlap of such strategies 
with the set of highest degree nodes). Therefore, these strat-
egies are not as successful in the scenario using the degree 
penalty cost function as shown in Figs. 13, 14, and 15 (for 
low, normal, and high propagation, respectively). Generally 
speaking, compared to the uniform cost function, the degree 
penalty cost function had more negatively influenced nodes 
in the three settings of the spreading probability. Also, in 
the degree penalty cost function problem, the clustering and 
random strategies present the best performances among the 
metrics we choose.

In particular, we believe that the good performance of the 
clustering coefficient can be explained by the dissimilarity 

Fig. 12   Overlap coefficient in 
DBLP undirected graph: value 0 
(resp. value 1) is the case where 
the elements of the solution 
are completely different (resp. 
exactly the same) from nodes of 
k highest degrees

Table 7   Size of k (as a function of the % of 2|E|)

Network 0.1% 0.5% 1% 1.5% 2%

CORA 178 891 1783 2674 3566
DBLP 99 495 991 1487 1983
Wiki 201 1007 2014 3021 4028
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between this measure and the degree centrality (also shown 
in Fig. 12). In the analyzed datasets, the nodes with the high-
est clustering coefficient are those with the lowest degree.

Since the strategy that uses the clustering coefficient 
selects nodes with low degree, this means that it chooses a 

large number of nodes for the solution, since the cost of the 
nodes in this case is low. Therefore, the clustering coefficient 
strategy may succeed by being able to choose a high fraction 
of the nodes of a graph.

Fig. 13   Degree penalty cost 
function in undirected graph 
with low spread

Fig. 14   Degree penalty cost 
function in undirected graph 
with normal spread
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The random strategy also had good results, and we have 
some supposition for its success. Since, in real-world graphs, 
typically, the degree distribution is approximated by a power 
law distribution, roughly speaking theses graphs contain a 
large number of low-degree nodes. This may explain, in part, 
the good performance of the random metric. The idea is that 
by randomly selecting the graph nodes, the vast majority 
are low-degree nodes and therefore more nodes are selected 
until reaching the maximum budget limit.

The behavior of degree penalty cost function in directed 
graphs is different from the other cases analyzed so far. Fig-
ure 16 shows the case where the network has a low spreading 
probability. In this figure, we see that the metrics perform 
practically the same, with the exception of the PageRank, 
which presents a slightly inferior performance. Figure 17 
considers the normal spreading probability. In this case, 
betweenness and percolation show a better result than the 
other metrics. Finally, Fig. 18 shows the results in a highly 
influential environment. The percolation and betweenness 
metrics continue to show good results; however, the random 
strategy also ends up having a result close to them.

The clustering coefficient strategy had opposite perfor-
mances in the directed and undirected cases. A possible 
explanation is that in the directed case, the nodes chosen by 
this strategy have low degree. Thus, due to the edge direc-
tions, many may have out-degree equal to zero, making the 
spreading impossible.

8 � Conclusion

In this work, we present the generalized influence blocking 
maximization (GIBM) problem and analyze the behavior 
of strategies for the problem based on well-known network 
metrics for two particular cost functions: uniform and degree 
penalty. The uniform cost function case has appeared in the 
literature as the influence blocking maximization problem. 
For this case, the betweenness, percolation, and PageRank 
metrics obtain similar results to the simple degree centrality. 
We show that this similarity is related to the overlapping of 
the solution sets. On the other hand, in the degree penalty 
case, the results show that the same metrics have opposite 
performances. In addition, our results suggest at least two 
conclusions in the case of algorithms that have a high level 
of similarity with the node degree. First, however sophisti-
cated an algorithm for the uniform cost function may be, if 
there is a high similarity with the degree, then one should 
not expect substantial improvements in their performance. 
So this might be the case that recent results in the literature 
obtained only slight improvements (about 1% better) when 
compared with the node degree strategy in the uniform cost 
function case. Second, algorithms with solutions correlated 
with the set of high-degree nodes do not perform well in 
degree penalty scenario (in any case for the GIBM prob-
lem where high-degree nodes are expensive). This naturally 
leads us to consider futures research where goal is to design 
solutions that take into consideration other cost functions 

Fig. 15   Degree penalty cost 
function in undirected graph 
with high spread
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for the generalized version of the problem. We also analyti-
cally address submodularity and approximation properties 
for the COICM, MCICM, and CLT models. We show that 
the problem admits constant approximation for the COICM 

and CLT models, assuming weak suppositions in the latter. 
In the MCICM, we show that the submodularity property 
does not hold, which prevents the use of a greedy method to 
obtain an approximation.

Fig. 16   Degree penalty cost 
function in directed graphs with 
low spread

Fig. 17   Degree penalty cost 
function in directed graphs with 
normal spread
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