
Oracle Separations for Non-adaptive
Collapse-free

Quantum Computing⋆

Henrique Hepp1, Murilo V. G. da Silva1, and L. M. Zatesko2

1 DINF, Federal University of Paraná, Brazil {hhepp,murilo}@inf.ufpr.br
2 DAINF, Federal University of Technology — Paraná, Brazil zatesko@utfpr.edu.br

Abstract Aaronson et al. (2016) introduced the quantum complexity
class naCQP (non-adaptive Collapse-free Quantum Polynomial time),
also referred to as PDQP (Product Dynamical Quantum Polynomial time),
aiming to define a class larger that BQP, but not large enough to include
NP-complete problems. Aaronson et al. showed that SZK ⊆ naCQP and
that there is an oracle A for which NPA ̸⊆ naCQPA. We prove that:
there is an oracle A for which PA = BQPA = SZKA = naCQPA ̸=
(UP∩ coUP)A; relative to an oracle A chosen uniformly at random, it
holds (UP∩ coUP)A ̸⊆ naCQPA with probability 1; there is an oracle A
for which PA = naCQPA ̸= UPA = EXPA. Our results are not only a
strengthening of the result by Aaronson et al., but they also general-
ise, from BQP to naCQP, results by Bennett et al. (1997), Fortnow and
Rogers (1999), and Tamon and Yamakami (2001).

Keywords: Computational Complexity · Oracle Separation · Unam-
biguous Polynomial-time · Collapse-free Quantum Computing.

1 Introduction

Aaronson et al. [4] introduced the complexity classes CQP (Collapse-free Quantum
Polynomial time) and naCQP (non-adaptive Collapse-free Quantum Polynomial
time). The former is the class of the problems that can be solved by a polynomial-
time quantum algorithm allowing measurements not to cause the collapse of the
states. The latter is the class CQP with the restriction that the quantum opera-
tions do not depend on the results of non-collapsing measurements. We refer the
reader to Section 2 for technical details in the definition of naCQP. Note that
the aim of defining such complexity classes in this line of research is not to pro-
pose alternative models of physically realizable computation, but to investigate
classes of problems that seem to be larger that BQP, but not large enough to in-
clude NP-complete problems. The class naCQP is also called as PDQP (Product
Dynamical Quantum Polynomial time) in the preprint version [3] and in two
subsequent articles [2,10]. The class naCQP, or PDQP, is a subclass of the class
DQP (Dynamical Quantum Polynomial-Time) introduced by Aaronson [1]. The

⋆ Partially supported by CAPES (grant 001) and CNPq (grant 420079/2021-1).

2 H. Hepp et al.

class DQP was defined assuming a hidden variable theory, and that is possible to
access in real time the evolution of the hidden variables. The complexity relation
between DQP and CQP is unknown.

Aaronson et al. [4] showed that naCQP includes not only BQP, but also SZK,
which is the class of the problems that admit zero-knowledge interactive proof
systems, such as the Graph Isomorphism Problem. Assuming derandomisation
hypotheses, we would have P = BPP and NP = MA = AM [9], which would
imply SZK ⊆ NP∩ coNP. Moreover, Aaronson et al. showed that there is an
oracle A for which NPA ̸⊆ naCQPA, which indicates that naCQP, although a
superclass of BQP and SZK, seems not to be large enough to contain NP-complete
problems. Remark that, since there is an oracle A for which BQPA ̸⊆ NPA (in
fact, BQPA ̸⊆ PHA [12]), we also have naCQPA ̸⊆ NPA for this oracle A.

The class UP (Unambiguous Polynomial-Time), a subclass of NP, is the class
of problems Π for which there is a non-deterministic Turing machine M such
that: if x is a positive instance of Π, then there is a single accepting computation
path of M on x; if x is a negative instance of Π, then all computations of M
on x end in rejection. Fortnow and Rogers [8] showed that PA = BQPA ̸=
UPA ∩ coUPA for the same oracle A. The relation between UP∩ coUP and other
complexity classes has also been explored. For instance, Menda and Watrous [11]
showed that there is an oracle A for which QSZKA ̸⊇ UPA ∩ coUPA, which
implies SZKA ̸⊇ UPA ∩ coUPA. We show the following.

Theorem 1. There is an oracle A for which PA = BQPA = SZKA = naCQPA ̸=
UPA ∩ coUPA.

Our proof for Theorem 1 follows the structure of the proof by Fortnow and
Rogers for BQP, but using properties for naCQP shown by Aaronson et al. com-
bined with a technical lemma by Bennett et al. [7]. Remark that:

– our result is a strengthening of the result by Aaronson et al., concerning
naCQP and NP, and also of the result by Fortnow and Rogers, concerning
P, BQP, and UP∩ coUP;

– concerning SZK and UP∩ coUP, our result implies not only that there is
an oracle A for which SZKA ̸⊇ UPA ∩ coUPA, something which is already
implied by Menda and Watrous, but also that PA = SZKA ̸⊇ UPA ∩ coUPA.

Figure 1 illustrates the known relationship between the main complexity
classes relevant to this paper, highlighting the result stated in Theorem 1.

A random oracle is an oracle chosen uniformly at random. Bennett et al. [7]
showed that, relative to a random oracle A, we have NPA ̸⊆ BQPA with prob-
ability 1. In fact, the authors further show that (NP∩ coNP)A ̸⊆ BQPA with
probability 1. We also show the following.

Theorem 2. Relative to a random oracle A, we have (UP∩ coUP)A ̸⊆ naCQPA

with probability 1.

The proof for Theorem 2 follows the structure of the proof by Bennett et
al. for BQP, but using the same properties for naCQP that we have used in the
proof of Theorem 1. Remark that:

Oracle Separations for Non-adaptive Collapse-free Quantum Computing 3

PSPACE

NP

UP∩ coUP

CQP

naCQP

BQP

BPP

P

QSZK

SZK
/
O

/
O

/
O

/
O

/ O

Figure 1. Relationship between complexity classes in this paper. The black arrows
indicate inclusion between the classes. The striked-out arrows indicate that there is an
oracle for which the class is not included in the other, being the blue ones results from
the literature, and the red thicker one our new result.

– our result is a strengthening of the result by Bennett et al. concerning
UP∩ coUP and BQP;

– our result is also a strengthening of the result by Aaronson et al. that there
is an oracle A for which NPA ̸⊆ naCQPA.

Beigel et al. [6] also showed that there is an oracle A for which PA = ⊕PA

and RPA = EXPA (recall that PA ̸= EXPA for all oracle A). As noted by Tamon
and Yamakami [13], since UPA ⊆ ⊕PA and RPA ⊆ BQPA, we have PA = UPA

and BQPA = EXPA. Curiously, Tamon and Yamakami [13] also claimed that
there is an oracle A for which PA = BQPA and UPA = EXPA, presenting a proof
sketch for this. We prove the following strengthening of their claim.

Theorem 3. There is an oracle A for which PA = naCQPA and UPA = EXPA.

We follow the idea of Tamon and Yamakami’s sketch of proof. Since their
sketch is not easy to follow and contains some technical details that we are not
sure that are correct, we present the full proof of our more general theorem.

Some of the properties for naCQP with which we adapt the proofs for BQP
by Fortnow and Rogers, by Bennett et al., and by Tamon and Yamakami in
order to prove our results, are stated in Theorem 4 below, which is a version of
the well-known BBBV Theorem for BQP by Bennett et al. [7].

Theorem 4. Let MA be an naCQP algorithm with an oracle A and let p(n) be
the running time of MA. Let x be an n-bit string given as input to M . For every
ε > 0 there is a set of strings S with |S| ≤ 200(p(n))4/ε2 such that, for any
oracle A′, if A′ differs from A only on a single string y and y /∈ S, then∣∣∣Pr[MA′

accepts x
]
− Pr

[
MA accepts x

]∣∣∣ ≤ ε .

4 H. Hepp et al.

This paper is organized as follows. In Section 2, we present the technical
definition of naCQP. In Section 3, we present the proof of Theorem 4. In Section 4,
we present the proofs of Theorems 1, 2, and 3.

2 Definition of naCQP and technical assumptions

Consider a quantum circuit C with n qubits defined by the following sequence of
operators C = (U1,M1, U2,M2, . . . , UR,MR), where each Ui is a unitary operator
of n qubits, and each Mi is a quantum measurement, in the computational basis,
of mi qubits, being 0 ≤ mi ≤ n. The initial state of the circuit is |ψ0⟩ = |0⟩⊗n

,
and after the t-th measurement the state is |ψt⟩ = Mt Ut |ψt−1⟩, so that the
states at the different stages of the circuit are given by the sequence of random
variables {|ψt⟩}Rt=0, subject to a probability distribution that depends on the
circuit C. Consider a procedure that takes as input the circuit C and samples
the sequence {|ψt⟩}Rt=1 from this probability distribution. Then, the procedure
measures, on the computational basis, the states |ψt⟩ for each t independently.
The R results of these measurements are returned, named v1, . . . , vR. Assuming
that this procedure is done in only one step, we call this procedure the oracle Q.
Note that if non-collapsing measurements were allowed, the result of Q would
be equivalent to the case wherein the states {|ψt⟩} are measured in the com-
putational basis without collapsing, but still being M1,M2, . . . ,MR collapsing
measurements. Recall that it is possible that the measurements M1,M2, . . . ,MR

are of less than n (even possibly zero) qubits. Observe that Q samples all states
{|ψt⟩} at once, yielding a non-adaptive model of non-collapsing measurements.

Now suppose that the oracle Q does not sample the states {|ψt⟩} at once, but,
instead, the following procedure is performed. The oracle Q samples each |ψt⟩
one at a time, but not allowing the result of one sampling interfere in the other.
Since Q samples each |ψt⟩ independently and now one at a time, we always as-
sume that all measurements M1, . . . ,Mt are delayed, by the well-known Principle
of Deferred Measurement (PDM), and that a single equivalent measurement oc-
curs immediately before the sampling of |ψt⟩. From the non-adaptiveness of the
model, it is clear that the results v1, . . . , vR of the measurements of the states
sampled by this procedure follow the same probability distribution than the res-
ults when Q samples all the states at once. Remark that this does not hold in
the adaptive model, wherein the variables {|ψt⟩} are not independent. Through-
out this text, therefore, we assume without loss of generality that the states are
sampled independently and one at a time, with all the collapsing measurements
delayed. Also, for a fixed t, we use |ϕt⟩ to denote the state immediately before
the single measurement performed by Q to obtain |ψt⟩, and |ϕ0⟩ , . . . , |ϕt−1⟩ are
used to denote the previous states, with no measurements performed. Moreover,
although applying PDM modifies gates U1, . . . , Ut, by abuse we maintain the
names U1, . . . , Ut, assuming that the gates have been modified so that the meas-
urements are deferred.

We define naCQP (non-adaptive Collapse-free Quantum Polynomial) as the
class of promise problems that can be solved by an naCQP algorithm, i.e. a

Oracle Separations for Non-adaptive Collapse-free Quantum Computing 5

polynomial-time deterministic Turing machine with error probability less than
or equal to 1/3 that can make a single query to an oracle Q as defined above.
Clearly, BQP ⊆ naCQP, since we can provide the oracle with a polynomial
quantum circuit and use only the measurement result at the end of the circuit.

By definition, a BQP and a naCQP algorithm are of polynomial time. How-
ever, when it is clear in the context, we abuse the definition by using the terms
O(T (n))-time BQP algorithm and O(T (n))-time naCQP algorithm, even when
T (n) is not a polynomially bounded function. This way, we can use expres-
sions like “an Ω(2n/2) lower bound for a non-structured search with a BQP
algorithm [7]” without saying nonsense.

An naCQP algorithm with an oracle query is an naCQP algorithm whose
unitary operators U1, · · · , UR can query a function f : {0, 1}n → {0, 1}, that is,
for the construction of U1, · · · , UR, we are given access to the n-qubit unitary
transformation defined as Uf : |x, b⟩ 7→ |x, b⊕ f(x)⟩, for x ∈ {0, 1}n and b ∈
{0, 1}, where the operation ⊕ indicates addition modulo 2, or, equivalently,

Uf |x⟩ = (−1)f(x) |x⟩ , for x ∈ {0, 1}n.

Throughout this text, we assume without loss of generality that in an naCQP al-
gorithm with an oracle query to f , each of the unitary transformations U1, . . . , UR

is either a copy of Uf , or an n-qubit circuit constructed using only gates from
a fixed finite universal gate set. Furthermore, being A a language, an naCQP
algorithm with oracle A is an naCQP algorithm with an oracle query to the
function fA defined by fA(x) = 1 if and only if x ∈ A.

Let MA be an naCQP algorithm with oracle A, obeying our assumption on
the transformations U1, . . . , UR and Uf as above. Being y a fixed binary string,
let qy(|ϕt⟩) be the modulus squared of the amplitude of |y⟩ in |ϕt⟩ if Ut is a copy
of Uf , and 0 otherwise. Note that, since |ϕt⟩ can be viewed as a superposition
of all the configurations of the algorithm at time t, we have that qy(|ϕt⟩) is
the sum of modulus squared of amplitudes in |ϕt⟩ corresponding only to the
configurations at time t which are querying the oracle A on string y.

3 Proof of Theorem 4

Before we present the proof of Theorem 4, we first need a few technical lemmas.

Lemma 1 (adapted from Bennett et al., 1997 [7]). Let MA be an naCQP
algorithm with an oracle A as in Section 2. For some fixed t, let T be the number
of copies of Uf amongst gates U1, . . . , Ut, and, for ε > 0, let F ⊆ [1, t]×Σ∗

1. for each (i, y) ∈ F , Ui is a copy of Uf ;
2.

∑
(i,y)∈F qy(|ϕi⟩) ≤ ε2/2T .

Now suppose that the answer to each query (i, y) ∈ F is modified to some arbit-
rary fixed bit ai,y, being these answers not necessarily consistent with an oracle.
Let |ϕ′i⟩ be defined as |ϕi⟩, but with respect to oracle A modified as above. Then,
∥|ϕt⟩ − |ϕ′t⟩∥ ≤ ε. ⊓⊔

6 H. Hepp et al.

The proof of Lemma 1 follows by inspection on the same proof showed by
Bennett et al. for BQP, but adapting the arguments for naCQP. Recall that
we have assumed that no collapsing measurements have occurred before time
t, which means that, until that point, our naCQP algorithm is behaving like a
BQP algorithm. Furthermore, the reader may notice that the authors originally
stated

∑
(i,y)∈F qy(|ϕi⟩) ≤ ε2/T , but we remark that this is a typo and it should

be
∑

(i,y)∈F qy(|ϕi⟩) ≤ ε2/2T .

Lemma 2 (Aaronson et al., 2016 [4]). Let R ≥ 1 and let v = (v0, · · · , vR) be
a random variable governed by a Markov distribution. That is, for all 1 ≤ i ≤ R,
we have that vi is independent of v0, · · · , vi−2 conditioned on a particular value
of vi−1. Let w = (w0, · · · , wR) be another random variable governed by a Markov
distribution. Then, the total variation distance between these random variables
is dTV (v, w) ≤ 2

∑R
i=1 dTV ((vi−1, vi), (wi−1, wi)). ⊓⊔

Aaronson et al. [4] showed, in Theorem 6.1 in their paper, an Ω(2n/4) lower
bound for a non-structured search with a naCQP algorithm, analogous to the
well-known Ω(2n/2) lower bound for a non-structured search with a BQP al-
gorithm [7]. The main argument in their proof can be summarised in what is
stated below in Lemma 3.

Lemma 3. Let MA be an naCQP algorithm with an oracle A as in Section 2.
Being A′ an oracle which answers arbitrarily to any query, let v and w be the
results of the non-collapsing measurements for MA and MA′

respectively. Let
di = dTV ((vi−1, vi), (wi−1, wi)), then di ≤ 5∥|ϕi⟩ − |ϕ′i⟩∥. ⊓⊔

Now we present Theorem 5, from which follows Corollary 1 and Theorem 4.

Theorem 5. Let MA be an naCQP algorithm with an oracle A as in Section 2.
Let T be the number of copies of Uf amongst gates U1, . . . , UR, and, for ε > 0,
let F ⊆ [1, R]×Σ∗ be a set of time-string pairs such that:

1. for each each (i, y) ∈ F , Ui is a copy of Uf ;
2.

∑
(i,y)∈F qy(|ϕi⟩) ≤ ε2/2T .

Now suppose that the answer to each query (i, y) ∈ F is modified to some arbit-
rary fixed ai,y, being these answers not necessarily consistent with an oracle. Let
|ϕ′i⟩ be defined as |ϕi⟩, but with respect to oracle A modified as above. Then, be-
ing v = (v1, . . . , vR) and w = (w1, . . . , wR) the random variables returned by the
sampling of {|ψt⟩} and {|ψ′

t⟩}, respectively, the total variation distance between

v and w is dTV (v, w) ≤ 2
∑R

i=1 5ε ≤ 10Rε.

Proof. First, let us fix some i. Since we can delay all collapsing measurements to
occur immediately before the sampling of vi and wi, we have, by Lemma 3,
di = dTV ((vi−1, vi), (wi−1, wi)) ≤ 5∥|ϕi⟩ − |ϕ′i⟩∥. Also, by Lemma 1, since∑

(i,y)∈F qy(|ϕi⟩) ≤ ε2/2T , we have ∥ |ϕi⟩ − |ϕ′i⟩ ∥≤ ε. Therefore, by Lemma 2,

dTV (v, w) ≤ 2

R∑
i=1

dTV ((vi−1, vi), (wi−1, wi)) ≤ 2

R∑
i=1

5ε = 10Rε . ⊓⊔

Oracle Separations for Non-adaptive Collapse-free Quantum Computing 7

Corollary 1. Let MA be an naCQP algorithm with an oracle A as in Section 2.
Let T be the number of copies of Uf amongst gates U1, . . . , UR. For every ε > 0,
there is a set of strings S with |S| ≤ 200T 2R2/ε2 such that, for any oracle A′, if
A′ differs from A only on a single string y and y /∈ S, then, being v = (v1, . . . , vR)
and w = (w1, . . . , wR) the random variables returned by MA and MA′

, we have
dTV (v, w) ≤ ε.

Proof. First, we follow the proof by Bennett et al. [7] for the analogous result

concerning BQP. Since each |ϕi⟩ has unit length,
∑R

i=1

∑
y qy(|ϕi⟩) ≤ T . Let S

be the set of strings y such that
∑R

i=1 qy(|ϕi⟩) ≥ ε2

2T . Since for any y in S we

have |S|∑R
i=1 qy(|ϕi⟩) ≤ T , we can conclude that |S| ≤ 2T 2

ε2 . If y ̸∈ S then

R∑
i=1

qy(|ϕi⟩) <
ε2

2T
. (1)

Now, from (1), we apply Theorem 5, obtaining that for all y ̸∈ S, dTV (v, w) ≤
10Rε. Considering ε = ε′

10R ,we have

|S| ≤ 2T 2

(ε′/10R)2
=

200T 2R2

ε′2
.

Hence, for all y /∈ S, we have dTV (v, w) ≤ ε′ as desired. ⊓⊔

Proof of Theorem 4. Follows directly from Corollary 1. ⊓⊔

4 Oracle separations for naCQP

4.1 Proof of Theorem 1

We first discuss how to use Theorem 4 to prove Theorem 1 in the same manner
that Fortnow and Rogers [8] used an analogous result by Bennett et al. [7],
referred to as BBBV Theorem in Fortnow and Rogers’ paper, to prove that
there is an oracle A relative to which PA = BQPA ̸= (UP∩ coUP)A.

BBBV Theorem. Let MA be a BQP algorithm with an oracle A and let p(n)
be the running time of MA. Let x be n-bit string given as input to M . For every
ε > 0 there is a set of strings S with |S| ≤ 4(p(n))2/ε2 such that, for any oracle
A′, if A′ differs from A only on a single string y and y /∈ S, then∣∣∣Pr[MA′

accepts x
]
− Pr

[
MA accepts x

]∣∣∣ ≤ ε .

Fortnow and Rogers first argue, by the use of the diagonalization argument
of Baker–Gill–Solovay Theorem [5], that, relative to the oracle A constructed as
follows, BQPA ̸⊇ (UP∩ coUP)A. Being B any PSPACE-complete language, and
being C a UP∩ coUP oracle satisfying a set of conditions defined in their paper,
Fortnow and Rogers define A as A = B ⊕ C = {0x : x ∈ B} ∪ {1y : y ∈ C} .

8 H. Hepp et al.

We remark that relative to this oracle A, it holds that naCQPA ̸⊇ (UP∩ coUP)A

also by Baker–Gill–Solovay Theorem [5].

Fortnow and Rogers use BBBV Theorem to prove that PA = BQPA relative
to the oracle A as constructed. We point out the details that should be adapted so
that the same holds for PA = naCQPA, thus concluding the proof of Theorem 1.
Let M be a BQPA (in our case, an naCQPA) algorithm that runs in O(p(n))
time, and let W be a PA algorithm. The authors prove that, given M , it is
possible to construct W so that, with high probability, MA accepts some input
x if and only if WA also accepts x. Since B is PSPACE-complete, it is clearly
easy to have MB(x) = WB(x). Now, concerning oracle C, recall that M can
query C only for a polynomially limited amount of string lengths. Also, by the
conditions imposed on the definition of the oracle, C contains only a polynomial
amount of strings that can alter the computation of M , with respect to the case
wherein M queries only B. Since one of the conditions imposed on C is that
its string lengths are exponentially far apart, the authors argue that there is
at most one string y, of a polynomially limited size ℓ, such that W can find in
polynomial time all strings in C shorter than y only by querying C. If y /∈ C,
then W querying B would be able to find out if MA accepts or rejects x. So,
the only possibility for the MA output for x to diverge from the WA output
is if y ∈ C. However, by BBBV Theorem (in our case, Theorem 4), we know
that the set S of such strings y that could alter with probability greater than
ε the output of M from accepting to rejecting (or vice-versa) is polynomially
small: 4(p(n))2/ε in BBBV Theorem for BQP; 200(p(n))4/ε in our Theorem 4
for naCQP. This way, as the authors show, the problem of finding all strings in
S of length ℓ is in PSPACE, so W can find these strings only by querying B and,
by querying C on each one of them, find out, with high probability, whether the
output of M is altered or not.

4.2 Proof of Theorem 2

The original version of Lemma 1 for BQP by Bennett et al. [7] coincides with the
one that we have presented for naCQP, since in our statement we are considering
a time t before which no collapsing measurements have occurred, meaning that,
up to that point, our naCQP algorithm is behaving like a BQP algorithm. In this
section, we discuss how Bennett et al. [7] used the original version of Lemma 1
for BQP to prove that, relative to a random oracle A, we have (UP∩ coUP)A ̸⊆
BQPA with probability 1 (actually they prove this for NP∩ coNP, but the same
proof works for UP∩ coUP). Throughout the discussion, we point the details
that should be adapted so that, by the use of Theorem 5 instead of Lemma 1 for
BQP, we have also (UP∩ coUP)A ̸⊆ naCQPA with probability 1, thus concluding
the proof of Theorem 2.

First, remark that an oracle A can be conveniently thought of as a length-
preserving function f on Σ∗, which can be accomplished by interpreting the or-
acle answer on the pair (x, i) as i-th bit of f(x). We can also define a permutation
oracle as an length-preserving function that for each n ≥ 0 gives a permutation

Oracle Separations for Non-adaptive Collapse-free Quantum Computing 9

on Σn. Thus, for any such oracle A, let LA = {y : first bit of A−1(y) is 1}, which
is clearly in (UP∩ coUP)A.

Let M? be a BQP algorithm (in our case, an naCQP algorithm) which can
query an oracle and runs in time at most T (n). Let T (n) = o(2n/3) (resp. T (n) =
o(2n/5)). Bennett et al. show that, by sampling uniformly at random a permuta-
tion oracle A, we have with probability 1 that MA gives the wrong answer on
input 1n, for some large enough picked n, implying that MA does not accept
LA, which suffices to show that (UP∩ coUP)A ̸⊆ BQPA (resp. (UP∩ coUP)A ̸⊆
naCQPA). They also argue that this probability 1, taken over the choice of a
random permutation oracle (i.e. thought as a length-preserving function, the or-
acle acts as a permutation on Σ∗), remains the same when taken over the choice
of a random oracle. In what follows, we briefly describe the idea of their proof
that MA gives the wrong answer on input 1n.

Bennett et al. sample random permutations on {0, 1}n as follows. Let x0,
x1, . . ., xT (n)+1 be strings chosen uniformly at random in {0, 1}n. Let π0 be a
permutation uniformly sampled amongst permutations π satisfying π(x0) = 1n.
Now, being τ the transposition (xi−1, xi), define πi = πi−1 · τ , i.e. πi(xi) =
πi−1(xi−1) and πi(xi−1) = πi−1(xi). Clearly each πi is a random permutation on
{0, 1}n. Let {Ai} be a sequence of permutation oracles such that Ai(y) = Aj(y)
if y ̸∈ {0, 1}n, and Ai(y) = πi(y) if y ∈ {0, 1}n.

For BQP (Bennett et al.’s proof), let |ϕi⟩ and |ϕ′i⟩ be the time-i superposition
of MAT (n) and MAT (n)−1 , respectively, on input 1n. For naCQP (our proof), let
{|ψt⟩} and {|ψ′

t⟩} be the states sampled by MAT (n) and MAT (n)−1 , respectively,
on input 1n, being v = (v1, . . . , vR) and w = (w1, . . . , wR) the corresponding
random variables, as in Theorem 5. Bennett et al. showed that E

[∣∣|ϕT (n)⟩ −
|ϕ′T (n)⟩

∣∣] ≤ 1/50. We show that dV T (v, w) ≤ 1/50. From now on, we focus only
on our proof, following Bennet et al.’s construction for BQP, but adapting the
choice of constants in the inequalities so that our Theorem 5 can be used.

By construction, the probabilities that 1n ∈ LAT (n)
and 1n ∈ LAT (n)−1

are
both exactly 1/2. By Markov’s bound, if dV T (v, w) ≤ 1/50, as we show in the
sequel, then Pr[dV T (v, w) ≤ 2/25] ≥ 3/4, i.e. with probability at least 3/4
we have dV T (v, w) ≤ 2/25 < 1/3, meaning that both MAT (n) and MAT (n)−1

either accept or reject 1n. Hence, with probability at least 1/4, either MAT (n) or
MAT (n)−1 gives the wrong answer on input 1n, implying that with probability
at least 1/8, MAT (n) is the one to give the wrong answer (recall that AT (n) and
AT (n)−1 are chosen from the same distribution). This leads to the conclusion that
M decides LA with probability 0 for a uniformly random permutation oracle A.

Now we prove that dV T (v, w) ≤ 1/50. Consider that the naCQP algorithmM?

queries a different oracle At for each t = 1, . . . , R, being {|ψt⟩} the corresponding
states. Consider the set of time-string pairs S = {(i, xj) : j ≥ i, 0 ≤ i ≤ T (n)}.
By construction, the oracle queries described above and those of MA

T (n) and

MA
T (n)+1 differ only on the set S. Since each xj , for j ≥ i, may be thought

of having been randomly chosen during step j, after the superposition of oracle
queries to be performed has already been written on the oracle tape, the expected
query magnitude of any pair in S is at most 1/2n. Hence, being α the sum of

10 H. Hepp et al.

the query magnitudes after step T (n) ≥ 4 for the elements of S,

E[α] ≤ |S|
2n

=

(
T (n)+1

2

)
2n

≤ (T (n))2

2n
.

Let ε be a random variable such that α = ε2

200R2T (n) . Then by Theorem 5,

and making a variable substitution of ε = ε′

10R , we have dV T (q, v) ≤ ε and
dV T (q, w) ≤ ε. We showed above that E[ε2/200R2T (n)] = E[α] ≤ (T (n))2/2n.

But E
[
ε/R

√
200T (n)

]2
≤ E

[
ε2/200R2T (n)

]
. Therefore,

E[ε] =
√

200R2T (n)E

[
ε√

200R2T (n)

]

≤
√
200R2T (n)E

[
ε2

200R2T (n)

]
≤

√
200R2T (n)

(T (n))2

2n
.

As T (n) ≤ 2n/5

200 and R ≤ 2n/5

200 , we have

E[ε] ≤
√
200R2T (n)

(T (n))2

2n
≤

√
200

2005
<

1

100
.

Therefore dV T (q, v) ≤ E[ε] < 1/100 and dV T (q, w) ≤ E[ε] < 1/100. It follows
that dV T (v, w) < 1/50, thus concluding the proof.

4.3 Proof of Theorem 3

We use 4-tuples ⟨·, ·, ·, ·⟩ such that |⟨a, b, c, d⟩| > max{|a|, |b|, |c|, |d|} for all a, b,
c, d. Let M? be a naCQP algorithm which can query an oracle such that given
the input (0j , x), j ≤ |x|: runs in linear time on j + |x| for any oracle; makes
a query of size smaller than |x|; has error probability smaller than 2−j−|x|. Let
{M?

k}k∈N be an enumeration of such algorithms.
We assume w.l.o.g. that every algorithm M?

k runs in linear time using the
following padding argument. Let W ? be an naCQP algorithm that queries an
oracle and runs in time at most |x|c for some c ∈ N. Then, M?

k is the naCQP
algorithm that queries an oracle and that, on input (0|x|, x0|x|

c−|x|), emulates
W ?(x). Assuming thatM?

k rejects if the input does not fit in this format, we have
clearly that M?

k , on input (0j , y), runs in linear time on the length of its input
(i.e. j + |y|) and makes oracle queries only of length smaller than |y|. Also, we
assume w.l.o.g. that if x ∈ L, then Pr[Mk(0

|x|, x0|x|
c−|x|) = 1] ≥ 1 − 2−|x|−|x|c ,

and if x /∈ L, then Pr[Mk(0
|x|, x0|x|

c−|x) = 1] ≤ 2−|x|−|x|c . Therefore, we have
that, for any oracle A, naCQPA can be given as the set of the languages decided,
in the sense above, by the algorithms {MA

k }k∈N.

For the oracle A we want to construct, let LA be a EXPA-complete language
and let EA be a deterministic Turing machine which queries A that decides LA

in exponential time. We can also assume w.l.o.g that EA runs in time 2|x| given

Oracle Separations for Non-adaptive Collapse-free Quantum Computing 11

input (0j≤|x|, x). Given k > 0 and s ∈ {0, 1}∗, we denote snk as the (k + 1)-th
string in {0, 1}n. If k = 0 we have sn0 = 0n. We construct A such that for any
sufficiently large n and all strings x of size n and all k with 0 ≤ k < n,

(a) Pr[MA
k (0j≤n, x) = 1] ≥ 1− 2−2n ⇒ ⟨0, s⌈log(n)⌉k , x, 1n

2⟩ ∈ A;

(b) Pr[MA
k (0j≤n, x) = 0] ≥ 1− 2−2n ⇒ ⟨0, s⌈log(n)⌉k , x, 1n

2⟩ ̸∈ A;

(c) x ∈ LA ⇒ |{y ∈ Σn2

: ⟨1, 1⌈log(n)⌉, x, y⟩ ∈ A}| = 1;

(d) x ̸∈ LA ⇒ |{y ∈ Σn2

: ⟨1, 1⌈log(n)⌉, x, y⟩ ∈ A}| = 0.

Note that by ensuring (a) and (b), we have PA = naCQPA, since a determin-
istic polynomial-time Turing machine algorithm can decide the same language as

MA
k by simply querying A about ⟨0, s⌈log(n)⌉k , x, 1n

2⟩. On the other hand, by en-

suring (c) and (d), we have UPA = EXPA, since a non-deterministic polynomial-

time Turing machine can decide LA by guessing a unambiguous y ∈ Σn2

and
querying the oracle about ⟨1, 1⌈log(n)⌉, x, y⟩.

We say that w is a 0-string if w has the form ⟨0, s⌈log(n)⌉k , x, 1n
2⟩ with 0 ≤

k < n; and w is a 1-string if w has the form ⟨1, 1⌈log(n)⌉, x, y⟩ with |y| = n.
We construct A in stages, for each input x following the lexicographic order.

At each stage, the oracle is described as a partial function σA. The initial stage
is defined as σA(λ) = 0 for the empty string λ. For each stage x, we consider all

possible strings w from w = ⟨0, 0, x, 0⟩ to w = ⟨1, 1⌈log(n)⌉, x, 1n2⟩. Let p(w) be
a qubit representing the oracle’s answer, as recursively defined below.

– For each string w that is neither 0-string nor 1-string: p(w) = |0⟩.
– If w ∈ dom(σA), then p(w) = |σA(w)⟩.
– We assign for every 1-string w a variable vw that indicates whether w belongs

to the oracle A, and do p(w) = |vw⟩. The variable vw will be valued later.
– If w is a 0-string, we define p(w) as the quantum state corresponding to the

output, just before the final measurement, of MA
k (0j≤n, x). Note that, since

the size of each query is smaller than |x|, and therefore smaller than
√

|w|,
the answers to these queries are then already defined earlier.

To complete the construction of oracle A at stage x, we now need to value
vw when w is a 1-string. We view every 2n

2

-length string z as an indexing of
all strings y ∈ Σn2

, that is, each bit of z corresponds to a 1-string of the form
form ⟨1, 1⌈log(n)⌉, x, y⟩. We define Cx(z) to be the output of the emulation of
EA(0j≤n, x) with the condition that whenever E makes a query w, we compute
p(w) and use its majority output. We will show that for each x there is some z
that can be in one of two cases:

1. z = di = 0i102
n2

−i−1 (0 ≤ i < 2n
2

) and Cx(di) = 1, defining vw = |1⟩ for
the string w indexed by the (i+1)-th bit, and vw = |0⟩ for all w indexed by
the remaining bits;

2. z = 0 = 02
n2

and Cx(0) = 0, defining vw = |0⟩ for all indexed w.
Due to the recursion used to get p(w) for the 0-strings, the number of levels

needed to compute Cx(z) is at most ⌊log n⌋ − 1. Therefore, the number of

12 H. Hepp et al.

queries that Cx(z) makes is at most
∏⌊logn⌋

i=0 (2n)1/2
i

, which is less than 22n−1.
Therefore, the probability that Cx(z) obtains the correct answer is greater than

(1− 2−2n)2
2n−1

>
√
1/e > 2/3.

We need, finally, to consider that a subcomputation p(w) may return a wrong
result with probability greater than 2−2n. For such cases we can consider that
the subcomputation p(w) returns |1⟩ or |0⟩ in an arbitrary way. According to
Theorem 4 we have a polynomially small set S of oracle answers that can change
with probability greater than ε the output of a quantum algorithm naCQP. We
conclude, then, that there is always a way to set the values of vw for these “bad”
w so that neither Cx(di) = 0, nor Cx(0) = 1 occur.

References

1. Aaronson, S.: Quantum computing and hidden variables. Physical Review A 71(3),
032325 (2005). https://doi.org/10.1103/PhysRevA.71.032325

2. Aaronson, S.: PDQP/qpoly = ALL. Quantum Information & Computation 18(11-
12), 901–909 (2018), https://doi.org/10.5555/3370220.3370221

3. Aaronson, S., Bouland, A., Fitzsimons, J., Lee, M.: The space “just above” BQP.
Preprint (2014). https://doi.org/10.48550/arXiv.1412.6507

4. Aaronson, S., Bouland, A., Fitzsimons, J., Lee, M.: The space “just above” BQP.
In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Com-
puter Science. pp. 271–280 (2016). https://doi.org/10.1145/2840728.2840739

5. Baker, T., Gill, J., Solovay, R.: Relativizations of the P
?
= NP question. SIAM

Journal on Computing 4(4), 431–442 (1975). https://doi.org/10.1137/0204037
6. Beigel, R., Buhrman, H., Fortnow, L.: NP might not be as easy as detecting unique

solutions. In: Proceedings of the thirtieth annual ACM symposium on Theory of
computing. pp. 203–208 (1998). https://doi.org/10.1145/276698.276737

7. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM Journal on Computing 26(5), 1510–1523 (1997).
https://doi.org/10.1137/S0097539796300933

8. Fortnow, L., Rogers, J.: Complexity limitations on quantum computation. J. Com-
put. Syst. Sci. 59(2), 240–252 (1999). https://doi.org/10.1006/jcss.1999.1651

9. Gutfreund, D., Shaltiel, R., Ta-Shma, A.: Uniform hardness versus random-
ness tradeoffs for Arthur-Merlin games. Computational Complexity 12(3), 85–130
(2003). https://doi.org/10.1007/s00037-003-0178-7

10. Hiromasa, R., Mizutani, A., Takeuchi, Y., Tani, S.: Rewindable quantum compu-
tation and its equivalence to cloning and adaptive postselection. Preprint (2022).
https://doi.org/10.48550/arXiv.2206.05434

11. Menda, S., Watrous, J.: Oracle separations for quantum statistical zero-knowledge.
Preprint (2018). https://doi.org/10.48550/arXiv.1801.08967

12. Raz, R., Tal, A.: Oracle separation of BQP and PH. In: Proceedings of the 51st
annual ACM SIGACT Symposium on Theory of Computing. pp. 13–23 (2019).
https://doi.org/10.1145/3313276.3316315

13. Tamon, C., Yamakami, T.: Quantum computation relative to oracles. In: Un-
conventional Models of Computation, UMC’2K, pp. 273–288. Springer (2001).
https://doi.org/10.1007/978-1-4471-0313-4 20

https://doi.org/10.1103/PhysRevA.71.032325
https://dl.acm.org/doi/abs/10.5555/3370220.3370221
https://doi.org/10.48550/arXiv.1412.6507
https://doi.org/10.1145/2840728.2840739
https://doi.org/10.1137/0204037
https://doi.org/10.1145/276698.276737
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1006/jcss.1999.1651
https://doi.org/10.1007/s00037-003-0178-7
https://doi.org/10.48550/arXiv.2206.05434
https://doi.org/10.48550/arXiv.1801.08967
https://doi.org/10.1145/3313276.3316315
https://doi.org/10.1007/978-1-4471-0313-4_20

	Oracle Separations for Non-adaptive Collapse-free Quantum Computing

