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Abstract

An even-hole-free graph is a graph that does not contain, as an induced subgraph, a chordless cycle of even length. A graph is
triangulated if it does not contain any chordless cycle of length greater than three, as an induced subgraph. We prove that every
even-hole-free graph has a node whose neighborhood is triangulated. This implies that in an even-hole-free graph, with n nodes and
m edges, there are at most n + 2m maximal cliques. It also yields an O(n%m) algorithm that generates all maximal cliques of an
even-hole-free graph. In fact these results are obtained for a larger class of graphs that contains even-hole-free graphs.
© 2006 Published by Elsevier B.V.
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1. Introduction

We say that a graph G contains a graph H, if H is isomorphic to an induced subgraph of G. A graph G is H-free if
it does not contain H. A hole is a chordless cycle of length at least four. A hole is even (resp. odd) if it contains even
(resp. odd) number of nodes. An n-hole is a hole of length n. A graph is said to be triangulated if it does not contain
any hole.

We sign a graph by assigning 0, 1 weights to its edges in such a way that, for every triangle in the graph, the sum
of the weights of its edges is odd. A graph G is odd-signable if there is a signing of its edges so that, for every hole in
G, the sum of the weights of its edges is odd. Clearly every even-hole-free graph is odd-signable, since we can get a
correct signing by assigning a weight of 1 to every edge of the graph.

The graphs that are odd-signable and do not contain a 4-hole are studied in [7], where a decomposition theorem
is proved for them. This decomposition theorem is used in [8] to obtain a polynomial time recognition algorithm for
even-hole-free graphs.

For x € V(G), N(x) denotes the set of nodes of G that are adjacent to x, and N[x] = N (x) U {x}. For V' C V(G),
G[V'] denotes the subgraph of G induced by V’. For x € V(G), the graph G[N (x)] is called the neighborhood of x.

The main result of this paper is the following structural characterization of odd-signable graphs that do not contain
a 4-hole.

Theorem 1.1. Every 4-hole-free odd-signable graph has a node whose neighborhood is triangulated.
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Fig. 1. A 4-hole-free graph that has no vertex whose neighborhood is triangulated.

Exactly the same characterization of 4-hole-free Berge graphs (i.e. graphs that do not contain a 4-hole nor an odd
hole) is obtained by Parfenoff et al. [15]. Note that 4-hole-free graphs in general need not have this property, see Fig. 1.

A graph is Berge if it does not contain an odd hole nor the complement of an odd hole. A square-3PC(-, -) is a graph
that consists of three paths between two nodes such that any two of the paths induce a hole, and at least two of the
paths are of length 2. A graph G is even-signable if there is a signing of its edges so that for every hole in G, the sum
of the weights of its edges is even. In [13] Maffray et al. show that every square-3PC(-, -)-free even-signable graph
has a node whose neighborhood does not contain a long hole (where a long hole is a hole of length greater than 4).
This result is used in [13] to obtain a combinatorial algorithm of complexity ¢/(n”) for finding a clique of maximum
weight in square-3PC(-, -)-free Berge graphs. Note that this class of graphs generalizes both 4-hole-free Berge graphs
and claw-free Berge graphs (where a claw is a graph on nodes x, a, b, ¢ with three edges xa, xb, xc). We show in this
paper that key ideas from [13] extend to 4-hole-free odd-signable graphs.

Using Theorem 1.1 one can obtain an efficient algorithm for generating all the maximal cliques in 4-hole-free odd-
signable graphs (and in particular even-hole-free graphs). This we describe in Section 2. Theorem 1.1 is proved in
Section 3.

Recently Addario-Berry et al. [1] have proved a stronger property of even-hole-free graphs, namely that every
even-hole-free graph has a bisimplicial vertex (i.e. a vertex whose neighborhood partitions into two cliques). This
characterization immediately yields that for an even-hole-free graph G, y(G) < 2w (G) — 1, where y(G) is the chromatic
number of G and w(G) is the size of the largest clique in G (observe that if v is a bisimplicial vertex of G, then its
degree is at most 2w(G) — 2, and hence G can be colored with at most 2 (G) — 1 colors). The two characterizations
of even-hole-free graphs were discovered independently and at about the same time. The proof of the characterization
in [1] is over 40 pages long. Our weaker characterization is enough to obtain an efficient algorithm for generating all
maximal cliques of even-hole-free graphs, and its proof is very short.

2. Generating all the maximal cliques of a 4-hole-free odd-signable graph

For a graph G let k denote the number of maximal cliques in G, n the number of nodes in G and m the number of edges
of G. Farber [10] shows that there are (/(n*) maximal cliques in any 4-hole-free graph. Tsukiyama et al. [19] give an
(O(nmk) algorithm for generating all maximal cliques of a graph, and Chiba and Nishizeki [2] improve this complexity
to O(m' k). The complexity is further improved for dense graphs by the /(M (n)k) algorithm of Makino and Uno [14],
where M (n) denotes the time needed to multiply two #n x n matrices. Note that Coppersmith and Winograd show that
matrix multiplication can be done in O(n%37%) time [9]. So one can generate all the maximal cliques of a 4-hole-free
graph in time O(m'n?) or O(n*379).

We now show that Theorem 1.1 implies that there are at most n + 2m maximal cliques in a 4-hole-free odd-signable
graph, and it yields an algorithm that generates all the maximal cliques of a 4-hole-free odd-signable graph in time
O(n’m). In particular, in a weighted graph, a maximum weight clique can be found in time O(n*m).

Let % be any class of graphs closed under taking induced subgraphs, such that for every G in %, G has a node whose
neighborhood is triangulated. Consider the following algorithm for generating all maximal cliques of graphs in €.
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Find a node x; of G whose neighborhood is triangulated (if no such node exists, G is not in %, or in particular, G is
not 4-hole-free odd-signable graph by Theorem 1.1). Let G{ = G[N[x1]] and Gl = G\{x1}. Every maximal clique of
G belongs to G| or Gl Recursively construct triangulated graphs G, ..., G, as follows. For i >2, find a node x; of
G'~! whose neighborhood is triangulated and let G; = G[Ngi-1[x;]] and Gl = Gi_l\{x,-} =G\{xy, ..., x;}.

Clearly every maximal clique of G belongs to exactly one of the graphs G, . .., G, . A triangulated graph on n vertices
has at most n maximal cliques [11]. So fori =1, ..., n, graph G; has at most 1 4 d(x;) maximal cliques (where d(x)
denotes the degree of vertex x). It follows that the number of maximal cliques of G is at most Z?:l (1+d(xj))=n+2m.

Checking whether a graph is triangulated can be done in time ()(n + m) (using lexicographic breadth-first search
[16]). So finding a vertex with triangulated neighborhood can be done in time O(} cvc)dx)+m))= O(nm). Hence,
constructing the graphs G1, ..., G, takes time O(n’m).

Generating all maximal cliques in a triangulated graph can be done in time O(n + m) (see, for example, [12]).
Hence the overall complexity of generating all maximal cliques in a 4-hole-free odd-signable graph is dominated by
the construction of the sequence Gy, ..., G, i.e.itis @(nzm).

Note that this algorithm is robust in Spinrad’s sense [17]: given any graph G, the algorithm either verifies that G is
not in ¢ (or in particular that G is not a 4-hole-free odd-signable graph) or it generates all the maximal cliques of G.
Note that, when G is not in %, the algorithm might still generate all the maximal cliques of G.

3. Proof of Theorem 1.1

For a graph G, let V(G) denote its node set. For simplicity of notation we will sometimes write G instead of V(G),
when it is clear from the context that we want to refer to the node set of G. Also a singleton set {x} will sometimes be
denoted with just x. For example, instead of “u € V(G)\{x}”, we will write “u € G\x”.

Let x, y be two distinct nodes of G. A 3PC(x, y) is a graph induced by three chordless x, y-paths, such that any two
of them induce a hole. We say that a graph G contains a 3PC(-, -) if it contains a 3PC(x, y) for some x, y € V(G).
3PC(-, -)’s are also known as thetas (for example in [5]).

Let x1, x2, X3, ¥1, y2, ¥3 be six distinct nodes of G such that {xi, x2, x3} and {y1, y2, y3} induce triangles. A
3PC(x1x2x3, y1y2¥3) is a graph induced by three chordless paths P =x1, ..., y1, P=x2,..., y2 and P3=x3, ..., y3,
such that any two of them induce a hole. We say that a graph G contains a3PC(4, A) if it contains a3PC(x1x2X3, Y1Y2Y3)
for some x1, x2, x3, y1, ¥2, ¥3 € V(G). 3PC(4, A)’s are also known as prisms (for example in [4]).

A wheel, denoted by (H, x), is a graph induced by a hole H and a node x ¢ V (H) having at least three neighbors in
H, say xi, ..., x,. Node x is the center of the wheel. We say that the wheel (H, x) is even when n is even.

It is easy to see that even wheels, 3PC(-, -)’s and 3PC(4, A)’s cannot be contained in even-hole-free graphs. In fact
they cannot be contained in odd-signable graphs. The following characterization of odd-signable graphs, given in [6],
states that the converse is also true. It is in fact an easy consequence of a theorem of Truemper [18].

Theorem 3.1. A graph is odd-signable if and only if it does not contain an even wheel, a 3PC(-, -) nor a 3PC(4, A).

The fact that odd-signable graphs do not contain even wheels, 3PC(-, -)’s and 3PC(4, 4)’s will be used throughout
the rest of the paper.

In the next three lemmas we assume that G is a 4-hole-free odd-signable graph, x a node of G that is not adjacent to
every other node of G, C; a connected component of G\ N[x], and H a hole of N (x). Note that H is an odd hole, else
(H, x) is an even wheel.

Lemma 3.2. [fnode u of Cy has a neighbor in H then u is one of the following two types:

e Type 1: u has exactly one neighbor in H.
e Type 2: u has exactly two neighbors in H, and they are adjacent.

Proof. If u has two nonadjacent neighbors a and b in H, then {a, b, u, x} induces a 4-hole. [

Let 73 be a graph on 3 nodes that has exactly one edge.
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Let x1, x2, x3, y be four distinct nodes of G such that xy, xo, x3 induce a triangle. A 3PC(x1x2x3, ¥) is a graph
induced by three chordless paths P =x1,...,y, Pp=x2,...,yand P3=x3, ..., Y, such that any two of them induce
a hole. We say that a graph G contains a 3PC(4, ) if it contains a 3PC(x1x2x3, y) for some x1, x2,x3,y € V(G).
3PC(4, -)’s are also known as pyramids (for example in [3]).

Lemma 3.3. If H contains a T> all of whose nodes have neighbors in Cy, then Cy contains a path P, of length greater
than 0, such that P U H induces a 3PC(A, -), and the nodes of H that have a neighbor in P induce a T>.

Proof. Let C be a smallest subset of C; such that G[C] is connected and H =h, . .., h,, h; contains a T all of whose
nodes have neighbors in C. W.l.o.g. h1, hy and h;, 3 <i < n, have neighbors in C. Let P = pq, ..., px be a shortest
path of C such that p; is adjacent to 41 and py is adjacent to /. Note thatno intermediate node of P is adjacent to /]
or hy. Also possibly k = 1.

Claim 1. No node of {hq, ..., hy,—1} has a neighbor in P.

Proof of Claim 1. Suppose not. Then by minimality of C, h; has a neighbor in P and w.l.o.g. no node of
{hit+1, ..., hy—1} has aneighbor in P. By Lemma 3.2, p1, px ¢ N(h;) N P. In particular k > 1.

First suppose N (h,) NP # @. By Lemma 3.2, h,, py is not an edge. If N (h,,) N P = p; then {x, h,,, ho, h1}U P induces
an even wheel with center /1. So h, has a neighbor in P\{p1, pr}. If h;h, is not an edge, then since all of A1, hy, h;
have neighbors in P\ px, the minimality of C is contradicted. So #;#h,, is an edge of G. But then all of 4;, h,, h> have
neighbors in P\ p; and the minimality of C is contradicted. So N (h,) N P = 0.

Let p, be the node of P with highestindex adjacentto ;. Let H' be the hole induced by {h;, ..., h,, k1, ha, pr, ..., pr}.
Since (H’, x) cannot be an even wheel, it follows that &;, ..., hy, hy, hy is an even subpath of H. Let p; be the node
of P with lowest index adjacent to h;. Then {x, h;, ..., h,, h1, p1, ..., ps} induces an even wheel with center x. This

completes the proof of Claim 1. O

By Claim 1, A; is not adjacent to a node of P. But &; has a neighbor in C, and since C'is connected, let 0 =gq1, ..., q;
be a chordless path in C such that ¢ is adjacent to k; and ¢; has a neighbor in P.

Claim 2. No node of {ha, ..., h,—1} has a neighbor in (P U Q)\q1.

Proof of Claim 2. Suppose thatsome i € {h4, ..., h,_1} has aneighborin (P U Q)\q;. Thenall of &1, h2, h; have
neighbors in (P U Q)\gq1, contradicting the minimality of C. This completes the proof of Claim 2. [

Claim 3. ¢ is of type 1 w.r.t. H.

Proof of Claim 3. By Lemma 3.2 g is of type 1 or type 2. Suppose g is of type 2. We now prove that N(g) N H is
either {hs, ha} or {h,—_1, h,}. Assume not. Then ¢ is adjacent to neither i3 nor h,. W.l.o.g. N(q1) N H = {h;, hj_1}
andi # 4. If N(g;) N P # pi,then (P U Q)\ p; is connected and all of &;, h;_1, hy have neighbors in it, contradicting
the minimality of C. So N(g;) N P = p1.If k > 1, then all of k;, h;_1, h1 have neighbors in (P U Q)\ p, contradicting
the minimality of C. So k = 1, and hence by Lemma 3.2, N(p;) N H = {hy, h,}. Since H is odd, the two subpaths
of H, hy, ..., hi_y and h;, ..., h,, h1 have different parities. W.l.o.g. >, ..., h;j—1 is odd, i.e. i is even. By Claim 2,
no node of {h4, ..., h,—1} has a neighbor in (P U Q)\q1. If h3 has no neighbor in Q then QU P U {hy, ..., hj_1, x}
contains an even wheel with center x. So 3 must have a neighbor in Q. But then A;, h; 1, h3 all have neighbors in Q
(note that h3h;_1 is not an edge since i — 1 is odd greater than 3) contradicting the minimality of C. So N(g1) N H is
either {h3, hq} or {h,_1, hy,}.

W.lo.g. N(q1) N H = {h3, ha}. If N(q;) N P # py, then since all of hy, h3, hs have neighbors in (P U Q)\ px, the
minimality of C is contradicted. So N(g;) N P = px.

If N(hi) N Q # @, then since all of hy, h3, hs have neighbors in Q, the minimality of C is contradicted. So
N(hp) N Q=40.

Now suppose that N (h,) N Q # @.1f k > 1, then since all of &, h3, h, have neighbors in (P U Q)\ p1, the minimality
of C is contradicted. So k = 1. Let g, be the neighbor of %, with highest index. If s, does not have a neighbor in
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qrs Qr+1s - - - q1, then {g,, gr+1, - .., q1, p1, h1, h2, hy,, x} induces an even wheel with center i1. So N (h2) N Q # @.
But then since &5, h3, h, have neighbors in Q, the minimality of C is contradicted. Therefore, N (4,) N Q = @. So, by
Claim 2, no node of As, ..., hy,, hi has a neighbor in Q.

Suppose N (hy)N Q # (. Let g, be the neighbor of /15 in Q with lowest index. Then (H\h3)U{x, g1, ..., g,} induces
an even wheel with center x. Therefore, N(hy) N Q =@. If k > 1, then Q U (H\h3) U {pg, x} induces an even wheel
with center x. So k = 1. Let g, be the node of Q with highest index adjacent to 3. Then {p1, g5, ..., q1, h1, h2, h3, x}
induces an even wheel with center /;. This completes the proof of Claim 3. [J

Claim 4. N(q;) N P = p; or pk.

Proof of Claim 4. Assume not. Then k£ > 1, and both (P U Q)\p; and (P U Q)\ px are connected. N (h1) N Q =0,
else all of i1, ho, h; have neighbors in (P U Q)\ p1, contradicting the minimality of C. Similarly, N(h2) N Q = 0.

We now show that &3 has no neighbor in P U Q. Suppose it does. Then by Lemma 3.2, i3 has a neighbor in
(P U Q)\p1.Ifi # 4, then since all 5, h3, h; have neighbors in (P U Q)\ p1, the minimality of C is contradicted. So
i=4.1t N(h3) N (P U Q) # pi, then all of hy, h3, hs have neighbors in (P U Q)\ px, contradicting the minimality of
C.So N(h3) N (P U Q) = px. Butthen P U Q U {h», h3, hq, x} contains an even wheel with center /3. Therefore, /3
has no neighbor in P U Q, and similarly neither does #,,.

By minimality of C, N(g;) N P is either a single vertex or two adjacent vertices of P. If N(g;) N P = {a, b}, where
ab € E(G),then PUQU{x, hy, h>, h;}induces a3PC(q;ab, xh1h).If N(q;)) NP ={a},then PUQU{hy, ha, ..., h;}
induces a 3PC(a, hy). This completes the proof of Claim 4. [

By Claim 4, w.l.o.g. N(q;) N P = pi.
Claim 5. & does not have a neighbor in (P U Q)\p1.

Proof of Claim 5. If k > 1, the claim follows from the minimality of C. Now suppose k = 1 and N(h1) N Q # (. If
hs has a neighbor in Q, then all of &1, h2, h; have a neighbor in Q, contradicting the minimality of C. So hy does not
have a neighbor in Q.

Suppose 4, has a neighbor in Q. Note that by Claim 3, such a neighbor is in Q\g;. Then /3 cannot have a neighbor
in Q, else all of 4,,, h, h3 have neighbors in Q, contradicting the minimality of C. But then (Q\q) U (H\h1)U{x, p1}
contains an even wheel with center x. So %, does not have a neighbor in Q.

Suppose &3 has a neighbor in Q. By Claim 3, such a neighbor is in Q\gj. Then (Q\g1) U (H\h2) U x contains an
even wheel with center x. So &3 does not have a neighbor in Q.

Let H' be the hole induced by {py, h2, ..., h;} U Q, and H” the hole induced by {x, pi, k2, h;} U Q. Then either
(H', hy) or (H”, hy) is an even wheel. This completes the proof of Claim 5. [

Claim 6. N(h,) N (P U Q) =4.

Proof of Claim 6. Assume not. If 43 has a neighbor in P U Q then, by Claim 3, all of &7, k3, h, have a neighbor in
(P U Q)\q1, contradicting the minimality of C. So N(h3) N (P U Q) = @. Let R be a shortest path from /4, to &, in
the graph induced by P U (Q\q1) U {h2, h,}. Then by Claims 2 and 3, R U (H\h) U x induces an even wheel with
center x. This completes the proof of Claim 6. [J

Claim 7. N(h3) N (P U Q) = #.

Proof of Claim 7. Assume not. Let R be a shortest path from £ to k3 in the graph induced by (P U Q)\qi. Then
R U (H\h7) U x induces an even wheel with center x. This completes the proof of Claim 7. [J

If k > 1 then the graph induced by H U Q U p; contains a 3PC(h2, h;). So k = 1. By symmetry and Claim 5, &,
does not have a neighbor in Q, and hence P U Q U H induces a 3PC(4, -).

Lemma 3.4. There exists a node of H that has no neighbor in C.
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Proof. Let H=hy, ..., hy,, h1 and suppose that every node of H has a neighbor in C;. Recall that since (H, x) cannot
be an even wheel, H is of odd length. So H contains a T3 all of whose nodes have neighbors in C. By Lemma 3.3, Cy
contains a path P = py, ..., px, k> 1, such that P U H induces w.l.o.g. a 3PC(h1h> px, hi), 3 <i <n.If i is odd, then
{x, ho, ..., hj} U P induces an even wheel with center x. So i is even.

Let Q =qi, ..., q be apath in C; defined as follows: g is adjacent to h; € H\{hy, ha, h;} where j is odd, g; is
adjacent to a node of P and no proper subpath of Q has this property. We may assume that P and Q are chosen so that
|P U Q] is minimized.

By the choice of P and Q, N(g;) N P is either one single vertex or two adjacent vertices of P, and /4 ; has no neighbor
in Q\q. Note that since n is odd, the two subpaths of H, hs, ..., h; and h;, ..., h,, h are both of even length, so we
may assume w.l.o.g. that2 < j <.

Claim 1. At least one node of {ha, ..., hj_1} (resp. {hjy1, ..., h,}) has a neighbor in Q.

Proof of Claim 1. First suppose that no node of H\{h, } has aneighbor in Q. Let p, be the node of P with highest
index adjacent to ¢;. If j >3, then {x, h2,..., hj, ps. ..., pr} U QO induces an even wheel with center x. So j = 3. If
N(h1) N Q =@ then {x, hy, ho, h3, ps, ..., pr} U Q induces an even wheel with center s;. So N(h1) N Q # (. Let g,
be the node of Q with lowest index adjacent to /1. Then (H\h2) U {x, q1, ..., g} induces an even wheel with center
x. So at least one node of H\{h1, h;} has a neighbor in Q.

Next suppose that nonode of {h2, ..., h;j_1} has aneighborin Q. Let p, be the node of P with highest index adjacent
tog;. If j >3 then {x, ha, ..., hj, ps,..., pr} U Q induces an even wheel with center x. So j = 3. Let h j be the node
of {hj41, ..., h,} with lowest index adjacent to a node of Q. By definition of Q and Lemma 3.2, j’ is even. Let ¢, be
the node of Q with lowest index adjacent to /4 . If j' > 4 then {x, hj,....,hj,q1,...,qr}induces an even wheel with
center x. So j' =4.If N(hy) N Q =@ then {x, hy, hy, h3, ps. ..., pr} U O induces an even wheel with center /5. So
N(h1)NQ # @. In fact, by Lemma 3.2, N(h1) N (Q\q1) # @. Suppose N (hs) N Q # q1.Let R be a shortest path from
ha to hy in the graph induced by (Q\q1) U {h1, ha}. Then, {x, h1, ..., ha} U R induces an even wheel with center x. So
N(hs) N Q =gq1.Suppose N(q;) N P # pyori>4. Then {x, hy, h3, ha, ps, ..., px} U O induces an even wheel with
center 73. So N(g;) N P = p; and i = 4. Let R be a shortest path from pj to /1 in the graph induced by Q U {p1, h1}.
Then, P U RU {hy, hy, x} induces a 3PC(p1, h1). Therefore, at least one node of {A2, ..., h;_1} has a neighbor in Q.

Finally, suppose that no node of {h;1, ..., h,} has a neighbor in Q. Let & ;» be a node of hy, ..., hj_1 such that
N(hj) N Q # @ and the path from £ to h; in the graph induced by P U Q U {h;, hj/} is minimized. By definition of
Q and Lemma 3.2, j is even. Suppose N (k1) N Q # . Let R be a shortest path from % to iy in the graph induced by
Q U {hy, hj}. Then, (H\{h2, ..., hj_1}) U R Ux induces an even wheel with center x. So N (k1) N Q = . Suppose
N(gi)N P # pi.Let R be ashortest path from £; to 4 ;- in the graph induced by P U QU{h;, h j/}. Note that by definition
of Q and /1 j» and by Lemma 3.2, no node of {2, ..., hjs_} has a neighbor in R. Then (H\{h '} 1,..., hi—1}) URUx
induces an even wheel with center x. So N (g;) N P = py. Butthen (H\{h2, ..., hj_1}) U PU Q induces a 3PC(p, h;).
This completes the proof of Claim 1. [

By Claim 1 at least two nodes, say & and h j», of H\{h{, h;} have a neighbor in Q. Note that by definition of Q and
Lemma 3.2, j" and j” are both even. W.lo.g. j' < j < j”.Let R=ry, ..., r; be a shortest path in the graph induced
by Q where N(h;;) "R =ry and N(h;») N R =r;. W.Lo.g. and by Lemma 3.2 no other node from H\{hy, i;} has a
neighbor in R.

If N(hy) N R =, then (H\{hj41,...,hj»_1}) U R Ux induces an even wheel with center x. So N(h1) N R # @.
Suppose j’ # 2. Let R’ be a shortest path from /2 to & j: in the graph induced by RU{h1, hj/}. Then {x, hy, ..., h; JUR'
induces an even wheel with center x. Therefore j/ = 2.

Suppose that N(h1) N R =rq. Then by Lemma 3.2, N(r1) N H = {hy, ha}. If r; = q1, then by Lemma 3.2, N(r;) N
H =1{hj, hjy1}, and hence H U R induces a 3PC(h1hary, hjy1hjry). So r; # q1, and hence N(r;) N H = {hs}.
Therefore, H U R induces a 3PC(hihary, hjr). Let R’ be a shortest path from ¢ to a node of R in the graph induced
by Q. Since |[R U R’'| < |P U Q], the choice of P and Q is contradicted.

So N(h1)N(R\r1) # . Letr, be the node of R with highest index adjacent to 4. If /1 ; has no neighborinry, ..., r;,
then {x, hy,...,hjn, 1y, ..., 17} induces an even wheel with center x. So i; does have a neighbor in 7, ..., 7y, ie.
ry =q1. By Lemma 3.2, N(r;) N H = {h, h»}, where j” = j 4+ 1. Note that i >j + 1 and ry # ¢;. But then
(H\{h2,...,hj} ) U P Ul{rs,...,r}induces a 3PC(hy, h;). 0
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X

Fig. 2. An odd-signable graph for which Lemma 3.4 does not work.

Note that the above lemma does not work if we allow 4-holes. Consider the odd-signable graph in Fig. 2 (one can see
that this graph is odd-signable by assigning O to the three bold edges and 1 to all the other edges). Let H be the 5-hole
induced by the neighborhood of node x. Then every node of H has a neighbor in the unique connected component
obtained by removing N (x) U x.

Let & be a class of graphs. We say that a graph G is & -free if G does not contain (as an induced subgraph) any of
the graphs from % .

A class # of graphs satisfies property (*) w.r.t. a graph G if the following holds: for every node x of G such that
G\N[x] # @, and for every connected component C of G\N[x], if F € # is contained in G[N (x)], then there exists
a node of F that has no neighbor in C.

The following theorem is proved in [13]. For completeness we include its proof here.

Theorem 3.5 (Maffray et al. [13]). Let & be a class of graphs such that for every F € &, no node of F is adjacent to
all the other nodes of F. If F satisfies property (*) w.r.t. a graph G, then G has a node whose neighborhood is F -free.

Proof. Let . be aclass of graphs such that for every F € 4, no node of F is adjacent to all the other nodes of F. Assume
that & satisfies property (¥) w.r.t. G, and suppose that for every x € V(G), G[N(x)] is not # -free. Then G is not a
clique (since every graph of # contains nonadjacent nodes) and hence it contains a node x that is not adjacent to all other
nodes of G. Let Cy, . .., Cy be the connected components of G\ N [x], with |C{|> - - - >|Ck|. Choose x so that for every
y € V(G) the following holds: if C7, ..., C; are the connected components of G\N[y] with |C{|> - -+ >|C/ |, then

|C1] > |C{], or
|ICi|=|C{| and |C2| > |C3], or

IC1] =IC{l. ..., |Ck=1] = |C{_,| and |C¢| > |C} |, or
fori=1,...,k |Ci/|=|C;|and k =1.

Let N=N(x)andC=C1U---UCy.Fori=1,...,k,let N; be the set of nodes of N that have a neighbor in C;.

Claim 1. Ny €S N, € --- C Nyandforeveryi=1,...,k—1,everynode of (N\N;)U (Ciy1 U---UCy) is adjacent
to every node of N;.

Proof of Claim 1. We argue by induction. First we show that every node of (N\N1) U (C2 U --- U Cy) is adjacent to
every node of Nj. Assume not and let y € (N\Np) U (Ca U - - - U Cy) be such that it is not adjacent to z € Nj. Clearly
y has no neighbor in C1, but z does. So G\ N[y] contains a connected component that contains C; U z, contradicting
the choice of x.

Now leti > 1 and assume that Ny € --- € N;_1 and every node of (N\N;_1) U (C; U---U Cy) is adjacent to every
node of N;_1. Since every node of C; is adjacent to every node of N;_1, it follows that N;_1 € N;. Suppose that there
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exists anode y € (N\N;) U (Cj4+1 U --- U Cy) that is not adjacent to a node z € N;. Then z € N;\N;_1 and z has a
neighbor in C;. Also y is adjacent to all nodes in N; _1 and no node of C; U- - -UC;. So there exist connected components
of G\N[y], cl, ..., Cly such that C :Civ, .., Ciq =Ciy7] and C; Uz is contained in Ciy. This contradicts the choice
of x. This completes the proof of Claim 1. [J

Since G[N]is not # -free, it contains F' € .7 . By property (*), a node y of F has no neighbor in Cy. By Claim 1, y is
adjacent to every node of N, and no node of N\ Ny has a neighbor in C. So (since every node of F has a non-neighbor
in F) F must contain another node z € N\Nj, nonadjacent to y. But then Cy, ..., Cy are connected components of
G\N[y] and z is contained in (G\N[y])\C, so y contradicts the choice of x.

Proof of Theorem 1.1. Let G be a 4-hole-free odd-signable graph. Let # be the set of all holes. By Lemma 3.4, #
satisfies property (¥) w.r.t. G. So by Theorem 3.5, G has a node whose neighborhood is 7 -free, i.e. triangulated. [

4. Final remarks

In a graph G, for any node x, let Cq, ..., Ci be the connected components of G\ N [x], with |C1|> --- >|Cy]|, and
let the numerical vector (|Cq], ..., |Ck|) be associated with x. The nodes of G can thus be ordered according to the
lexicographic ordering of the numerical vectors associated with them. Say that a node x is lex-maximal if the associated
numerical vector is lexicographically maximal over all nodes of G. Theorem 3.5 actually shows that for a lex-maximal
node x, N (x) is Z -free. This implies the following.

Theorem 4.1. Let G be a 4-hole-free odd-signable graph, and let x be a lex-maximal node of G. Then the neighborhood
of x is triangulated.

Possibly a more efficient algorithm for listing all maximal cliques can be constructed by searching for a lex-maximal
node.

Lemma 3.4 also proves the following decomposition theorem. (H, x) is a universal wheel if x is adjacent to all the
nodes of H. A node set S is a star cutset of a connected graph G if for some x € §, S € N[x]and G\S is disconnected.

Theorem 4.2. Let G be a 4-hole-free odd-signable graph. If G contains a universal wheel, then G has a star cutset.

Proof. Let (H, x) be auniversal wheel of G. If G = N[x], then for any two nonadjacent nodes @ and b of H, N[x]\{a, b}
is a star cutset of G. So assume G\ N|[x] contains a connected component C|. By Lemma 3.4, a node @ € H has no
neighbor in C;. But then N[x]\a is a star cutset of G that separates a from C;. [

In [7] universal wheels in 4-hole-free odd-signable graphs are decomposed with triple star cutsets, i.e. node cutsets
S such that for some triangle {x1, x2, x3} € 5, S € N(x1) U N(x2) U N(x3).
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