Triangulated neighborhoods in even-hole-free graphs ${ }^{\boxed{ } / 2}$

Murilo V.G. da Silva, Kristina Vušković
School of Computing, University of Leeds, Leeds LS2 9JT, UK
Received 18 November 2005; received in revised form 14 July 2006; accepted 20 July 2006
Available online 10 October 2006

Abstract

An even-hole-free graph is a graph that does not contain, as an induced subgraph, a chordless cycle of even length. A graph is triangulated if it does not contain any chordless cycle of length greater than three, as an induced subgraph. We prove that every even-hole-free graph has a node whose neighborhood is triangulated. This implies that in an even-hole-free graph, with n nodes and m edges, there are at most $n+2 m$ maximal cliques. It also yields an $\mathrm{O}\left(n^{2} m\right)$ algorithm that generates all maximal cliques of an even-hole-free graph. In fact these results are obtained for a larger class of graphs that contains even-hole-free graphs.

© 2006 Published by Elsevier B.V.
Keywords: Even-hole-free graphs; Triangulated graphs; Structural characterization; Generating all maximal cliques

1. Introduction

We say that a graph G contains a graph H, if H is isomorphic to an induced subgraph of G. A graph G is H-free if it does not contain H. A hole is a chordless cycle of length at least four. A hole is even (resp. odd) if it contains even (resp. odd) number of nodes. An n-hole is a hole of length n. A graph is said to be triangulated if it does not contain any hole.

We sign a graph by assigning 0,1 weights to its edges in such a way that, for every triangle in the graph, the sum of the weights of its edges is odd. A graph G is odd-signable if there is a signing of its edges so that, for every hole in G, the sum of the weights of its edges is odd. Clearly every even-hole-free graph is odd-signable, since we can get a correct signing by assigning a weight of 1 to every edge of the graph.

The graphs that are odd-signable and do not contain a 4-hole are studied in [7], where a decomposition theorem is proved for them. This decomposition theorem is used in [8] to obtain a polynomial time recognition algorithm for even-hole-free graphs.

For $x \in V(G), N(x)$ denotes the set of nodes of G that are adjacent to x, and $N[x]=N(x) \cup\{x\}$. For $V^{\prime} \subseteq V(G)$, $G\left[V^{\prime}\right]$ denotes the subgraph of G induced by V^{\prime}. For $x \in V(G)$, the graph $G[N(x)]$ is called the neighborhood of x.

The main result of this paper is the following structural characterization of odd-signable graphs that do not contain a 4-hole.

Theorem 1.1. Every 4-hole-free odd-signable graph has a node whose neighborhood is triangulated.

[^0]

Fig. 1. A 4-hole-free graph that has no vertex whose neighborhood is triangulated.

Exactly the same characterization of 4-hole-free Berge graphs (i.e. graphs that do not contain a 4-hole nor an odd hole) is obtained by Parfenoff et al. [15]. Note that 4-hole-free graphs in general need not have this property, see Fig. 1.
A graph is Berge if it does not contain an odd hole nor the complement of an odd hole. A square-3PC($\cdot, \cdot)$ is a graph that consists of three paths between two nodes such that any two of the paths induce a hole, and at least two of the paths are of length 2 . A graph G is even-signable if there is a signing of its edges so that for every hole in G, the sum of the weights of its edges is even. In [13] Maffray et al. show that every square-3PC($\cdot, \cdot)$-free even-signable graph has a node whose neighborhood does not contain a long hole (where a long hole is a hole of length greater than 4). This result is used in [13] to obtain a combinatorial algorithm of complexity $\mathcal{O}\left(n^{7}\right)$ for finding a clique of maximum weight in square- $3 P C(\cdot, \cdot)$-free Berge graphs. Note that this class of graphs generalizes both 4 -hole-free Berge graphs and claw-free Berge graphs (where a claw is a graph on nodes x, a, b, c with three edges $x a, x b, x c$). We show in this paper that key ideas from [13] extend to 4-hole-free odd-signable graphs.

Using Theorem 1.1 one can obtain an efficient algorithm for generating all the maximal cliques in 4-hole-free oddsignable graphs (and in particular even-hole-free graphs). This we describe in Section 2. Theorem 1.1 is proved in Section 3.

Recently Addario-Berry et al. [1] have proved a stronger property of even-hole-free graphs, namely that every even-hole-free graph has a bisimplicial vertex (i.e. a vertex whose neighborhood partitions into two cliques). This characterization immediately yields that for an even-hole-free graph $G, \chi(G) \leqslant 2 \omega(G)-1$, where $\chi(G)$ is the chromatic number of G and $\omega(G)$ is the size of the largest clique in G (observe that if v is a bisimplicial vertex of G, then its degree is at most $2 \omega(G)-2$, and hence G can be colored with at most $2 \omega(G)-1$ colors). The two characterizations of even-hole-free graphs were discovered independently and at about the same time. The proof of the characterization in [1] is over 40 pages long. Our weaker characterization is enough to obtain an efficient algorithm for generating all maximal cliques of even-hole-free graphs, and its proof is very short.

2. Generating all the maximal cliques of a 4-hole-free odd-signable graph

For a graph G let k denote the number of maximal cliques in G, n the number of nodes in G and m the number of edges of G. Farber [10] shows that there are $\mathcal{O}\left(n^{2}\right)$ maximal cliques in any 4-hole-free graph. Tsukiyama et al. [19] give an $\mathcal{O}(n m k)$ algorithm for generating all maximal cliques of a graph, and Chiba and Nishizeki [2] improve this complexity to $\mathcal{O}\left(m^{1.5} k\right)$. The complexity is further improved for dense graphs by the $\mathcal{O}(M(n) k)$ algorithm of Makino and Uno [14], where $M(n)$ denotes the time needed to multiply two $n \times n$ matrices. Note that Coppersmith and Winograd show that matrix multiplication can be done in $\mathcal{O}\left(n^{2.376}\right)$ time [9]. So one can generate all the maximal cliques of a 4 -hole-free graph in time $\mathcal{O}\left(m^{1.5} n^{2}\right)$ or $\mathcal{O}\left(n^{4.376}\right)$.

We now show that Theorem 1.1 implies that there are at most $n+2 m$ maximal cliques in a 4 -hole-free odd-signable graph, and it yields an algorithm that generates all the maximal cliques of a 4-hole-free odd-signable graph in time $\mathcal{O}\left(n^{2} m\right)$. In particular, in a weighted graph, a maximum weight clique can be found in time $\mathcal{O}\left(n^{2} m\right)$.

Let \mathscr{C} be any class of graphs closed under taking induced subgraphs, such that for every G in \mathscr{C}, G has a node whose neighborhood is triangulated. Consider the following algorithm for generating all maximal cliques of graphs in \mathscr{C}.

Find a node x_{1} of G whose neighborhood is triangulated (if no such node exists, G is not in \mathscr{C}, or in particular, G is not 4-hole-free odd-signable graph by Theorem 1.1). Let $G_{1}=G\left[N\left[x_{1}\right]\right]$ and $G^{1}=G \backslash\left\{x_{1}\right\}$. Every maximal clique of G belongs to G_{1} or G^{1}. Recursively construct triangulated graphs G_{1}, \ldots, G_{n} as follows. For $i \geqslant 2$, find a node x_{i} of G^{i-1} whose neighborhood is triangulated and let $G_{i}=G\left[N_{G^{i-1}}\left[x_{i}\right]\right]$ and $G^{i}=G^{i-1} \backslash\left\{x_{i}\right\}=G \backslash\left\{x_{1}, \ldots, x_{i}\right\}$.

Clearly every maximal clique of G belongs to exactly one of the graphs G_{1}, \ldots, G_{n}. A triangulated graph on n vertices has at most n maximal cliques [11]. So for $i=1, \ldots, n$, graph G_{i} has at most $1+d\left(x_{i}\right)$ maximal cliques (where $d(x)$ denotes the degree of vertex x). It follows that the number of maximal cliques of G is at most $\sum_{i=1}^{n}\left(1+d\left(x_{i}\right)\right)=n+2 m$.

Checking whether a graph is triangulated can be done in time $\mathcal{O}(n+m)$ (using lexicographic breadth-first search [16]). So finding a vertex with triangulated neighborhood can be done in time $\mathcal{O}\left(\sum_{x \in V(G)}(d(x)+m)\right)=\mathcal{O}(n m)$. Hence, constructing the graphs G_{1}, \ldots, G_{n} takes time $\mathcal{O}\left(n^{2} m\right)$.

Generating all maximal cliques in a triangulated graph can be done in time $\mathcal{O}(n+m)$ (see, for example, [12]). Hence the overall complexity of generating all maximal cliques in a 4-hole-free odd-signable graph is dominated by the construction of the sequence G_{1}, \ldots, G_{n}, i.e. it is $\mathcal{O}\left(n^{2} m\right)$.

Note that this algorithm is robust in Spinrad's sense [17]: given any graph G, the algorithm either verifies that G is not in \mathscr{C} (or in particular that G is not a 4-hole-free odd-signable graph) or it generates all the maximal cliques of G. Note that, when G is not in \mathscr{C}, the algorithm might still generate all the maximal cliques of G.

3. Proof of Theorem 1.1

For a graph G, let $V(G)$ denote its node set. For simplicity of notation we will sometimes write G instead of $V(G)$, when it is clear from the context that we want to refer to the node set of G. Also a singleton set $\{x\}$ will sometimes be denoted with just x. For example, instead of " $u \in V(G) \backslash\{x\}$ ", we will write " $u \in G \backslash x$ ".

Let x, y be two distinct nodes of G. A $3 P C(x, y)$ is a graph induced by three chordless x, y-paths, such that any two of them induce a hole. We say that a graph G contains a $3 P C(\cdot, \cdot)$ if it contains a $3 P C(x, y)$ for some $x, y \in V(G)$. $3 P C(\cdot, \cdot)$'s are also known as thetas (for example in [5]).

Let $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ be six distinct nodes of G such that $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}\right\}$ induce triangles. A $3 P C\left(x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}\right)$ is a graph induced by three chordless paths $P_{1}=x_{1}, \ldots, y_{1}, P_{2}=x_{2}, \ldots, y_{2}$ and $P_{3}=x_{3}, \ldots, y_{3}$, such that any two of them induce a hole. We say that a graph G contains a $3 P C(\Delta, \Delta)$ if it contains a $3 P C\left(x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}\right)$ for some $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in V(G) .3 P C(\Delta, \Delta)$'s are also known as prisms (for example in [4]).

A wheel, denoted by (H, x), is a graph induced by a hole H and a node $x \notin V(H)$ having at least three neighbors in H, say x_{1}, \ldots, x_{n}. Node x is the center of the wheel. We say that the wheel (H, x) is even when n is even.

It is easy to see that even wheels, $3 P C(\cdot, \cdot)$'s and $3 P C(\Delta, \Delta)$'s cannot be contained in even-hole-free graphs. In fact they cannot be contained in odd-signable graphs. The following characterization of odd-signable graphs, given in [6], states that the converse is also true. It is in fact an easy consequence of a theorem of Truemper [18].

Theorem 3.1. A graph is odd-signable if and only if it does not contain an even wheel, a $3 P C(\cdot, \cdot)$ nor a $3 P C(\Delta, \Delta)$.

The fact that odd-signable graphs do not contain even wheels, $3 P C(\cdot, \cdot)$'s and $3 P C(\Delta, \Delta)$'s will be used throughout the rest of the paper.

In the next three lemmas we assume that G is a 4-hole-free odd-signable graph, x a node of G that is not adjacent to every other node of G, C_{1} a connected component of $G \backslash N[x]$, and H a hole of $N(x)$. Note that H is an odd hole, else (H, x) is an even wheel.

Lemma 3.2. If node u of C_{1} has a neighbor in H then u is one of the following two types:

- Type 1: u has exactly one neighbor in H.
- Type 2: u has exactly two neighbors in H, and they are adjacent.

Proof. If u has two nonadjacent neighbors a and b in H, then $\{a, b, u, x\}$ induces a 4-hole.
Let T^{3} be a graph on 3 nodes that has exactly one edge.

Let x_{1}, x_{2}, x_{3}, y be four distinct nodes of G such that x_{1}, x_{2}, x_{3} induce a triangle. A $3 P C\left(x_{1} x_{2} x_{3}, y\right)$ is a graph induced by three chordless paths $P_{1}=x_{1}, \ldots, y, P_{2}=x_{2}, \ldots, y$ and $P_{3}=x_{3}, \ldots, y$, such that any two of them induce a hole. We say that a graph G contains a $3 P C(\Delta, \cdot)$ if it contains a $3 P C\left(x_{1} x_{2} x_{3}, y\right)$ for some $x_{1}, x_{2}, x_{3}, y \in V(G)$. $3 P C(\Delta$, .)'s are also known as pyramids (for example in [3]).

Lemma 3.3. If H contains a T^{3} all of whose nodes have neighbors in C_{1}, then C_{1} contains a path P, of length greater than 0 , such that $P \cup H$ induces a $3 P C(\Delta, \cdot)$, and the nodes of H that have a neighbor in P induce a T^{3}.

Proof. Let C be a smallest subset of C_{1} such that $G[C]$ is connected and $H=h_{1}, \ldots, h_{n}, h_{1}$ contains a T^{3} all of whose nodes have neighbors in C. W.l.o.g. h_{1}, h_{2} and $h_{i}, 3<i<n$, have neighbors in C. Let $P=p_{1}, \ldots, p_{k}$ be a shortest path of C such that p_{1} is adjacent to h_{1} and p_{k} is adjacent to h_{2}. Note thatno intermediate node of P is adjacent to h_{1} or h_{2}. Also possibly $k=1$.

Claim 1. No node of $\left\{h_{4}, \ldots, h_{n-1}\right\}$ has a neighbor in P.
Proof of Claim 1. Suppose not. Then by minimality of C, h_{i} has a neighbor in P and w.l.o.g. no node of $\left\{h_{i+1}, \ldots, h_{n-1}\right\}$ has a neighbor in P. By Lemma 3.2, $p_{1}, p_{k} \notin N\left(h_{i}\right) \cap P$. In particular $k>1$.

First suppose $N\left(h_{n}\right) \cap P \neq \emptyset$. By Lemma 3.2, $h_{n} p_{k}$ is not an edge. If $N\left(h_{n}\right) \cap P=p_{1}$ then $\left\{x, h_{n}, h_{2}, h_{1}\right\} \cup P$ induces an even wheel with center h_{1}. So h_{n} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. If $h_{i} h_{n}$ is not an edge, then since all of h_{1}, h_{n}, h_{i} have neighbors in $P \backslash p_{k}$, the minimality of C is contradicted. So $h_{i} h_{n}$ is an edge of G. But then all of h_{i}, h_{n}, h_{2} have neighbors in $P \backslash p_{1}$ and the minimality of C is contradicted. So $N\left(h_{n}\right) \cap P=\emptyset$.

Let p_{r} be the node of P with highest index adjacent to h_{i}. Let H^{\prime} be the hole induced by $\left\{h_{i}, \ldots, h_{n}, h_{1}, h_{2}, p_{k}, \ldots, p_{r}\right\}$. Since (H^{\prime}, x) cannot be an even wheel, it follows that $h_{i}, \ldots, h_{n}, h_{1}, h_{2}$ is an even subpath of H. Let p_{s} be the node of P with lowest index adjacent to h_{i}. Then $\left\{x, h_{i}, \ldots, h_{n}, h_{1}, p_{1}, \ldots, p_{s}\right\}$ induces an even wheel with center x. This completes the proof of Claim 1.

By Claim 1, h_{i} is not adjacent to a node of P. But h_{i} has a neighbor in C, and since C is connected, let $Q=q_{1}, \ldots, q_{l}$ be a chordless path in C such that q_{1} is adjacent to h_{i} and q_{l} has a neighbor in P.

Claim 2. No node of $\left\{h_{4}, \ldots, h_{n-1}\right\}$ has a neighbor in $(P \cup Q) \backslash q_{1}$.
Proof of Claim 2. Suppose that some $h_{j} \in\left\{h_{4}, \ldots, h_{n-1}\right\}$ has a neighbor in $(P \cup Q) \backslash q_{1}$. Then all of h_{1}, h_{2}, h_{j} have neighbors in $(P \cup Q) \backslash q_{1}$, contradicting the minimality of C. This completes the proof of Claim 2.

Claim 3. q_{1} is of type 1 w.r.t. H.
Proof of Claim 3. By Lemma $3.2 q_{1}$ is of type 1 or type 2. Suppose q_{1} is of type 2 . We now prove that $N\left(q_{1}\right) \cap H$ is either $\left\{h_{3}, h_{4}\right\}$ or $\left\{h_{n-1}, h_{n}\right\}$. Assume not. Then q_{1} is adjacent to neither h_{3} nor h_{n}. W.l.o.g. $N\left(q_{1}\right) \cap H=\left\{h_{i}, h_{i-1}\right\}$ and $i \neq 4$. If $N\left(q_{l}\right) \cap P \neq p_{1}$, then $(P \cup Q) \backslash p_{1}$ is connected and all of h_{i}, h_{i-1}, h_{2} have neighbors in it, contradicting the minimality of C. So $N\left(q_{l}\right) \cap P=p_{1}$. If $k>1$, then all of h_{i}, h_{i-1}, h_{1} have neighbors in $(P \cup Q) \backslash p_{k}$, contradicting the minimality of C. So $k=1$, and hence by Lemma 3.2, $N\left(p_{1}\right) \cap H=\left\{h_{1}, h_{2}\right\}$. Since H is odd, the two subpaths of $H, h_{2}, \ldots, h_{i-1}$ and $h_{i}, \ldots, h_{n}, h_{1}$ have different parities. W.l.o.g. h_{2}, \ldots, h_{i-1} is odd, i.e. i is even. By Claim 2, no node of $\left\{h_{4}, \ldots, h_{n-1}\right\}$ has a neighbor in $(P \cup Q) \backslash q_{1}$. If h_{3} has no neighbor in Q then $Q \cup P \cup\left\{h_{2}, \ldots, h_{i-1}, x\right\}$ contains an even wheel with center x. So h_{3} must have a neighbor in Q. But then h_{i}, h_{i-1}, h_{3} all have neighbors in Q (note that $h_{3} h_{i-1}$ is not an edge since $i-1$ is odd greater than 3) contradicting the minimality of C. So $N\left(q_{1}\right) \cap H$ is either $\left\{h_{3}, h_{4}\right\}$ or $\left\{h_{n-1}, h_{n}\right\}$.
W.1.o.g. $N\left(q_{1}\right) \cap H=\left\{h_{3}, h_{4}\right\}$. If $N\left(q_{l}\right) \cap P \neq p_{k}$, then since all of h_{1}, h_{3}, h_{4} have neighbors in $(P \cup Q) \backslash p_{k}$, the minimality of C is contradicted. So $N\left(q_{l}\right) \cap P=p_{k}$.
If $N\left(h_{1}\right) \cap Q \neq \emptyset$, then since all of h_{1}, h_{3}, h_{4} have neighbors in Q, the minimality of C is contradicted. So $N\left(h_{1}\right) \cap Q=\emptyset$.

Now suppose that $N\left(h_{n}\right) \cap Q \neq \emptyset$. If $k>1$, then since all of h_{2}, h_{3}, h_{n} have neighbors in $(P \cup Q) \backslash p_{1}$, the minimality of C is contradicted. So $k=1$. Let q_{r} be the neighbor of h_{n} with highest index. If h_{2} does not have a neighbor in
$q_{r}, q_{r+1}, \ldots, q_{l}$, then $\left\{q_{r}, q_{r+1}, \ldots, q_{l}, p_{1}, h_{1}, h_{2}, h_{n}, x\right\}$ induces an even wheel with center h_{1}. So $N\left(h_{2}\right) \cap Q \neq \emptyset$. But then since h_{2}, h_{3}, h_{n} have neighbors in Q, the minimality of C is contradicted. Therefore, $N\left(h_{n}\right) \cap Q=\emptyset$. So, by Claim 2, no node of $h_{5}, \ldots, h_{n}, h_{1}$ has a neighbor in Q.

Suppose $N\left(h_{2}\right) \cap Q \neq \emptyset$. Let q_{r} be the neighbor of h_{2} in Q with lowest index. Then $\left(H \backslash h_{3}\right) \cup\left\{x, q_{1}, \ldots, q_{r}\right\}$ induces an even wheel with center x. Therefore, $N\left(h_{2}\right) \cap Q=\emptyset$. If $k>1$, then $Q \cup\left(H \backslash h_{3}\right) \cup\left\{p_{k}, x\right\}$ induces an even wheel with center x. So $k=1$. Let q_{s} be the node of Q with highest index adjacent to h_{3}. Then $\left\{p_{1}, q_{s}, \ldots, q_{l}, h_{1}, h_{2}, h_{3}, x\right\}$ induces an even wheel with center h_{2}. This completes the proof of Claim 3 .

Claim 4. $N\left(q_{l}\right) \cap P=p_{1}$ or p_{k}.
Proof of Claim 4. Assume not. Then $k>1$, and both $(P \cup Q) \backslash p_{1}$ and $(P \cup Q) \backslash p_{k}$ are connected. $N\left(h_{1}\right) \cap Q=\emptyset$, else all of h_{1}, h_{2}, h_{i} have neighbors in $(P \cup Q) \backslash p_{1}$, contradicting the minimality of C. Similarly, $N\left(h_{2}\right) \cap Q=\emptyset$.

We now show that h_{3} has no neighbor in $P \cup Q$. Suppose it does. Then by Lemma 3.2, h_{3} has a neighbor in $(P \cup Q) \backslash p_{1}$. If $i \neq 4$, then since all h_{2}, h_{3}, h_{i} have neighbors in $(P \cup Q) \backslash p_{1}$, the minimality of C is contradicted. So $i=4$. If $N\left(h_{3}\right) \cap(P \cup Q) \neq p_{k}$, then all of h_{1}, h_{3}, h_{4} have neighbors in $(P \cup Q) \backslash p_{k}$, contradicting the minimality of C. So $N\left(h_{3}\right) \cap(P \cup Q)=p_{k}$. But then $P \cup Q \cup\left\{h_{2}, h_{3}, h_{4}, x\right\}$ contains an even wheel with center h_{3}. Therefore, h_{3} has no neighbor in $P \cup Q$, and similarly neither does h_{n}.
By minimality of $C, N\left(q_{l}\right) \cap P$ is either a single vertex or two adjacent vertices of P. If $N\left(q_{l}\right) \cap P=\{a, b\}$, where $a b \in E(G)$, then $P \cup Q \cup\left\{x, h_{1}, h_{2}, h_{i}\right\}$ induces a $3 P C\left(q_{l} a b, x h_{1} h_{2}\right)$. If $N\left(q_{l}\right) \cap P=\{a\}$, then $P \cup Q \cup\left\{h_{1}, h_{2}, \ldots, h_{i}\right\}$ induces a $3 P C\left(a, h_{2}\right)$. This completes the proof of Claim 4.

By Claim 4, w.1.o.g. $N\left(q_{l}\right) \cap P=p_{k}$.
Claim 5. h_{1} does not have a neighbor in $(P \cup Q) \backslash p_{1}$.
Proof of Claim 5. If $k>1$, the claim follows from the minimality of C. Now suppose $k=1$ and $N\left(h_{1}\right) \cap Q \neq \emptyset$. If h_{2} has a neighbor in Q, then all of h_{1}, h_{2}, h_{i} have a neighbor in Q, contradicting the minimality of C. So h_{2} does not have a neighbor in Q.

Suppose h_{n} has a neighbor in Q. Note that by Claim 3, such a neighbor is in $Q \backslash q_{1}$. Then h_{3} cannot have a neighbor in Q, else all of h_{n}, h_{1}, h_{3} have neighbors in Q, contradicting the minimality of C. But then $\left(Q \backslash q_{1}\right) \cup\left(H \backslash h_{1}\right) \cup\left\{x, p_{1}\right\}$ contains an even wheel with center x. So h_{n} does not have a neighbor in Q.

Suppose h_{3} has a neighbor in Q. By Claim 3, such a neighbor is in $Q \backslash q_{1}$. Then $\left(Q \backslash q_{1}\right) \cup\left(H \backslash h_{2}\right) \cup x$ contains an even wheel with center x. So h_{3} does not have a neighbor in Q.

Let H^{\prime} be the hole induced by $\left\{p_{1}, h_{2}, \ldots, h_{i}\right\} \cup Q$, and $H^{\prime \prime}$ the hole induced by $\left\{x, p_{1}, h_{2}, h_{i}\right\} \cup Q$. Then either $\left(H^{\prime}, h_{1}\right)$ or $\left(H^{\prime \prime}, h_{1}\right)$ is an even wheel. This completes the proof of Claim 5.

Claim 6. $N\left(h_{n}\right) \cap(P \cup Q)=\emptyset$.
Proof of Claim 6. Assume not. If h_{3} has a neighbor in $P \cup Q$ then, by Claim 3, all of h_{2}, h_{3}, h_{n} have a neighbor in $(P \cup Q) \backslash q_{1}$, contradicting the minimality of C. So $N\left(h_{3}\right) \cap(P \cup Q)=\emptyset$. Let R be a shortest path from h_{2} to h_{n} in the graph induced by $P \cup\left(Q \backslash q_{1}\right) \cup\left\{h_{2}, h_{n}\right\}$. Then by Claims 2 and $3, R \cup\left(H \backslash h_{1}\right) \cup x$ induces an even wheel with center x. This completes the proof of Claim 6 .

Claim 7. $N\left(h_{3}\right) \cap(P \cup Q)=\emptyset$.
Proof of Claim 7. Assume not. Let R be a shortest path from h_{1} to h_{3} in the graph induced by $(P \cup Q) \backslash q_{1}$. Then $R \cup\left(H \backslash h_{2}\right) \cup x$ induces an even wheel with center x. This completes the proof of Claim 7.

If $k>1$ then the graph induced by $H \cup Q \cup p_{k}$ contains a $3 P C\left(h_{2}, h_{i}\right)$. So $k=1$. By symmetry and Claim $5, h_{2}$ does not have a neighbor in Q, and hence $P \cup Q \cup H$ induces a $3 P C(\Delta, \cdot)$.

Lemma 3.4. There exists a node of H that has no neighbor in C_{1}.

Proof. Let $H=h_{1}, \ldots, h_{n}, h_{1}$ and suppose that every node of H has a neighbor in C_{1}. Recall that since (H, x) cannot be an even wheel, H is of odd length. So H contains a T^{3} all of whose nodes have neighbors in C_{1}. By Lemma 3.3, C_{1} contains a path $P=p_{1}, \ldots, p_{k}, k>1$, such that $P \cup H$ induces w.l.o.g. a $3 P C\left(h_{1} h_{2} p_{k}, h_{i}\right), 3<i<n$. If i is odd, then $\left\{x, h_{2}, \ldots, h_{i}\right\} \cup P$ induces an even wheel with center x. So i is even.

Let $Q=q_{1}, \ldots, q_{l}$ be a path in C_{1} defined as follows: q_{1} is adjacent to $h_{j} \in H \backslash\left\{h_{1}, h_{2}, h_{i}\right\}$ where j is odd, q_{l} is adjacent to a node of P and no proper subpath of Q has this property. We may assume that P and Q are chosen so that $|P \cup Q|$ is minimized.

By the choice of P and $Q, N\left(q_{l}\right) \cap P$ is either one single vertex or two adjacent vertices of P, and h_{j} has no neighbor in $Q \backslash q_{1}$. Note that since n is odd, the two subpaths of H, h_{2}, \ldots, h_{i} and $h_{i}, \ldots, h_{n}, h_{1}$ are both of even length, so we may assume w.l.o.g. that $2<j<i$.

Claim 1. At least one node of $\left\{h_{2}, \ldots, h_{j-1}\right\}\left(\right.$ resp. $\left.\left\{h_{j+1}, \ldots, h_{n}\right\}\right)$ has a neighbor in Q.
Proof of Claim 1. First suppose that no node of $H \backslash\left\{h_{1}, h_{j}\right\}$ has a neighbor in Q. Let p_{s} be the node of P with highest index adjacent to q_{l}. If $j>3$, then $\left\{x, h_{2}, \ldots, h_{j}, p_{s}, \ldots, p_{k}\right\} \cup Q$ induces an even wheel with center x. So $j=3$. If $N\left(h_{1}\right) \cap Q=\emptyset$ then $\left\{x, h_{1}, h_{2}, h_{3}, p_{s}, \ldots, p_{k}\right\} \cup Q$ induces an even wheel with center h_{2}. So $N\left(h_{1}\right) \cap Q \neq \emptyset$. Let q_{r} be the node of Q with lowest index adjacent to h_{1}. Then $\left(H \backslash h_{2}\right) \cup\left\{x, q_{1}, \ldots, q_{r}\right\}$ induces an even wheel with center x. So at least one node of $H \backslash\left\{h_{1}, h_{j}\right\}$ has a neighbor in Q.

Next suppose that no node of $\left\{h_{2}, \ldots, h_{j-1}\right\}$ has a neighbor in Q. Let p_{s} be the node of P with highest index adjacent to q_{l}. If $j>3$ then $\left\{x, h_{2}, \ldots, h_{j}, p_{s}, \ldots, p_{k}\right\} \cup Q$ induces an even wheel with center x. So $j=3$. Let $h_{j^{\prime}}$ be the node of $\left\{h_{j+1}, \ldots, h_{n}\right\}$ with lowest index adjacent to a node of Q. By definition of Q and Lemma 3.2, j^{\prime} is even. Let q_{r} be the node of Q with lowest index adjacent to $h_{j^{\prime}}$. If $j^{\prime}>4$ then $\left\{x, h_{j}, \ldots, h_{j^{\prime}}, q_{1}, \ldots, q_{r}\right\}$ induces an even wheel with center x. So $j^{\prime}=4$. If $N\left(h_{1}\right) \cap Q=\emptyset$ then $\left\{x, h_{1}, h_{2}, h_{3}, p_{s}, \ldots, p_{k}\right\} \cup Q$ induces an even wheel with center h_{2}. So $N\left(h_{1}\right) \cap Q \neq \emptyset$. In fact, by Lemma 3.2, $N\left(h_{1}\right) \cap\left(Q \backslash q_{1}\right) \neq \emptyset$. Suppose $N\left(h_{4}\right) \cap Q \neq q_{1}$. Let R be a shortest path from h_{4} to h_{1} in the graph induced by $\left(Q \backslash q_{1}\right) \cup\left\{h_{1}, h_{4}\right\}$. Then, $\left\{x, h_{1}, \ldots, h_{4}\right\} \cup R$ induces an even wheel with center x. So $N\left(h_{4}\right) \cap Q=q_{1}$. Suppose $N\left(q_{l}\right) \cap P \neq p_{1}$ or $i>4$. Then $\left\{x, h_{2}, h_{3}, h_{4}, p_{s}, \ldots, p_{k}\right\} \cup Q$ induces an even wheel with center h_{3}. So $N\left(q_{l}\right) \cap P=p_{1}$ and $i=4$. Let R be a shortest path from p_{1} to h_{1} in the graph induced by $Q \cup\left\{p_{1}, h_{1}\right\}$. Then, $P \cup R \cup\left\{h_{1}, h_{4}, x\right\}$ induces a $3 P C\left(p_{1}, h_{1}\right)$. Therefore, at least one node of $\left\{h_{2}, \ldots, h_{j-1}\right\}$ has a neighbor in Q.

Finally, suppose that no node of $\left\{h_{j+1}, \ldots, h_{n}\right\}$ has a neighbor in Q. Let $h_{j^{\prime}}$ be a node of h_{2}, \ldots, h_{j-1} such that $N\left(h_{j^{\prime}}\right) \cap Q \neq \emptyset$ and the path from $h_{j^{\prime}}$ to h_{i} in the graph induced by $P \cup Q \cup\left\{h_{i}, h_{j^{\prime}}\right\}$ is minimized. By definition of Q and Lemma 3.2, j^{\prime} is even. Suppose $N\left(h_{1}\right) \cap Q \neq \emptyset$. Let R be a shortest path from h_{j} to h_{1} in the graph induced by $Q \cup\left\{h_{1}, h_{j}\right\}$. Then, $\left(H \backslash\left\{h_{2}, \ldots, h_{j-1}\right\}\right) \cup R \cup x$ induces an even wheel with center x. So $N\left(h_{1}\right) \cap Q=\emptyset$. Suppose $N\left(q_{l}\right) \cap P \neq p_{k}$. Let R be a shortest path from h_{i} to $h_{j^{\prime}}$ in the graph induced by $P \cup Q \cup\left\{h_{i}, h_{j^{\prime}}\right\}$. Note that by definition of Q and $h_{j^{\prime}}$ and by Lemma 3.2, no node of $\left\{h_{2}, \ldots, h_{j^{\prime}-1}\right\}$ has a neighbor in R. Then $\left(H \backslash\left\{h_{j^{\prime}+1}, \ldots, h_{i-1}\right\}\right) \cup R \cup x$ induces an even wheel with center x. So $N\left(q_{l}\right) \cap P=p_{k}$. But then $\left(H \backslash\left\{h_{2}, \ldots, h_{j-1}\right\}\right) \cup P \cup Q$ induces a $3 P C\left(p_{k}, h_{i}\right)$. This completes the proof of Claim 1.

By Claim 1 at least two nodes, say $h_{j^{\prime}}$ and $h_{j^{\prime \prime}}$, of $H \backslash\left\{h_{1}, h_{j}\right\}$ have a neighbor in Q. Note that by definition of Q and Lemma 3.2, j^{\prime} and $j^{\prime \prime}$ are both even. W.1.o.g. $j^{\prime}<j<j^{\prime \prime}$. Let $R=r_{1}, \ldots, r_{t}$ be a shortest path in the graph induced by Q where $N\left(h_{j^{\prime}}\right) \cap R=r_{1}$ and $N\left(h_{j^{\prime \prime}}\right) \cap R=r_{t}$. W.l.o.g. and by Lemma 3.2 no other node from $H \backslash\left\{h_{1}, h_{j}\right\}$ has a neighbor in R.

If $N\left(h_{1}\right) \cap R=\emptyset$, then $\left(H \backslash\left\{h_{j^{\prime}+1}, \ldots, h_{j^{\prime \prime}-1}\right\}\right) \cup R \cup x$ induces an even wheel with center x. So $N\left(h_{1}\right) \cap R \neq \emptyset$. Suppose $j^{\prime} \neq 2$. Let R^{\prime} be a shortest path from h_{1} to $h_{j^{\prime}}$ in the graph induced by $R \cup\left\{h_{1}, h_{j^{\prime}}\right\}$. Then $\left\{x, h_{1}, \ldots, h_{j}^{\prime}\right\} \cup R^{\prime}$ induces an even wheel with center x. Therefore $j^{\prime}=2$.

Suppose that $N\left(h_{1}\right) \cap R=r_{1}$. Then by Lemma 3.2, $N\left(r_{1}\right) \cap H=\left\{h_{1}, h_{2}\right\}$. If $r_{t}=q_{1}$, then by Lemma 3.2, $N\left(r_{t}\right) \cap$ $H=\left\{h_{j}, h_{j+1}\right\}$, and hence $H \cup R$ induces a $3 P C\left(h_{1} h_{2} r_{1}, h_{j+1} h_{j} r_{t}\right)$. So $r_{t} \neq q_{1}$, and hence $N\left(r_{t}\right) \cap H=\left\{h_{j^{\prime \prime}}\right\}$. Therefore, $H \cup R$ induces a $3 P C\left(h_{1} h_{2} r_{1}, h_{j^{\prime \prime}}\right)$. Let R^{\prime} be a shortest path from q_{1} to a node of R in the graph induced by Q. Since $\left|R \cup R^{\prime}\right|<|P \cup Q|$, the choice of P and Q is contradicted.

So $N\left(h_{1}\right) \cap\left(R \backslash r_{1}\right) \neq \emptyset$. Let r_{s} be the node of R with highest index adjacent to h_{1}. If h_{j} has no neighbor in r_{s}, \ldots, r_{t}, then $\left\{x, h_{1}, \ldots, h_{j^{\prime \prime}}, r_{s}, \ldots, r_{t}\right\}$ induces an even wheel with center x. So h_{j} does have a neighbor in r_{s}, \ldots, r_{t}, i.e. $r_{t}=q_{1}$. By Lemma 3.2, $N\left(r_{t}\right) \cap H=\left\{h_{j}, h_{j^{\prime \prime}}\right\}$, where $j^{\prime \prime}=j+1$. Note that $i \geqslant j+1$ and $r_{s} \neq q_{l}$. But then $\left(H \backslash\left\{h_{2}, \ldots, h_{j}\right\}\right) \cup P \cup\left\{r_{s}, \ldots, r_{t}\right\}$ induces a $3 P C\left(h_{1}, h_{i}\right)$.

Fig. 2. An odd-signable graph for which Lemma 3.4 does not work.

Note that the above lemma does not work if we allow 4-holes. Consider the odd-signable graph in Fig. 2 (one can see that this graph is odd-signable by assigning 0 to the three bold edges and 1 to all the other edges). Let H be the 5 -hole induced by the neighborhood of node x. Then every node of H has a neighbor in the unique connected component obtained by removing $N(x) \cup x$.

Let \mathscr{F} be a class of graphs. We say that a graph G is \mathscr{F}-free if G does not contain (as an induced subgraph) any of the graphs from \mathscr{F}.

A class \mathscr{F} of graphs satisfies property $\left({ }^{*}\right)$ w.r.t. a graph G if the following holds: for every node x of G such that $G \backslash N[x] \neq \emptyset$, and for every connected component C of $G \backslash N[x]$, if $F \in \mathscr{F}$ is contained in $G[N(x)]$, then there exists a node of F that has no neighbor in C.
The following theorem is proved in [13]. For completeness we include its proof here.
Theorem 3.5 (Maffray et al. [13]). Let \mathscr{F} be a class of graphs such that for every $F \in \mathscr{F}$, no node of F is adjacent to all the other nodes of F. If \mathscr{F} satisfies property ${ }^{(*)}$ w.r.t. a graph G, then G has a node whose neighborhood is \mathscr{F}-free.

Proof. Let \mathscr{F} be a class of graphs such that for every $F \in \mathscr{F}$, no node of F is adjacent to all the other nodes of F. Assume that \mathscr{F} satisfies property $\left(^{*}\right)$ w.r.t. G, and suppose that for every $x \in V(G), G[N(x)]$ is not \mathscr{F}-free. Then G is not a clique (since every graph of \mathscr{F} contains nonadjacent nodes) and hence it contains a node x that is not adjacent to all other nodes of G. Let C_{1}, \ldots, C_{k} be the connected components of $G \backslash N[x]$, with $\left|C_{1}\right| \geqslant \cdots \geqslant\left|C_{k}\right|$. Choose x so that for every $y \in V(G)$ the following holds: if $C_{1}^{y}, \ldots, C_{l}^{y}$ are the connected components of $G \backslash N[y]$ with $\left|C_{1}^{y}\right| \geqslant \cdots \geqslant\left|C_{l}^{y}\right|$, then

- $\left|C_{1}\right|>\left|C_{1}^{y}\right|$, or
- $\left|C_{1}\right|=\left|C_{1}^{y}\right|$ and $\left|C_{2}\right|>\left|C_{2}^{y}\right|$, or
-...
- $\left|C_{1}\right|=\left|C_{1}^{y}\right|, \ldots,\left|C_{k-1}\right|=\left|C_{k-1}^{y}\right|$ and $\left|C_{k}\right|>\left|C_{k}^{y}\right|$, or
- for $i=1, \ldots, k,\left|C_{i}\right|=\left|C_{i}^{y}\right|$ and $k=l$.

Let $N=N(x)$ and $C=C_{1} \cup \cdots \cup C_{k}$. For $i=1, \ldots, k$, let N_{i} be the set of nodes of N that have a neighbor in C_{i}.
Claim 1. $N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{k}$ and for every $i=1, \ldots, k-1$, every node of $\left(N \backslash N_{i}\right) \cup\left(C_{i+1} \cup \cdots \cup C_{k}\right)$ is adjacent to every node of N_{i}.

Proof of Claim 1. We argue by induction. First we show that every node of $\left(N \backslash N_{1}\right) \cup\left(C_{2} \cup \cdots \cup C_{k}\right)$ is adjacent to every node of N_{1}. Assume not and let $y \in\left(N \backslash N_{1}\right) \cup\left(C_{2} \cup \cdots \cup C_{k}\right)$ be such that it is not adjacent to $z \in N_{1}$. Clearly y has no neighbor in C_{1}, but z does. So $G \backslash N[y]$ contains a connected component that contains $C_{1} \cup z$, contradicting the choice of x.

Now let $i>1$ and assume that $N_{1} \subseteq \cdots \subseteq N_{i-1}$ and every node of $\left(N \backslash N_{i-1}\right) \cup\left(C_{i} \cup \cdots \cup C_{k}\right)$ is adjacent to every node of N_{i-1}. Since every node of C_{i} is adjacent to every node of N_{i-1}, it follows that $N_{i-1} \subseteq N_{i}$. Suppose that there
exists a node $y \in\left(N \backslash N_{i}\right) \cup\left(C_{i+1} \cup \cdots \cup C_{k}\right)$ that is not adjacent to a node $z \in N_{i}$. Then $z \in N_{i} \backslash N_{i-1}$ and z has a neighbor in C_{i}. Also y is adjacent to all nodes in N_{i-1} and no node of $C_{1} \cup \cdots \cup C_{i}$. So there exist connected components of $G \backslash N[y], C_{1}^{y}, \ldots, C_{l}^{y}$ such that $C_{1}=C_{1}^{y}, \ldots, C_{i-1}=C_{i-1}^{y}$ and $C_{i} \cup z$ is contained in C_{i}^{y}. This contradicts the choice of x. This completes the proof of Claim 1 .

Since $G[N]$ is not \mathscr{F}-free, it contains $F \in \mathscr{F}$. By property (${ }^{*}$), a node y of F has no neighbor in C_{k}. By Claim $1, y$ is adjacent to every node of N_{k}, and no node of $N \backslash N_{k}$ has a neighbor in C. So (since every node of F has a non-neighbor in F) F must contain another node $z \in N \backslash N_{k}$, nonadjacent to y. But then C_{1}, \ldots, C_{k} are connected components of $G \backslash N[y]$ and z is contained in $(G \backslash N[y]) \backslash C$, so y contradicts the choice of x.

Proof of Theorem 1.1. Let G be a 4-hole-free odd-signable graph. Let \mathscr{F} be the set of all holes. By Lemma 3.4, \mathscr{F} satisfies property (*) w.r.t. G. So by Theorem 3.5, G has a node whose neighborhood is \mathscr{F}-free, i.e. triangulated.

4. Final remarks

In a graph G, for any node x, let C_{1}, \ldots, C_{k} be the connected components of $G \backslash N[x]$, with $\left|C_{1}\right| \geqslant \cdots \geqslant\left|C_{k}\right|$, and let the numerical vector $\left(\left|C_{1}\right|, \ldots,\left|C_{k}\right|\right)$ be associated with x. The nodes of G can thus be ordered according to the lexicographic ordering of the numerical vectors associated with them. Say that a node x is lex-maximal if the associated numerical vector is lexicographically maximal over all nodes of G. Theorem 3.5 actually shows that for a lex-maximal node $x, N(x)$ is \mathscr{F}-free. This implies the following.

Theorem 4.1. Let G be a 4-hole-free odd-signable graph, and let x be a lex-maximal node of G. Then the neighborhood of x is triangulated.

Possibly a more efficient algorithm for listing all maximal cliques can be constructed by searching for a lex-maximal node.

Lemma 3.4 also proves the following decomposition theorem. (H, x) is a universal wheel if x is adjacent to all the nodes of H. A node set S is a star cutset of a connected graph G if for some $x \in S, S \subseteq N[x]$ and $G \backslash S$ is disconnected.

Theorem 4.2. Let G be a 4-hole-free odd-signable graph. If G contains a universal wheel, then G has a star cutset.
Proof. Let (H, x) be a universal wheel of G. If $G=N[x]$, then for any two nonadjacent nodes a and b of $H, N[x] \backslash\{a, b\}$ is a star cutset of G. So assume $G \backslash N[x]$ contains a connected component C_{1}. By Lemma 3.4, a node $a \in H$ has no neighbor in C_{1}. But then $N[x] \backslash a$ is a star cutset of G that separates a from C_{1}.

In [7] universal wheels in 4-hole-free odd-signable graphs are decomposed with triple star cutsets, i.e. node cutsets S such that for some triangle $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq S, S \subseteq N\left(x_{1}\right) \cup N\left(x_{2}\right) \cup N\left(x_{3}\right)$.

References

[1] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, P. Seymour, Bisimplicial vertices in even-hole-free graphs, preprint, 2006.
[2] N. Chiba, T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput. 14 (1985) 210-223.
[3] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković, Recognizing Berge graphs, Combinatorica 25 (2005) $143-187$.
[4] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (2006) 51-229.
[5] M. Chudnovsky, P. Seymour, Excluding induced subgraphs, preprint, 2006.
[6] M. Conforti, G. Cornuéjols, A. Kapoor, K. Vušković, Even and odd holes in cap-free graphs, J. Graph Theory 30 (1999) $289-308$.
[7] M. Conforti, G. Cornuéjols, A. Kapoor, K. Vušković, Even-hole-free graphs, Part I: decomposition theorem, J. Graph Theory 39 (2002) 6-49.
[8] M. Conforti, G. Cornuéjols, A. Kapoor, K. Vušković, Even-hole-free graphs Part II: recognition algorithm, J. Graph Theory 40 (2002) 238-266.
[9] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progression, J. Symbolic Comput. 9 (1990) 251-280.
[10] M. Farber, On diameters and radii of bridged graphs, Discrete Math. 73 (1989) 249-260.
[11] D.R. Fulkerson, O.A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965) 835-855.
[12] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, second ed., Annals of Discrete Mathematics, vol. 57, Elsevier, Amsterdam, 2004.
[13] F. Maffray, N. Trotignon, K. Vušković, Algorithms for square-3PC($\cdot, \cdot)$-free Berge graphs, preprint, 2005, submitted for publication.
[14] K. Makino, T. Uno, New algorithm for enumerating all maximal cliques, in: T. Hagerup, J. Katajainen (Eds.), Algorithm Theory-SWAT 2004, Lecture Notes in Computer Science, vol. 3111, 2004, pp. 260-272.
[15] I. Parfenoff, F. Roussel, I. Rusu, Triangulated neighborhoods in C_{4}-free Berge graphs, in: Proceedings of WG'99, Lecture Notes in Computer Science, vol. 1665, 1999, pp. 402-412.
[16] D.J. Rose, R.E. Tarjan, G.S. Leuker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976) $266-283$.
[17] J. Spinrad, Efficient Graph Representations, Field Institute Monographs, vol. 19, American Mathematical Society, Providence, RI, 2003.
[18] K. Truemper, Alpha-balanced graphs and matrices and GF(3)-representability of matroids, J. Combin. Theory B 32 (1982) 112-139.
[19] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new algorithm for generating all the maximal independent sets, SIAM J. Comput. 6 (1977) 505-517.

[^0]: ${ }^{2}$ This work was supported in part by EPSRC grant EP/C518225/1.
 E-mail addresses: murilo@comp.leeds.ac.uk (M.V.G. da Silva), vuskovi@comp.leeds.ac.uk (K. Vušković).

