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Abstract. The Hidden Subgroup Problem (HSP) generalises many problems
that are candidates to be NP-intermediate. It was shown that the decision ver-
sion of HSP belongs to the zero-knowledge complexity class HVPZK and that, if
the size of the group is known, it also belongs to NISZK. We show that whenever
we can sample uniformly at random elements of the group and of a set, with the
same size of the group, that contains the image of the function that hides the
subgroup, the problem is in NIPZK1 (i.e. NIPZK with perfect completeness). As
a second contribution, we show that NIPZK1 has a complete promise problem
that is a restricted version of a complete promise problem for the NIPZK class.

1. Introduction
The Hidden Subgroup Problem (HSP) generalises many problems suspected to be NP-
intermediate, such as Factorisation [Shor 1994], Graph Isomorphism [Jozsa 2001], and
Unique Shortest Vector in Lattices [Regev 2004]. The most commonly found definition in
the literature for HSP is the one introduced by [Babai and Szemerédi 1984] in a black-box
context. Determining whether a hidden subgroup is the trivial subgroup or not is a well-
studied definition for a decision version of HSP [Ettinger et al. 2004, Hayashi et al. 2008,
Sdroievski et al. 2019] and it is the one used in this paper, although it is not the only
decision version (technical details and further definitions are discussed in the sequel). This
decision version (dHSP) was shown to be in the zero-knowledge class HVPZK and, if the
size of the group is known, it also belongs to the class NISZK [Sdroievski et al. 2019].

We investigate restrictions under which dHSP has a non-interactive perfect zero-
knowledge protocol with perfect completeness (i.e. is in the class NIPZK1). We show that
this holds whenever we can sample uniformly at random elements of the group and of a
set, with the same size of the group, that contains the image of the function that hides the
subgroup (Thm. 1). Other restrictions are also shown (Cor. 2 and 3).

The class NIPZK was defined by [Malka 2008], who showed a complete problem
for the class. He also implied that with a certain restriction, this problem might become
complete for NIPZK1, but he did not explicitly prove this assertion, since that was not the
point being addressed. Another contribution of our paper is this proof, in Sect. 3.

Figure 1 depicts the known relationships between the zero-knowledge complexity
classes and the restrictions of HSP. To distinguish the different decision versions men-
tioned, we use dHSP for the general case, dHSP|G| for the restricted case when the size of
the group is known, and dHSPIm for our restricted case.
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Figure 1. In the figure, an arrow A → B represents: that A ⊆ B if A and B are
classes; that A ∈ B, if A is a problem and B is a class; that A is a restriction
of B, if both A and B are problems. Our result is highlighted in red.

We assume that the reader is familiar with basic topics in group theory and inter-
active proofs, for which we refer to [Herstein 1991, Arora and Barak 2009], respectively.

Consider a family of groups B = {Bn}n≥1 such that: the elements of Bn are
uniquely represented by words of length poly (n); inverse, product, and identity test-
ing operations of each Bn are computed in poly (n) time, denoting by e the identity
element of Bn. The formal definition of HSP that we consider is the one proposed
by [Sdroievski et al. 2019], in which we are given a positive integer n (in unary) and a
boolean circuit Cf that takes encodings of elements of a group G ⊆ Bn as input and
returns an output of m bits, being m a positive integer. We assume that Cf computes a
function f that hides a subgroup H in G, i.e. f(a) = f(b) if and only if aH = bH for all
a, b ∈ G. The goal of the problem HSP is to output a generating set of H . In dHSP, as
defined below, the goal is to decide if H is trivial, i.e. f(a) = f(b) if and only if a = b.

dHSP (for a family of groups B = {Bn}n≥1 as above)
Given: (0n, T, Cf ), where T is the generating set of a group G ⊆ Bn, with

|T | = poly(n), and Cf is a poly(n)-size circuit that takes encodings of
elements of Bn and returns m-bit strings, for some m ∈ Z≥0, so that Cf

computes a function f which hides a subgroup H in G;
decide: positive instances: dHSPY = {(0n, T, Cf ) : |H| = 1};

negative instances: dHSPN = {(0n, T, Cf ) : |H| ≥ 2};
promised that f hides a subgroup H ⊆ G.

The protocol (P, V ) is said to be non-interactive (NI) if the prover P and the veri-
fier V share a common reference string r and the first and only message between P and
V is sent by the prover. We say that a protocol (P, V ) has perfect zero-knowledge (PZK)
if, in addition to the efficiency, completeness and soundness conditions, there is a prob-
abilistic polynomial-time simulator S such that on all positive instances x, the simulator
S outputs fail with probability at most 1/2. Additionally, the random variable S̃(x),
describing the distribution of S(x) conditioned on S not failing, and ⟨P, V ⟩(x), the view
of verifier on (P, V ), are identically distributed. Similarly, a protocol has statistical zero-
knowledge (SZK) if S̃(x) and ⟨P, V ⟩(x) are statistically indistinguishable for all positive
instances. A verifier V is a honest verifier (HV) if it does not deviate from the protocol.

The class of problems with a interactive perfect zero-knowledge protocol with a
honest verifier is called HVPZK; with a non-interactive statistical zero-knowledge pro-
tocol is NISZK; with a non-interactive perfect zero-knowledge protocol is NIPZK. The
class NIPZK with perfect completeness is NIPZK1.



2. Decision version of HSP and zero-knowledge complexity classes

Even though dHSP is not known to be in NP, the problem is in coNP, since for |H| ≥ 2,
we can use an element h ̸= e ∈ H as a certificate for a negative instance. To verify it, we
check if f(h) = f(e). It is shown in [Sdroievski et al. 2019] a perfect zero-knowledge
protocol with honest verifier for dHSP, establishing that dHSP ∈ HVPZK. Furthermore,
[Sdroievski et al. 2019] showed that if we know the size of the group G, as it is the case for
permutation groups [Seress 2003], then there is a polynomial Karp reduction from dHSP
to the Entropy Approximation Problem (EA), a complete promise problem for NISZK.

We observe that the Im(f), the image of the function f , has at most |G| elements,
therefore Cf has at most |G| different possible outputs. We define dHSPIm as a restriction
of dHSP where we can sample uniformly at random elements of G and of a set Af ⊆
{{0, 1}m} such that Im(f) ⊆ Af and |Af | = |G|. Although this restriction may seem
artificial, notice that it holds for important cases, such as when G = Zn with modular
addition or multiplication. Corollary 2 further explores when this restriction can be met.

Theorem 1. dHSPIm ∈ NIPZK1.

Proof. Let r ∈ Af , chosen uniformly at random be the common reference string and
Br = {g ∈ G : f(g) = r}. The prover P samples g ∈ Br uniformly at random and sends
it to the verifier V , which accepts if f(g) = r and rejects otherwise.

Since Cf is a poly(n)-size circuit, the verifier V can compute f(g) efficiently. If
|H| = 1, then V always accepts, achieving the completeness property. Now, we show the
soundness property. If |H| ≥ 2 then |Im(f)|/|G| ≤ 1/2. Since r ∈ Af is chosen uni-
formly at random, the probability that r ∈ Im(f) is at most 1/2. Hence, the probability
that there exists g ∈ G that can be sent from P to V such that f(g) = r is at most 1/2.

To achieve the zero-knowledge property, let S be the simulator which chooses
g′ ∈ G uniformly at random and computes r′ = f(g′). Since |H| = 1, the function f is a
bijection, obtain r′ ∈ Af also uniformly at random. Therefore, the transcripts ⟨Cf , r

′, g′⟩
of the simulator S and the transcripts ⟨Cf , r, g⟩ of the protocol are identically distributed
whenever |H| = 1. □

Corollaries 2 and 3 follows immediately from Theorem 1.

Corollary 2. If we can sample uniformly at random elements of G, and if Af is the set of
the first |G| strings in lexicographic order, then dHSP ∈ NIPZK1. □

Corollary 3. If we can sample uniformly at random elements of G, and m = log |G|,
then dHSP ∈ NIPZK1. □

3. A complete problem for NIPZK1

The class NIPZK was defined by [Malka 2008], who also presented a promise problem
which is complete for the class. He also implied that a restricted version of this problem
is also complete for the class NIPZK1, although he did not explicitly prove this assertion,
since this was not his aim at that point. As a second contribution of our paper, we show,
by following a similar structure of the proof of Malka, that the result holds indeed.

Below we define the problem Uniform-or-Small (US), where Um denotes the uni-
form distribution on all m-bit strings, and sup(X) = {y ∈ {0, 1}m : Pr[X = y] ̸= 0} is



the support of X . This problem was already studied by [Dixon et al. 2020], who showed
that there is an oracle A relative to which US is not in the probabilistic class SBP.

US
Given: a poly(n)-size circuit C : {0, 1}n → {0, 1}m encoding a distribution X;
decide: positive instances: USY = {X : ∆(X,Um) = 0};

negative instances: USN = {X : |sup(X)| ≤ 2m/3}.
promised that one of the cases hold.

Theorem 4. US is complete for NIPZK1.

Proof that US ∈ NIPZK1. Let r ∈ {0, 1}m chosen uniformly at random, be the common
reference string, and Br = {π ∈ {0, 1}n : X(π) = r}. The prover P samples π ∈ Br

uniformly at random and sends it to the verifier V , which accepts if X(π) = r and rejects
otherwise.

Since C is a poly(n)-size circuit, the verifier V can compute X(π) efficiently. If
X ∈ USY , then V always accepts, achieving the completeness property. Now, we show
the soundness property. if X ∈ USN then, since |sup(X)| ≤ 2m/3 and r is uniformly
random, the probability that r ∈ sup(X) is at most 1/3. Therefore, the probability that
there is some π ∈ {0, 1}n with X(π) = r that can be sent by P to V is at most 1/3.

To achieve the zero-knowledge property, let X ∈ USY and S be the simulator
which chooses π′ ∈ {0, 1}n uniformly at random and computes r′ = X(π′). When
X ∈ USY , we obtain r′ ∈ {0, 1}m uniformly at random. Therefore, the transcripts
⟨X, r′, π′⟩ of the simulator S and the transcripts ⟨X, r, π⟩ of the protocol are identically
distributed whenever X ∈ USY . □

Proof that US is NIPZK1-hard. Let Π = ⟨ΠY ,ΠN⟩ be a NIPZK1 problem, and (P, V ) be
a non-interactive protocol for Π with perfect completeness and soundness error at most
1/3. We denote r as the common reference string, choosed uniformly at random, with
size |r| = |x|c for some c ∈ N and every x ∈ ΠY ∪ ΠN . Let S be a simulator for ⟨P, V ⟩
and d be a constant such that S uses no more than |x|d random bits for every input x.

We show that Π has a polynomial Karp reduction to US. We shall define a
polynomial-time Turing machine that, on input x ∈ ΠY ∪ ΠN , outputs a circuit C :
{0, 1}|x|d → {0, 1}|x|c that encodes a distribution X , such that if x ∈ ΠY , then X ∈ USY ,
and if x ∈ ΠN , then X ∈ USN . Given x, the circuit C is constructed such that, on input rS
with |rS| ≤ |x|d, emulates the computation of S on x under randomness rS , yielding the
view ⟨x, r, π⟩, wherein r is the common reference string in (P, V ) and π is the message
sent from P to V . Then, C outputs r if V (x, r, π) = accept, and 0|x|

c otherwise.

Now, we analyse the reduction. If x ∈ ΠY , then V (x, r, π) = accept. By
construction, C outputs r. Since r is uniformly distributed, X is the uniform distribution.
If x ∈ ΠN , we show that |sup(X)| ≤ 2|x|

c
/3. By the soundness condition, the probability

that the verifier V (x) accepts in ⟨P, V ⟩ is less than 1/3. Thus, by construction, in more
than 2/3 cases for all the 2|x|

c possible outputs of C we have the string 0|x|
c . Therefore,

|sup(X)| ≤ 2|x|
c
/3. □

Obviously, |sup(X)| ≤ 2m/3 in the definition of US could be replaced by
|sup(X)| ≤ β · 2m for any positive constant β < 1, and Theorem 4 would also hold.
In fact, US was equivalently stated by [Dixon et al. 2020] with β = 1/2.
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