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Abstract. The complexity class of the problems that can be solved by a quantum
algorithm in a non-adaptive collapse-free model is called naCQP. This class
was introduced in 2016 by Aaronson et al. to be an apparently slightly lar-
ger class than BQP: larger enough to include important NP-intermediate can-
didate problems, but likely not to include NP-complete problems: Aaronson et
al. showed that there is an oracle A for which NPA ̸⊆ naCQPA; and, in a paper
published this year in Theor. Comput. Sci., we showed that relative to an oracle
A chosen uniformly at random, (UP∩ coUP)A ̸⊆ naCQPA with probability 1,
being UP∩ coUP a subclass of NP. Amongst the NP-intermediate candidate
problems in naCQP is the entire class SZK, of the problems that admit a stat-
istical zero-knowledge interactive proof system. The relation between QSZK,
which is the class of the problems that admit a quantum zero-knowledge inter-
active proof system, and naCQP is unknown, with some believing that there is an
oracle A for which QSZKA ̸⊆ naCQPA. A complete promise problem for QSZK
is the trace distance distinguishability of mixed quantum states. We show that
this problem, when restricted to pure quantum states, is in naCQP.

1. Introduction
Throughout this text, we assume that the reader is familiar with the basics of Computa-
tional Complexity and Quantum Computing. For a reference on these topics, we refer
the reader to [Arora and Barak 2009] and [Nielsen and Chuang 2010], respectively. We
also refer the reader to [Watrous 2002] for definitions concerning statistical and quantum
zero-knowledge proofs, although they are not necessary here.

Quantum algorithms have been receiving much attention in the last decades due
to their ability to solve in polynomial time some important problems believed to be NP-
intermediate, such as Integer Factorisation [Shor 1994] and the Hidden Subgroup Problem
for abelian groups [Kitaev 1995]. A noteworthy class of problems believed to be NP-
intermediate (although yet not even shown to be contained in NP) is SZK, the class of
problems that admit a statistical zero-knowledge interactive proof system. However, SZK
is not known yet to be entirely contained in BQP.

Quantum algorithms are not believed to solve NP-complete problems: not only
there is an oracle A for which NPA ̸⊆ BQPA, but the same also holds with prob-
ability 1 for a uniformly sampled oracle [Bennett et al. 1997]. A limitation of the
quantum computing model is that the state collapses after being measured. Aim-
ing to understand how much this limitation is the reason why BQP is unlikely to
contain NP, collapse-free models have been proposed [Aaronson et al. 2016]. Sur-
prisingly, if such collapse-free measurements are performed in a non-adaptive model



(roughly speaking, the algorithm flow cannot be conditioned on a collapse-free meas-
urement), the corresponding complexity class, called naCQP (non-adaptive Collapse-
Free Quantum Polynomial time) or PDQP (Product Dynamical Quantum Polynomial
time), is not believed to solve NP-complete problems either, but it is a superclass
of BQP larger enough to include SZK [Aaronson et al. 2016]. We refer the reader
to [Aaronson et al. 2016, Hepp et al. 2025] for the technical definition of naCQP.

A promise problem which is complete for SZK is the statistical difference dis-
tinguishability of probability distributions (SD), as defined below. In the definition, a
boolean circuit that computes a function f : {0, 1}m → {0, 1}n, being n,m ∈ Z>0, is
said to encode the probability distribution of the outputs of the circuit, that is, the distri-
bution over {0, 1}n given by Py∈{0,1}n(y) = |f−1(y)|/2m. Also, the statistical difference
between two probability distributions X1, X2 over a universe U is denoted and defined as

∆(X1, X2) := max
S⊆U

|P[X1 ∈ S]− P[X2 ∈ S]| = 1

2

∑
x∈U

|P[X1 = x]− P[X2 = x]| .

SD

Given: two positive integers n,m and two boolean circuits C1, C2 which com-
pute two functions f1, f2 : {0, 1}m → {0, 1}n and encode two probabil-
ity distributions X1, X2, respectively;

decide: positive instances: ∆(X1, X2) ≥ 2/3;
negative instances: ∆(X1, X2) ≤ 1/3;

promised that one of the cases holds.
The quantum generalisation of SZK is called QSZK. The relation between QSZK

and naCQP is unknown, with some believing that there is an oracleA such that QSZKA ̸⊆
naCQPA [Aaronson 2018]. A promise problem which is complete for QSZK is the trace
distance distinguishability of mixed states (QSD), as defined below. In the definition, a
mixed quantum state ρ = {(|ψi⟩, pi)}i is treated as a density operator ρ =

∑
i pi|ψi⟩⟨ψi|.

Therefore, the trace distance between two mixed states ρ0 and ρ1 is denoted and defined
as

∥ρ0 − ρ1∥tr =
1

2
tr
√

(ρ0 − ρ1)†(ρ0 − ρ1) =
1

2

∑
i

|λi| ,

being {λi}i the eigenvalues of ρ0−ρ1. When ρ0 = |ψ0⟩⟨ψ0| and ρ1 = |ψ1⟩⟨ψ1| correspond
to two pure states |ψ0⟩ and |ψ1⟩, it can be checked that ∥ρ0 − ρ1∥tr =

√
1− |⟨ψ0|ψ1⟩|2.

QSD

Given: two positive integers n,m and the description of two m-fanin n-fanout
quantum circuits Q0, Q1, defining two mixed states ρ0, ρ1 of n qubits
given by ρ0 = Q0|0⟩⊗m and ρ1 = Q1|0⟩⊗m;

decide: positive instances: ∥ρ0 − ρ1∥tr ≥ 2/3;
negative instances: ∥ρ0 − ρ1∥tr ≤ 1/3;

promised that one of the cases holds.

2. Result
Lemma 1. When ρ0 = |ψ0⟩⟨ψ0| and ρ1 = |ψ1⟩⟨ψ1| are the density operators correspond-
ing to two pure states |ψ0⟩ and |ψ1⟩,√

∥|ψ0⟩ − |ψ1⟩∥2 ≤ ∥ρ0 − ρ1∥tr ≤ ∥|ψ0⟩ − |ψ1⟩∥22 .



Proof. The upper bound follows from the fact that

∥|ψ0⟩ − |ψ1⟩∥2 = (⟨ψ0| − ⟨ψ1|)(|ψ0⟩ − |ψ1⟩)
= 2− (⟨ψ0|ψ1⟩+ ⟨ψ1|ψ0⟩) ≥ 1− |⟨ψ0|ψ1⟩|2 = ∥ρ0 − ρ1∥2tr .

The lower bound is trivial (recall that
√

∥|ψ0⟩ − |ψ1⟩∥2 is the Euclidean distance). □

Clearly, the bounds in Lemma 1 are not tight, but sufficient for the following.

Theorem 2. QSD ∈ naCQP when restricted to pure states (i.e. when n = m).

Proof. 1 We describe an naCQP algorithm that, given a QSD instance with n = m,
accepts (rejects) with high probability if the instance is positive (negative). Let ε =
2− poly(n). We assume without loss of generality that ∥ρ0 − ρ1∥tr ≥ 1 − ε if the instance
is positive, and ∥ρ0 − ρ1∥tr ≤ ε if it is negative, which can be achieved in deterministic
polynomial time using the Polarisation Lemma for QSD [Watrous 2002].

First, prepare the state:

|ψ⟩ = 1√
2
|0⟩Q0|0⟩⊗n +

1√
2
|1⟩Q1|0⟩⊗n .

In this state, for b = 0, 1, we refer to |b⟩ as the first register, and to |ϕb⟩ := (Qb|0⟩⊗n)
as the second register. Now, measuring (with collapse) the second register, it collapses
to |y⟩ for some y ∈ {0, 1}n with probability (P[X0 = y] + P[X1 = y])/2, being Xb

the random variable of the outcomes of measuring |ϕb⟩. Therefore, we can use the result
by [Bennett et al. 1997], which showed how the trace distance between two pure states
|ϕ0⟩, |ϕ1⟩ relates to the statistical difference between the corresponding probability distri-
butions X0, X1 of the measurement outcomes:√

∥|ϕ0⟩ − |ϕ1⟩∥2 ≤ ∆(X0, X1) ≤ 4∥|ϕ0⟩ − |ϕ1⟩∥2 .

Perform then three collapse-free measurements in the first register, obtaining three
bits b1, b2, b3.. Accept if b1 = b2 = b3, and reject otherwise. We show that the algorithm
outputs the right answer with probability ≥ 2/3. If ∥ρ0−ρ1∥tr ≥ 1−ε, then ∆(X0, X1) ≥
4
√
1− ε ≥ 1− ε and there must be some S ⊆ {0, 1}n such that

∑
y∈S P[X0 = y] ≥ 1− ε

and
∑

y∈S P[X1 = y] ≤ ε. Hence, one can check that the algorithm outputs the wrong
answer (i.e. b1, b2, b3 are not all equal) with probability

P[err] ≤ 3

2

(∑
y

(P[X0 = y])2P[X1 = y]

(P[X0 = y] + P[X1 = y])2
+
∑
y

P[X0 = y](P[X1 = y])2

(P[X0 = y] + P[X1 = y])2

)
;

and since ∑
y

(P[X0 = y])2P[X1 = y]

(P[X0 = y] + P[X1 = y])2

≤
∑
y∈S

(P[X0 = y])2P[X1 = y]

(P[X0 = y])2
+
∑
y∈S

(P[X0 = y])2P[X1 = y]

(P[X1 = y])2
≤ 2ε ,

1This proof if heavily inspired by the proof of [Aaronson et al. 2016] for SD ∈ naCQP, but with some
adaptations.



we have
P[err] ≤ 2

3
(2ε+ 2ε) = 6ε <

1

3
.

Now assume ∥ρ0 − ρ1∥tr ≤ ε, which implies ∥|ψ0⟩ − |ψ1⟩∥2 ≤
√
ε and thus

∆(X0, X1) ≤ 4
√
ε. For y ∈ {0, 1}n, let δy := P[X1 = y] − P[X0 = y]. The algorithm

outputs the wrong answer (i.e. b1 = b2 = b3) with probability

1

2

∑
y

(P[X0 = y])3 + (P[X1 = y])3

(P[X0 = y] + P[X1 = y])2
=

1

2

∑
y

(P[X0 = y])3 + (P[X0 = y] + δy)
3

(2P[X0 = y] + δy)2

=
1

2

∑
y

(P[X0 = y]

2
+ δy

(P[X0 = y])2 + 5
2
P[X0 = y]δy + δ2y

4(P[X0 = y])2 + 4P[X0 = y]δy + δ2y

)
≤ 1

4
+

1

2

∑
y

|δy| ≤
1

4
+ 4

√
ε ,

which is less than 1/3 for a suitable value of ε. □
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