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Abstract. Let G be an undirected graph with non-negative edge weights and let
S be a subset of its shortest paths such that, for every pair (u, v) of distinct vertices,
S contains exactly one shortest path between u and v. In this paper we define a range
space associated with S and prove that its VC dimension is 2. As a consequence,
we show a bound for the number of shortest paths trees required to be sampled in
order to solve a relaxed version of the All-pairs Shortest Paths problem (APSP) in
G. In this version of the problem we are interested in computing all shortest paths
with a certain “importance” at least ε. Given any 0 < ε, δ < 1, we propose a O(m +
n log n + (diamV (G))

2) sampling algorithm that outputs with probability 1 − δ the
(exact) distance and the shortest path between every pair of vertices (u, v) that appears
as subpath of at least a proportion ε of all shortest paths in the set S, where diamV (G)

is the vertex-diameter of G. The bound that we obtain for the sample size depends
only on ε and δ, and do not depend on the size of the graph.

1 Introduction

The All-pairs Shortest Path (APSP) is the problem of computing a path with the minimum length
between every pair of vertices in a weighted graph. The APSP problem is very well studied and
there has been recent results for a variety of assumptions for the input graph (directed/undirected,
integer/real edge weights, etc) [27, 5, 9, 4]. In this paper we assume that the input is an undirected
graph G with n vertices and m edges with non-negative weights.
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In our scenario, the fastest known exact algorithms are the algorithm proposed by Williams

(2014) [27], which runs in O
(

n3

2c
√

log n

)
time, for some constant c > 0, and by Pettie and Ramachan-

dram (2002) [18] for the case of sparse graphs, which runs inO(nm logα(m,n)) time, where α(m,n)
is the Tarjan’s inverse-Ackermann function. If no assumption is taken about the sparsity of the
graph, then it is an open question whether the APSP problem can be solved in strictly subcubic
time, i.e. O(n3−c), for any c > 0, even when the edge weights are natural numbers.

Recent results in fine-grained complexity indicate that the complexity time for the APSP is
tight [22, 1, 2], reinforcing the hypothesis that there is no strictly subcubic algorithm for such task
[25]. Since the exact computation of this version is expensive for large graphs, especially the dense
ones, it is natural dealing with alternative versions of the problem, whether they are approximate
[8, 21] or applied to restricted scenarios [24]. In this paper, we follow this line of work, dealing
with a relaxation of the problem in the sense that the classical APSP is a special case for a given
adjustable parameter. More specifically, we aim to compute, with high probability, all the shortest
paths that meet a certain “importance” requirement. The idea is that the probability of sampling
a shortest path P is higher when a large number of shortest paths from some set of canonical
shortest paths has P as a subpath. The precise definition of this measure is given in Section 2.

Let S be a subset of the shortest paths in G that contains exactly one shortest path between
a pair of distinct vertices, for all (u, v) ∈ V 2. In this relaxed version of the APSP, given constant
parameters 0 < ε, δ < 1, we propose a sampling algorithm that outputs, with probability at least
1−δ, the (exact) distance and a shortest path between every pair of vertices that admits a shortest
path that appears as subpath of at least a proportion ε of all shortest paths in the set S. The
central idea of the algorithm is to sample roots of shortest paths trees. In order to give a bound
for the sample size that is sufficient to meet the input parameters, we use sample complexity tools,
namely, Vapnik–Chervonenkis (VC) dimension theory and the ε-net theorem. We define a range
space associated with S in the graph G. One of the main results that we prove is that the VC
dimension of such range space is 2 and that the bound for the sample size is r =

⌈
c
ε

(
2 ln( 1ε ) + ln 1

δ

) ⌉
,

where c is a constant around 1
2 [15]. This result is interesting, since it does not depend neither

on the size of the input n, which is the case if one uses standard union-bound techniques, nor on
the topological structure of the graph that may vary with n in many cases. As a consequence of
this bound for the sample size, we obtain a sampling algorithm for our problem with running time
O(m + n log n + (DiamV (G))2), where DiamV (G) is the vertex-diameter of the input graph (i.e.
the maximum number of vertices in a shortest path in G), for any constant ε.

If one sets ε as a function of n, in the limit case, when ε(n) = 1
n(n−1) , our algorithm solves

– with high probability – the classical APSP problem, but with time complexity exceeding the
running time of the exact algorithms from the literature [28, 18]. However, it is still an interesting
problem to know for which functions ε(n) we still have a strictly subcubic sampling algorithm. We

show that our algorithm runs in O(n3−c) time if ε(n) is any Ω
(

W0(n
′)

n′

)
function, where n′ = n1−c

(for a constant c > 0) and W0(n
′) is the branch 0 of the Lambert-W function defined for n′ ≥ 0, a

non-algebraic value such that W0(n
′) = lnn′ − ln lnn′ +Θ

(
ln lnn′

lnn′

)
, which holds for n′ ≥ e.

2 Shortest Paths, Canonical Paths, and Shortest Paths Trees

Let G = (V,E) be an undirected graph, with n = |V | and m = |E|, and let ω be a function of
edge weights from E to an enumerable subset of R≥0. W.l.o.g., we assume that G is connected,
since our results can be applied to the connected components when a graph is disconnected. Even
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though G is undirected, for convenience we use the notation (u, v) for an edge of G. A path is a
sequence of vertices P = (v1, v2, . . . , vk) such that vi ̸= vi+1 and (vi, vi+1) ∈ E, for 1 ≤ i < k. If
u = v1 and v = vk, such path is referred to as a (u, v)-path. We define EP as the set of edges of P .
The shortest path from u to v in G is the (u, v)-path such that the sum of the weights of the edges
in EP is minimized. In this case we denote such value d(u, v), also called the distance from u to v.

The set of all shortest paths from u to v in G is denoted Cuv. For a given path P ∈ Cuv, let
Inn(P ) be the set of inner vertices of P , that is, Inn(P ) = {w ∈ P : w /∈ {u, v}}. Consider a
shortest (u, v)-path P , and let u′ and v′ be two vertices of P , with u′ closer to u and v′ closer to v.
The subpath of P starting in u′ and ending in v′ is called a (u′, v′)-subpath of P . The (immediate)
predecessor of v in a shortest (u, v)-path P , denoted predP (v), is the vertex w ∈ Inn(P ) such that
(w, v) ∈ EP . The diameter of G, denoted DiamG, is the size of the largest shortest path in G. The
vertex-diameter, denoted DiamV (G), is the maximum number of vertices in a shortest path of G.

Let σ : V → {1, . . . , n} be an arbitrary vertex ordering of G. Consider the set of shortest paths
Luv = {P ∈ Cuv : σ(predP (v)) is minimum}. Note that there is only one vertex w that satisfies the
property “σ(predP (v)) is minimum”, so even if there are several paths in Luv, the last edge (w, v)
is the same for all of them. Next, we introduce the definition of a canonical path with respect to
σ.

Definition 2.1 (Canonical path (CP)) Consider a pair of vertices (u, v) ∈ V 2 in G. The
canonical path (CP) from u to v, denoted P , is recursively defined as the shortest path in Cuv such
that

case 1: |Luv| = 1. Then P ∈ Luv is the canonical path from u to v.

case 2: |Luv| > 1. Let w be the (unique) predecessor of v in the shortest paths of Luv. Then, the
canonical path from u to v corresponds to the canonical path from u to w plus the edge (w, v).

Fact 1 Given a pair of vertices (u, v) ∈ V 2, the CP from u to v exists and it is unique.

To see that Fact 1 holds, note that at each recursive step, there is only one vertex w satisfying the
property that defines Luv, and there is only one canonical path from u to w. Besides, the recursion
presented above always stop in the base case, since the distance between a pair of vertices in a
recursive step is smaller than the distance of a pair of vertices analyzed in the previous step. The
base is the one where there is only one (u, u′)-subpath which is the shortest path from u to u′,
for u′ ∈ Inn(P ). Another important observation about canonical paths is that the canonical path
from u to v is not necessarily the same as the canonical path from v to u.

A shortest paths tree (SPT) of a vertex u is a spanning tree of G such that the path from u
to every other vertex of this tree is a shortest path in G. There might be many SPTs for a given
vertex. In this paper we are interested in fixing one canonical SPT Tu, for every vertex u of G.
More precisely, for a given (arbitrary) vertex ordering σ, the canonical SPT Tu is defined such
that, for every vertex v, the shortest path from u to v in Tu is a canonical path. In Section 4.1 we
give more details on the computation of Tu, but, briefly speaking, this tree is the one computed
by a modification on Dijkstra’s algorithm where σ is used as a tie-breaking criterion. We also call
Tu the Dijkstra tree of u.

A shortest path that starts at the root of a Dijkstra tree is also called a branch of G. More
formally, given Tu, for every v ̸= u, the shortest path from u to v is a branch, denoted Buv. In
addition, every subpath of Buv is also a shortest path in G, and we denote such set of subpaths
(including Buv) as S(Buv).
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We denote c(u, v) as the proportion of canonical shortest paths containing a shortest path
between u and v as subpath. In order to formally define c(u, v) we first need the following. Let tuv
be the number of canonical paths that contain a shortest path from u to v as subpath, defined as

tuv =
∑

(a,b)∈V 2:a̸=b

1uv(Bab),

where 1uv(Bab) is the indicator function that returns 1 if there is some shortest path from u to v
as subpath of the branch Bab (and 0 otherwise).

Definition 2.2 Given a pair (u, v) ∈ V 2,

c(u, v) =
tuv

n(n− 1)
, where n = |V |.

2.1 Key Results on Canonical Paths

Before we present the main results of this paper in Section 3.1, we need first a key technical result
concerning canonical paths. We show in Theorem 1 that any subpath of a canonical path is also
a canonical path.

Lemma 1 Given a pair of vertices (u, v) ∈ V 2, let P be the CP from u to v in G. If |Luv| = 1,
then every subpath of P is also a CP.

Proof: Let P ′ be a (u′, v′)-subpath of P . Suppose by contradiction that P ′ is not a CP. Let
Q′ ̸= P ′ be the shortest path Q′ = (u′, . . . , v′) in G which is the CP from u′ to v′.

Case 1: v′ ̸= v. Let S1 be a (u, u′)-subpath and S2 be a (v′, v)-subpath, both from P . Let Q
be the concatenation of S1, Q

′, and S2. Note that P ′ and Q′ have the same length (since both are
shortest paths), and so does P and Q. Since P and Q have the same vertices from v′ to v, then
the predecessor of v in both paths is the same. Hence, P and Q are in Luv. But then |Luv| > 1, a
contradiction.

Case 2: v′ = v. Let w and w′ be the predecessors of v in P ′ and Q′, respectively. Note that
w ̸= w′. Thus, since {w′, v} is the last edge of Q′, by the definition of CP, σ(w′) < σ(w). But then
in the edge (w, v) of P , vertex w does not have the minimum index among all possible predecessors
of v, contradicting the fact that P is a CP. □

Lemma 2 Given a pair of vertices (u, v) ∈ V 2, let P be the CP from u to v in G. Let w be the
predecessor of v in P . Then the (u,w)-subpath of P is the CP from u to w.

Proof: Let P ′ be the (u,w)-subpath of P . In the case of |Luv| = 1, then from Lemma 1 we have
that P ′ is the CP from u to w. Otherwise, by Definition 2.1 (case 2) applied to P , it must hold
that P ′ is the CP from u to w. □

Lemma 3 Given a pair of vertices (u, v) ∈ V 2, let P be the CP from u to v in G. Then for each
z ∈ Inn(P ), the (u, z)-subpath of P is the CP from u to z.

Proof: Let P ′ be the (u, z)-subpath of P and w be the predecessor of v in P . We prove our claim
by induction on the number of edges from z to v. The base case is the one where z = w (i.e. P ′ is
the (u,w)-subpath of P ). This holds from Lemma 2.
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Figure 1: Illustration of vertex vk−i in the shortest paths P (depicted in black color) and Z
(depicted in orange color) in the proof of Lemma 4.

Figure 2: Illustration of the shortest path from z to q (in orange), denoted Q′, in the proof of
Lemma 4.

Let z′ be the predecessor of z in P and let P ′′ be the (u, z′)-subpath of P . For the induction
step, we show that if P ′ is CP from u to z, then P ′′ is the CP from u to z′.

By Definition 2.1 applied to P ′, there are two cases to consider: |Luz| = 1 (case 1) and |Luz| > 1
(case 2). In case 1, by Lemma 1 applied to P ′, the shortest path P ′′ must be the CP from u to z′.
In case 2, by Definition 2.1 (case 2) applied to P ′, the CP from u to z′ is P ′′. □

Lemma 4 Given a pair of vertices (u, v) ∈ V 2, let P be the CP from u to v in G. Then for each
z ∈ Inn(P ), the (z, v)-subpath of P is the CP from z to v.

Proof: Let Q be the (z, v)-subpath of P . We prove by contradiction supposing that Q is not the
CP from z to v in G. Then there is a shortest path Y which is the CP from z to v in G. Consider
the subpath of P from u to z concatenated with Y , and denote such concatenation as Z. Note
that, even though the number of vertices of Q and Y may be different, the length of Q and Y is
the same, since both are shortest paths. The same applies to P and Z.

Denote the vertices in P and Z as P = (u = v1, . . . , v = vk) and Z = (u = w1, . . . , v = wl). Let
vk−i be the vertex of P such that i is maximum, 0 ≤ i < k, and such that the following holds: for
all 0 ≤ j ≤ i, the vertex vk−j in P is the same as the vertex wl−j in Z (Figure 1). For simplicity,
denote vk−i as q, vk−i−1 as q′, and wl−i−1 as y′. Note that the edges in the (q, v)-subpaths of P
and Z are the same, but (q′, q) and (y′, q) is not the same edge.

Let Q′ and Y ′ be the (z, q)-subpaths of P and Y , respectively (Figure 2). Since we are assuming
that Y is the CP from z to v in G, then by Lemma 3, Y ′ is the CP from z to q in G. Note that
Q′ ̸= Y ′ (since Q ̸= Y ), and hence, Q′ is not the CP from z to q in G. Thus, σ(q′) > σ(y′).

From Lemma 3 applied to P , the (u, q)-subpath of P is a CP. But this path is a shortest path
such that q′ is not the vertex with minimum index among all possible predecessors of q (recall that
σ(q′) > σ(y′)), a contradiction. □

Theorem 1 Given a pair of vertices (u, v) ∈ V 2, let P be the CP from u to v in G. Then for
each (u′, v′) ∈ V 2, the (u′, v′)-subpath of P is the CP from u′ to v′ in G.
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Proof: Let P ′ be the (u′, v′)-subpath of P . From Lemma 4, the (u′, v)-subpath of P , denoted Q,
is a CP. From Lemma 3, since Q is the CP from u′ to v in G, then P ′ is the CP from u′ to v′ in
G. □

3 Sample Complexity and VC Dimension

In sampling algorithms, typically the aim is the estimation of a certain quantity according to
given parameters of quality and confidence using a random sample of size as small as possible. A
central concept in sample complexity theory is the Vapnik–Chervonenkis Theory (VC dimension),
in particular, the idea of finding an upper bound for the VC dimension of a class of binary functions
related to the sampling problem at hand. In our context, for instance, we may consider a binary
function that takes a branch and outputs 1 if such branch contains a shortest path for a given
set. Generally speaking, from the upper bound for the VC dimension of the given class of binary
functions we can derive an upper bound to the sample size for the sampling algorithm.

We present in this section the main definitions and results from sample complexity theory used
in this paper. An in-depth exposition of the VC dimension theory and the ε-net theorem can be
found in the books of Shalev-Schwartz and Ben-David (2014) [23], Mitzenmacher and Upfal (2017)
[16], Anthony and Bartlett (2009) [3], and Mohri et al. (2012) [17].

Definition 3.1 (Range Space) A range space is a pair R = (U, I), where U is a domain (finite
or infinite) and I is a collection of subsets of U , called ranges.

For a given S ⊆ U , the projection of I on S is the set IS = {S ∩ I : I ∈ I}. If |IS | = 2|S| then
we say S is shattered by I. Consider, for example, S = {1, 2, 3} and the ranges I1 = {1, 2, 5} and
I2 = {1, 3, 4}. Then we have S ∩ I1 = {1, 2} and S ∩ I2 = {1, 3}.

The VC dimension of a range space is the size of the largest subset S that can be shattered by
I, i.e.

Definition 3.2 (VC dimension) The VC dimension of a range space R = (U, I), denoted
VCDim(R), is

VCDim(R) = max{k : ∃S ⊆ U such that |S| = k and |IS | = 2k}.

The following combinatorial object, called ε-net, is useful when one wants to find a sample
S ⊆ U that intersects every range in I of a sufficient size.

Definition 3.3 (ε-net) Let R = (U, I) be a range space and π be a probability distribution on U .
Given 0 < ε < 1, a set S is called ε-net w.r.t. R if

∀I ∈ I, Pr
π
(I) ≥ ε ⇒ |I ∩ S| ≥ 1.

When computing ε-nets for a given range space R = (U, I), we typically build a sample S from
elements of U . One can obtain lower bounds for the size of S via standard union bound. However,
these bounds usually overestimate |S| since they only take into account the number of points in U
or the number of ranges in R. This issue can be overcame if the VC dimension of the range space
that models the problem at hand, denoted k, is finite. The next theorem, proven by Har–Peled
and Sharir (2011) [10], states a lower bound for |S| based on k.
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Theorem 2 (see [10], Theorem 2.12) Given 0 < ε, δ < 1, let R = (U, I) be a range space
with VCDim(R) ≤ k, let π be a probability distribution on the domain U , and let c be a universal
positive constant.

A collection of elements S ⊆ U sampled w.r.t. π with |S| = c
ε

(
k ln 1

ε + ln 1
δ

)
is an ε-net with

probability at least 1− δ.

As pointed by Löffler and Phillips (2009) [15], c is around 1
2 , but in this paper we leave c as an

unspecified constant.

Some of the techniques used in our sampling strategy described in Sections 3.1 and 4 were
developed by Riondato and Kornaropoulos (2016) and Riondato and Upfal (2018) [19, 20], where
the authors used VC dimension theory, the ε-sample theorem, and Rademacher averages for the
estimation of betweenness centrality in a graph. The work of Lima et al. [13, 12] showed how to use
sample complexity tools for the estimation of the percolation centrality, which is a generalization
of the betweenness centrality. More recently, Cousins et al. (2021) [7] showed improved bounds
for the betweenness centrality approximation using Monte–Carlo empirical Rademacher averages,
and Lima et al. (2022) [14] used sample complexity tools in the design of a sampling algorithm for
the local clustering coefficient of every vertex of a graph.

3.1 Range Space and VC Dimension Results

In this section, we first define the problem in terms of a range space; that is, the problem of
computing, with probability at least 1− δ, the shortest paths between the pairs of vertices (u, v) ∈
V 2 that have c(u, v) ≥ ε (Definition 2.2). We show that the VC dimension of the range space that
models such problem is constant, which directly impacts in the size of the sample to be used by
our algorithms. In fact, we show that this sample size only depends on the parameters of quality
and confidence, ε and δ, respectively.

Let n = |V | and T be the set of n Dijkstra trees of G. Recall that such trees are, by definition,
composed by canonical paths. The universe U is defined for the set of all branches of Dijkstra
trees, i.e.

U =
⋃

(a,b)∈V 2:a̸=b

Bab.

For each pair (u, v) ∈ V 2, let puv be the canonical path from u to v, according to Definition
2.1. Each range τuv is defined as τuv = {Bab ∈ U : puv ∈ S(Bab)}. In other words, we can say
that Bab is in the range of (u, v) if Bab “passes” through a canonical path between u and v. Let
I = {τuv : (u, v) ∈ V 2} be the range set. So, R = (U, I) is the range space defined for our problem.

Now we show how to plug our range space R with Definition 3.3 so we can use Theorem 2 to
bound the sample size that is tight enough for the task that we are tackling. We first show in
Theorem 3 that Prπ(τuv) = c(u, v). For this result, we have that each tree Ta ∈ T is sampled with
probability π(Ta) =

1
n and each branch Bab ∈ Ta is sampled with probability 1

n−1 , leading to the

probability distribution π(Bab) = 1
n(n−1) (which is a proper distribution as the sum is equal to 1).

Let 1uv(Bab) be the indicator function that returns 1 if there is some canonical path from u to
v as subpath of Bab, i.e. Bab ∈ τuv, and 0 otherwise. The value of τuv is equal to counting the
individual probabilities of each branch that is in τuv.

Theorem 3 For (u, v) ∈ V 2, Prπ(τuv) = c(u, v).
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Proof: For fixed (u, v) ∈ V 2 and considering that a branch Bab ∈ U is sampled with probability
π(Bab) = 1

n(n−1) , we have

Pr
π
(τuv) =

∑
Ta∈T

∑
Bab∈Ta

π(Bab)1uv(Bab)

=
1

n(n− 1)

∑
Ta∈T

∑
Bab∈Ta

1uv(Bab)

=
1

n(n− 1)

∑
a∈V

∑
b∈V :a̸=b

1uv(Bab)

=
tuv

n(n− 1)
= c(u, v).

The first equality follows from the fact that the probability that a branch lies on the range τuv
corresponds to counting the individual probabilities of each branch that is in τuv. □

For problems involving shortest paths, such as the ones in [19, 12], it is possible to find a bound
for the sample size using VC dimension theory. The referred work typically apply the same proof
structure, having a bound based on the vertex-diameter of a graph G, denoted DiamV (G), as in
Theorem 4 (we present such proof for the sake of completeness). Even though DiamV (G) might be
as large as n, in particular, this bound is exponentially smaller for graphs with logarithmic vertex-
diameter, which may be common in practice. In [19] it is presented a constant VC dimension
associated to the set of shortest paths for a graph that contains exactly one shortest path between
every pair of vertices. We note that our result generalizes their work, since in our case we do not
require such restriction on the input graph.

Although the bound presented in Theorem 4 depends on a combinatorial structure of G, in this
work we present an improvement to this result in Theorems 5 and 6, giving a bound that depends
only on the desired quality and confidence parameters of the solution. More specifically, for these
two theorems we have that VCDim(G) = 2 for a given graph G with respect to a fixed vertex
ordering σ, where VCDim(G) denotes the VC dimension of the range space R = (U, I) related to
a graph G.

Theorem 4 For a given graph G = (V,E),

VCDim(G) ≤ ⌊2 logDiamV (G) + 1⌋.

Proof: Let VCDim(G) = k, where k ∈ N. Then, there is S ⊆ U such that |S| = k and S is
shattered by I. Each Bab ∈ S must appear in 2k−1 different ranges in I, from the definition of
shattering. On the other hand, Bab has length at most DiamV (G). Then the maximum number of
subpaths of Bab, denoted |S(Bab)|, is DiamV (G) · (DiamV (G)− 1). Thus, the branch Bab lies in at
most |S(Bab)| ranges, and therefore,

2k−1 ≤ |S(Bab)| ≤ DiamV (G) · (DiamV (G)− 1) ≤ DiamV (G)2.

Solving for k, VCDim(G) = k ≤ ⌊2 logDiamV (G) + 1⌋. □

For Theorems 5 and 6, we introduce the definition of meeting path between two canonical paths
P1 and P2, and in Lemma 5 we prove that there is only one such path between P1 and P2. We
use this fact to prove that VCDim(G) ≤ 2 in Theorem 5. On this theorem, we show that a set of
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Figure 3: Illustration of the situation described in Lemma 5, where the paths P1 and P2 are
depicted in black and red colors, respectively.

three paths S = {P1, P2, P3} cannot be shattered by the range set. More specifically and without
losing of generality, we show that any meeting path between P1 and P3 is also a meeting path of
P2, and therefore, all the possible subsets of S but {P1, P3} can be found in the intersection of S
with the range set.

Definition 3.4 Consider two different canonical paths P1 and P2. We say that a canonical path
Z = (z, . . . , z′) is a meeting path between P1 and P2 if Z is a maximal (z, z′)-subpath of P1 and
P2.

On Definition 3.4, we consider two paths intersecting if they share at least one edge.

Lemma 5 Consider two different canonical paths P1 and P2. Let Z be a meeting path between P1

and P2. Then Z is the only meeting path between both paths in G.

Proof: Let P1 = (x, . . . , x′), P2 = (y, . . . , y′), and Z = (z, . . . , z′). Suppose that Z is a meeting
path between P1 and P2 and suppose that it is not unique. Let W = (w, . . . , w′) be another
meeting path between P1 and P2 in G (Figure 3). Note that Z and W are disjoint, otherwise
the concatenation of both paths would contradict the maximality of Z and W . Without loss of
generality, we may assume the following:

• Z is contained in the (x, z′)-subpath of P1 and in the (y, z′)-subpath of P2, with z′ closer to
x and to y than to x′ and y′ in P1 and P2, respectively;

• W is contained in the (w, x′)-subpath of P1 and in the (w, y′)-subpath of P2, with w closer
to x′ and to y′ than to x and y in P1 and P2, respectively.

Let D be the CP from z′ to w in G. Since P1 and P2 are canonical paths, by Theorem
1, the (z′, w)-subpath of P1 and the (z′, w)-subpath of P2 must be equal do D. Let Z ′ be the
concatenation of Z, D, and W . Then Z ′ is a meeting path between P1 and P2 that contradicts
the maximality of Z. □

Theorem 5 For a given graph G = (V,E) and a fixed ordering σ over V ,

VCDim(G) ≤ 2.

Proof: Suppose that VCDim(G) > 2. Then, from the definition of VC dimension, there is a
set of canonical paths S = {P1, P2, P3} that is shattered by I. These paths are described as
P1 = {u, . . . , v}, P2 = {u′, . . . , v′}, and P3 = {u′′, . . . , v′′}. Let W be the (w,w′)-subpath of P1

that is also contained in P2 and P3. From the definition of shattering, this path must exist so
that τww′ ∩ S = {P1, P2, P3}. Let x be the farthest predecessor of w in P1 such that, w.l.o.g.,
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Figure 4: Illustration of paths P1 and P2 having a (x,w)-path as a meeting path, and of paths P2

and P3 having a (q′, y)-path as a meeting path.

Figure 5: Case where τxw ∩ S = {P1, P2, P3}, for P1 = (u, . . . , v), P2 = (u′, . . . , v′), and P3 =
(u′′, . . . , v′′).

the (x,w)-subpath of P1, denoted X, is also contained in P2 but not in P3. Let y be the farthest
successor of w in P1 such that a (q′, y)-subpath of P1, denoted Y , is also contained in P3 but not
in P2. Note that X and Y must exist so that τxw ∩ S = {P1, P2} and τq′y ∩ S = {P1, P3} (Figure
4).

We now show that either P3 can only have a meeting path with P2 and not with P1 (and vice-
versa), or it can only have a meeting path that is common to P1 and P2 at the same time (Figures
5, 6, and 7). Suppose that there is a (q, x)-subpath of P2 that is contained in P3 but not in P1, as
depicted in Figure 5. The vertex q is not contained in X, but P2 and P3 must pass through W .
Besides, the CP from u′ to v′ is not the same as the one from v′ to u′ (and correspondingly for u′′

and v′′), so a meeting path between P3 and a shortest path that goes from v′ to u′ is not the same
meeting path between P2 and P3. Therefore, the (q, x)-subpath pass through the (x,w)-subpath
of P2. From Lemma 5, all the vertices from q to w′ must be the same in P2 and P3. Hence, P3 goes
through x, and from our initial assumption, P2 does not have any intersection with a vertex that
comes before x in P1. Besides, P3 goes through q′ and Y . Therefore, any subpath of P2 starting
in q is also a subpath of P3. This contradicts that τxw ∩S = {P1, P2} since τxw ∩S = {P1, P2, P3}.

Consider now the (q′, v)-subpath of P1, denoted P ′
1. Suppose that P3 has an intersection with

P1 on a (r, r′)-subpath of P ′
1. Such path is depicted in red in Figure 6. Note that in fact this

cannot happen, otherwise G would have more that one canonical shortest path from q′ to r in G.

Now, consider the (q′, v′)-subpath of P2, denoted P ′
2. Suppose that P3 has an intersection with

a (r, r′)-subpath of P ′
2 (Figure 7). From our initial assumption, P3 goes through W and Y , so

it passes through q′, and q′ reaches r. Hence, from Lemma 5, all the vertices from q′ to r′ must
be the same in P2 and P3. In this case, P3 does not contain a (r′, w)-subpath, otherwise P1 and
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Figure 6: Case of an intersection of the paths P1 and P3 that is prohibited. In this case, there is
more than one canonical shortest path from q′ to r in G.

Figure 7: Case where τq′y ∩S = {P1}, for P1 = (u, . . . , v), P2 = (u′, . . . , v′), and P3 = (u′′, . . . , v′′).
The orange dashed path correspond to a shortest path that cannot happen.

P3 would form a cycle starting and ending in r′. Besides, P3 does not have a (r′, y)-subpath or
a (r′, y′)-subpath, for any y′ ∈ Inn(Y ), otherwise that would be two different CPs from r′ to y′.
Hence, P3 does not pass through the (q′, y)-subpath of P1, contradicting that τq′y ∩ S = {P1, P3}
since τq′y ∩ S = {P1}.

□

Theorem 6 For a given graph G = (V,E) and a fixed ordering σ over V ,

VCDim(G) ≥ 2.

Proof: Consider the graph as in Figure 8. Then, for P1 = (a, b, c, d, e, f), P2 = (g, b, c, d, e, h), and
S = {P1, P2}, we have: τac = {P1}, τgc = {P2}, τcd = {P1, P2}, and τaj = ∅.

Figure 8: Graph with VCdim(G) ≥ 2.

□
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4 Algorithms

For an undirected graphG = (V,E) with non-negative edges weights, with n = |V | andm = |E|, we
first present in Section 4.1 a modified version of Dijkstra’s algorithm which takes into consideration
a given vertex ordering σ, and then we show that the shortest paths in the SPT computed by the
algorithm are canonical paths. Then, in Section 4.2 we present an algorithm for the relaxed APSP
problem that returns, with probability at least 1 − δ, the shortest paths that appear as subpaths
of at least a proportion ε of all canonical paths.

4.1 Modified Dijkstra

In this section we present a modification of Dijkstra’s algorithm presented in [6]. Dijkstra’s algo-
rithm, for a given vertex s, outputs a SPT, denoted Ts, rooted in s. This algorithm maintains in
every step a set S such that every vertex in S has its distance from s already computed. At every
step, a vertex v in V \S with minimum estimated distance from s is selected to be added in S. An
edge (u,w) ∈ E is relaxed if the minimum distance from s to u plus the weight of (u,w) improves
the minimum distance from s to w.

The main difference between the modified algorithm that we present here and the original one
is the tie-breaking criterion for the selection of edges to be added in a shortest path. In a given
step of the modified Dijkstra, if there are multiple vertices in V \ S with the same estimation for
minimum distance from s, then the one with minimum index in σ is chosen to be added in S.
Additionally, let u be a vertex that has been just inserted in Ts in a given iteration. For every
neighbor y of u in V \ S for which the algorithm relaxes the edge (u, y), the ordering is taken into
consideration so that if d(s, u)+ω(u, y) = d(s, u′)+ω(u′, y), for some u′ in S, then the tie-breaking
for the shortest (s, y)-path depends on which vertex between u and u′ has the minimum index in
σ.

Theorem 7 shows that the modified Dijkstra’s algorithm correctly computes all the canonical
paths from a source s to any other vertex in V with respect to σ. Note that S is a priority queue
that is also modified to give higher priority to vertices with lowest indexes in σ in the case of ties in
the vertices selection. We observe, however, that these modifications do not increase the running
time of the priority queue operations. In particular, when a vertex is chosen to be included in a
shortest path and the priority queue needs to be rearranged, the maximum number of comparisons
between the vertices performed in this task is at most the number of comparisons made by the
original Dijkstra algorithm.

Theorem 7 All shortest paths computed by a modified Dijkstra’s algorithm with respect to a given
vertex ordering σ are canonical paths.

Proof: (Sketch) Similar to the proof of correctness of the original Dijkstra’s algorithm presented
in [6] (Theorem 22.6), the proof is by induction on the size of S.

Let s be the source vertex. For each u ∈ V , let d̃(s, u) the estimated minimum distance from s
to u in a given step of the algorithm. For |S| = 0, the set S is empty and then this base is trivially
true. For the base where |S| = 1, we have S = {s}, and then d̃(s, s) = d(s, s) = 0. Besides,
s does not have a predecessor, since it is the source, so the base is also true for this case. For
the inductive step, we have the following hypothesis: for all v ∈ S, we have that d̃(s, v) = d(s, v)
and the predecessor of v in the Dijkstra tree of s is the one with minimum index in σ. Proving
that d̃(s, v) = d(s, v) follow the same arguments of the proof of correctness in [6] for the original
Dijkstra’s algorithm.
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In order to prove that the predecessor of v in the Dijkstra tree of s, denoted v′, is the one
with minimum index in σ among all possible predecessors of v, we prove that all edges (z, v)
where d̃(s, v) = d̃(s, z) + ω(z, v) were examined when the edge (v′, v) were relaxed. Consider, by
contradiction, that there is some vertex u′ that has the minimum index in σ among all possible
predecessors of v, but that the edge (u′, v) was not examined before vertex v is added to S. If the
edge (u′, v) was not examined, then v was added in S before u′. In this case, this happened either
because d̃(s, v) < d̃(s, u′) or because d̃(s, v) = d̃(s, u′) and σ(v) < σ(u′). However, in both cases,
then u′ could not be the predecessor of v, since d̃(s, u′) should be strictly smaller than d̃(s, v) to
be considered as a possible predecessor of v. Hence, all y ∈ S with d̃(s, y) < d̃(s, v) should have
been examined before v, and hence, v′ is the predecessor of v with minimum index in σ among all
such vertices. This value never changes again once v is added in S. □

4.2 Computing Shortest Paths

Given 0 < ε, δ < 1, Algorithm 1 computes, with probability 1 − δ, the distances between pairs of
vertices (u, v) ∈ V 2 such that c(u, v) ≥ ε. We also briefly describe the necessary modifications on
the algorithm so that the shortest path associated to such distances be also computed.

Algorithm 1: ProbabilisticAllPairsShortestPaths(G,ε,δ)

input : non-negative weighted graph G = (V,E) with n = |V |, parameters 0 < ε, δ < 1.
output: distance duv, for each (u, v) ∈ V 2 s.t. c(u, v) > ε, with probability 1− δ.

1 for i← 1 to
⌈
c
ε

(
2 ln 1

ε + ln 1
δ

)⌉
do

2 sample a ∈ V with probability 1/n
3 Ta ← singleSourceShortestPaths(a) /* modified Dijkstra */

4 sample b ∈ V \ {a} with probability 1/(n− 1)
5 Bab ← shortest path from a to b in Ta

6 for each (u, v) ∈ Bab × Bab do /* u closer to a, v closer to b */

7 duv ← dav − dau /* dau and dav come from Ta */

8 return each duv in the distances table

Theorem 8 Consider a (u, v)-path such that c(u, v) ≥ ε. Algorithm 1 computes the exact distance
between u and v with probability 1− δ.

Proof: Algorithm 1 samples several branches and we first assume that such samples are an ε-net
(we show later that this is indeed true). Recalling the range space modeling (Section 4.2), the
sample of branches is denoted by S and the (u, v)-path is related to a range τuv.

As, by lines 2 and 4, the branch is sampled with probability 1/n(n − 1) then, by Theorem 3,
we have that c(u, v) = Pr(τuv). Thus, as c(u, v) ≥ ε, so Pr(τuv) ≥ ε. As we are assuming that the
sample is an ε-net, by Definition 3.3, then |τuv ∩ S| ≥ 1 for all τuv such that Pr(τuv) ≥ ε. That is,
since c(u, v) ≥ ε then at least one branch of the sample S contains the (u, v)-path. If a branch Bab
in S contains the (u, v)-path, then in line 3 the exact distance between u and v is computed, since
the (u, v)-path which is a subpath of the shortest path from a to b is also minimal, so its distance
duv can be computed as dav − dau.

Now it remains to prove that the sample S is indeed an ε-net. Note that in lines 1–7, the loop
is executed k =

⌈
c
ε

(
2 ln 1

ε + ln 1
δ

)⌉
times, so our sample has at least size k. By Theorems 2, 5, and

6, this sample size is sufficient for it to be an ε-net with probability at least 1− δ. □
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Theorem 9 Algorithm 1 has running time O(m+ n log n+ (DiamV (G))2).

Proof: Lines 2 and 4 take constant time and line 5 takes linear time. Line 3 (the modified
Dijkstra) runs in O(m + n log n), as the modifications do not change the running time of the
original Dijkstra’s algorithm. The loop in line 6 takes time O((DiamV (G))2) since the length of
Bab cannot be greater than the vertex diameter of the graph. The distances returned by Dijkstra’s
algorithm in line 3 are stored in a table d. Since operations of insertion, deletion, and search on
this data structure take time O(1), then updating table d takes time O(1). Assuming that ε and
δ are constants, the number of loop iterations in lines 1–7 is constant, and the result follows. □

As it is common to APSP and search algorithms, Algorithm 1 also constructs a data structure
from which, for all vertices (u,w), a shortest path from u to w can be retrieved. We can store
the predecessors of each vertex that is in Bab so that a (u, v)-subpath of Bab can be retrieved by
a backward traversing from v to u on these predecessors. This modification does not change the
execution time of the original algorithm.

In the remainder of this section we are interested in determining the smallest value of ε for which
our algorithm would still perform on strictly subcubic time. For this, we drop the assumption that
ε is constant and therefore write it as a function of n, denoted by ε(n).

Let k be the sample size (which impacts on the number of times line 1 of Algorithm 1 is

executed). Then k = O
(

1
ε(n) ln

1
ε(n)

)
, and the running time of Algorithm 1 becomes O(k · (m +

n log n+ (DiamV (G))2)). In the worst case m = O(n2) and then its running time is O(k · n2). As
the best conjectured time is O(n3−c), for a constant c > 0 [28], then we are looking for the value of
ε(n) such that the time of our algorithm is upper bounded by O(n3−c), i.e. O(k · n2) = O(n3−c).
Thus k = n1−c, i.e.

1

ε(n)
ln

1

ε(n)
= n1−c.

Solving for ε(n), we have ε(n) = W0(n
1−c)

n1−c , where W0(n
1−c) is the branch 0 of the Lambert-W

function [26]. To simplify the notation, let n′ = n1−c. If n′ ≥ e, then a known bound [11] for

W0(n
′) is W0(n

′) = lnn′ − ln lnn′ +Θ
(

ln lnn′

lnn′

)
. Therefore ε(n) =

lnn′−ln lnn′+Θ
(

ln lnn′
lnn′

)
n′ .

Note that the smallest value for c(u, v), for a pair (u, v) ∈ V 2, is 1/n(n− 1), which is the case
for a path that is not strictly contained in any other path. So, to compute the distance of paths
with such small value, we have to use ε so small that the execution time exceeds that of the best
existing algorithms [28, 18]. Nevertheless, by the reasoning above, we note that we can set ε as

small as Θ
(

lnn′

n′

)
.

5 Concluding Remarks

In this paper we present a range space having the domain composed by the shortest paths of a
graph G where there is one shortest path for each pair of vertices in G. We show that the VC
dimension of such range space is 2. We show that this result can be applied to bound the sample
size required for an approximation algorithm for a relaxed version of the All-pairs shortest path
problem (APSP). In this version, we consider the set S, which is a subset of all shortest paths
from a graph G such that S contains exactly one shortest path between every pair of distinct
vertices of G. We compute, with probability at least 1 − δ, the shortest paths of G that appear
as subpath of at least a proportion ε of all shortest paths in the set S, for 0 < ε, δ < 1. We
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present a O(m + n log n + (DiamV (G))2) running time algorithm for this task. We show that a
sample of shortest paths of size ⌈ cε

(
2 ln 1

ε + ln 1
δ

)
⌉ is sufficient for achieving the desired result. So,

in an application where one might be interested only in computing “important” shortest paths the
algorithm is rather efficient and it depends only on the parameters ε and δ (classical approaches
in literature based in union bound, for example, typical require sample sizes that depend on the
size of the input).

An open question that we are particularly interested is the connection between ε and n or
DiamV (G) for specific input distributions. For the general case, trivially setting ε = 1

n(n−1) , we

have a guarantee that every shortest path in G is computed with probability 1 − δ, but that
would yield an algorithm with running time exceeding O(n3). This may not be a surprise since
APSP may not admit a strictly subcubic algorithm. Nevertheless, we show that if ε is at least
lnn′−ln lnn′+Θ

(
ln lnn′
lnn′

)
n′ , where n′ = n1−c, the running time of our algorithm is O(n3−c), for c > 0.

Instead of fixing a vertex ordering and using the strategy of canonical paths, one may ask
whether a simpler strategy would not be enough, such as adding some perturbation on the edges
weights for artificially changing the input graph so that the shortest paths are unique. However,
rather than changing the input graph, we prefer to assume that we are completely subordinated
to the input distribution, which seems to be reasonable for a sampling algorithm. In fact, one can
find pathological inputs where different vertex orderings can generate significantly different values
of c(u, v), for (u, v) ∈ V 2, but since we are dealing with sampling, that is not a serious issue.

An extensive experimental evaluation is out of the scope of our work, which is theoretical in
nature, however, we observe that, in practice, the ordering of vertices may have little impact in
the value of c(u, v). Some preliminary experiments 1 showed that, as expected, both the average
standard deviation and the maximum standard deviation are small for the values of c(u, v) (average
standard deviation is 10−6 and maximum standard deviation is 10−3). However, one might be
interested in investigating more rigorously this question, e.g., specifying an input distribution and
performing a probabilistic analysis.
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