
The k-in-a-tree problem for chordal graphs∗

Vińıcius F. dos Santos Murilo V. G. da Silva
Jayme L. Szwarcfiter

Abstract

Algorithms for detecting particular induced subgraphs have been the
focus of much research recently, mostly related to their connection to
many classes of graphs defined by forbidden induced subgraphs. In this
context, Chudnovsky and Seymour proposed a useful tool, called three-in-
a-tree algorithm which solves the following problem in polynomial time:
given a graph with three prescribed vertices, test if there is an induced
tree containing these vertices. In our paper we deal with a generalization
of this problem, known as k-in-a-tree problem. For the case where k is
part of the input, the problem is known to be NP-complete. For fixed
k, the complexity of this problem is open for k ≥ 4, although there are
polynomial time algorithms for restricted cases, such as claw-free graphs
and graphs with girth at least k. In this paper we give a O(nm2) time
algorithm for the k-in-a-tree problem for chordal graphs, even in the case
where k is part of the input. Furthermore, the algorithm outputs an
induced tree containing the k prescribed vertices when there is such tree.

1 Introduction

A very useful tool for detecting induced subgraphs, known as three-in-a-tree al-
gorithm, was proposed in 2006 by Chudnovsky and Seymour [3]. This algorithm
deals with the following problem, known as the three-in-a-tree problem: Given
a graph G = (V,E) and three vertices u, v, w ∈ V as input, find in polynomial
time a tree T containing u, v, w such that T is an induced subgraph of G, or
report that no such tree exists. In the original paper, the authors also used this
algorithm as a tool for testing for certain forbidden induced subgraphs such as
thetas and pyramids (these two structures play an important role in the recog-
nition algorithm for perfect graphs and more generally the realm of classes of
graphs defined by forbidden induced subgraphs [10]). Lévêque et al. [8] show
that the three-in-a-tree algorithm can be used for testing for whole class of for-
bidden induced subgraphs and more recently Chang and Lu [2] also use the
algorithm for testing for some structures in their algorithm for the recognition
of even-hole-free graphs.

∗Partially supported by CAPES and CNPq.
Keywords and phrases: k-in-a-tree, three-in-a-tree, induced subgraphs, chordal graphs.

1

The problem that we are dealing in this paper, which is known as the k-in-
a-tree problem is a natural generalization of the three-in-a-tree problem in the
case where the number of prescribed vertices is any natural k ≥ 3 (note that
for k = 1 and k = 2 the problem is trivial). For the sake of clarity, we may also
assume that the input graph for this problem is connected.

The complexity of the k-in-a-tree problem for any k ≥ 4 is still an open
problem. Polynomial time algorithms for the k-in-a-tree problem for k ≥ 4 are
known only for the restricted cases of claw-free graphs, by Fiala et al. [6], and
graphs with girth at least as large as k by Trotignon and Wei [9] (which is a
generalization of a work by Derhy et al. [5]).

An important point to make is that in the k-in-a-tree problem, k is a fixed
number. The version of this problem when k is part of the input is NP-hard
[4]. Although the complexity of k-in-a-tree is open for k ≥ 4, many variations of
this problem are known to be NP-hard. Namely, it is NP-hard the problem of
testing for the following subgraphs containing k prescribed vertices: an induced
cycle [1], for k ≥ 2, a minimum induced tree [4], for k ≥ 3, and an induced
path [7], for k ≥ 3 vertices.

In this paper we give a O(nm2) time algorithm for the k-in-a-tree problem
for chordal graphs, even in the case where k is part of the input. The algorithm
also outputs an induced tree containing the k prescribed vertices when the input
contains such induced tree.

2 The k-in-a-tree problem for chordal graphs

Throughout this section let G = (V,E) be a connected chordal graph and S ⊆ V
be a set of k vertices for a fixed k. For any A ∈ V (G), we denote the subgraph of
G induced by A by G[A]. Let C = {C1, . . . , Cl} be the set of its maximal cliques.
A clique-tree of G is a tree T with vertex set V (T) = C such that T satisfies
the following property: For every pair of distinct maximal cliques Ci, Cj ∈ C,
the set Ci∩Cj is contained in every clique in the path from Ci to Cj in the tree T .

Definition: the k-in-a-tree problem is that of testing if G contains a set
of vertices A such that G[A] is a tree and S ⊆ A. If G contains such set of
vertices, then we say that G contains an induced-S-tree. When the set S is
clear from the context, we may say only that G contains an induced tree. When
the input graph is a chordal graph, we call this problem k-in-a-tree-chordal.

At the end of this section we present an algorithm for the k-in-a-tree-
chordal problem (Algorithm 1) and also provide an algorithm that outputs
an induced-S-tree if the input chordal graph contains such tree (Algorithm 2).
In fact our algorithms also solves the general case where k is part of the input.
We give below an outline of the key ideas behind the algorithm.

(1) Initially we “trim” G removing simplicial vertices that are not in S since
we do not need them in any possible induced-S-trees that could be present
in G. This is almost straightforward and is the subject of Claim 1.

2

(2) We show that if this “trimmed” graph contains an induced-S-tree T , then
every clique C in the clique-tree of G contains precisely one or two vertices
of T . We prove that in Claim 2. We call these (one or two) vertices the
candidates for clique C.

(3) The algorithm is conceptually simple and can be seen as a dynamic pro-
gramming strategy going through every clique (always picking up cliques
that are leaves in the clique tree) C trying to match the candidates of
C to the candidates of its neighboring clique. However, in order for this
strategy to work, we need to deal with many technicalities which are the
subject of Claims 3, 4, 5 and 6. The main (inductive) idea of the algorithm
going through every clique is the subject of Claim 7.

The following claims are used in the proof of correctness of the algorithm at
the end of the paper. For space reasons, the proofs are omitted.

Claim 1 Suppose that x ∈ V \ S is a simplicial vertex of G. If G contains an
induced-S-tree, then G \ x also contains an induced-S-tree.

Note that by Claim 1, if we are looking for an induced-S-tree in G, we can
first repeatedly remove every simplicial of G in V \ S and then look for the
induced-S-tree in the remaining graph. For the next claims let T = (C, E) be a
clique-tree of G where C is the set of its maximal cliques.

Claim 2 Suppose that every simplicial vertex of G is in S and let A be any
maximal clique of T . Suppose that G contains an induced-S-tree T . Then
1 ≤ |V (T) ∩A| ≤ 2.

Let A,X ∈ C be maximal cliques of G such that A and X are adjacent in T .

Claim 3 Let ab (resp. xy) be an edge of A (resp. X). Suppose that G contains
an induced-S-tree T . If ab, xy ∈ E(T), then the following conditions hold:

(i) {a, b} ∩ {x, y} 6= ∅.

(ii) G[{a, b, x, y}] does not contain a triangle.

Claim 4 Let ab be an edge of A and x be a vertex of X. If ab ∈ E(T) and x is
the unique vertex of X in T , then x ∈ {a, b}.

Claim 5 Let a ∈ A and x ∈ X. Suppose that G contains an induced-S-tree T .
If A ∩ V (T) = {a} and X ∩ V (T) = {x}, then a = x.

In what follows, the symbol 	 denotes the symmetric difference of two sets.

Claim 6 Let A′ ⊆ A and X ′ ⊆ X be such that 1 ≤ |A′| ≤ 2 and 1 ≤ |X ′| ≤ 2.
Suppose that G contains an induced-S-tree T . If V (T)∩A = A′ and V (T)∩X =
X ′, then the following three conditions hold:

(i) A′ ∩X ′ 6= ∅.

3

(ii) A′ 	X ′ ⊆ A	X.

(iii) G[A′ ∪X ′] does not contain a triangle.

For every Ci ∈ T , we define L(Ci) as the list containing every subset X ⊆
V (Ci) respecting the following two conditions:

Condition (1) 1 ≤ |X| ≤ 2.

Condition (2) V (Ci) ∩ S ⊆ X.

Let A be a leaf in T and X be its unique neighbor in T . For every given
X ′ ∈ L(X) we define FA(X ′) as the list of every set A′ ∈ L(A) such that the
following conditions are satisfied:

Case 1: If |A′| = |X ′| = 2, then A′ ∩X ′ 6= ∅ and G[A′ ∪X ′] does not contain
a triangle.

Case 2: If |A′| = 1 and |X ′| = 2, then A′ ⊂ X ′.

Case 3: If |A′| = 2 and |X ′| = 1, then X ′ ⊂ A′.

Case 4: If |A′| = |X ′| = 1, then A′ = X ′.

Let B = A \ X. Since T is a clique-tree, B 6= ∅. Let G′ = G[V \ B]. Let
S′ = S \B.

Claim 7 G has an induced-S-tree T such that for every C ∈ V (T), 1 ≤ |V (C)∩
V (T)| ≤ 2 if and only if the following conditions hold:

(i) G′ has an induced-S′-tree T ′.

(ii) ∃X ′ ∈ L(X) such that FA(X ′) 6= ∅.
(iii) In the induced-S′-tree T ′ we have V (T ′) ∩X = X ′.

Theorem 1 Algorithm 1 solves k-in-a-tree-Chordal problem.

The proof of Theorem 1, which is omitted, relies on Claim 7. The proof of
Claim 7 relies on the proof of Claims 1 – 6.

4

Algorithm 1: Decides if a chordal graph G contains an induced-S-tree

input : G = (V,E) and S ⊆ V (G) (set of k prescribed vertices)
1 Remove iteratively every simplicial vertex of G which is not in S;
2 C ← {C1, . . . , Cl} be the list of maximal cliques of G;
3 If ∃Ci s.t. |Ci ∩ S| ≥ 3 then return No
4 for each Ci do
5 Let L(Ci) be the list of every set X ⊆ V (Ci) such that 1 ≤ |X| ≤ 2;

6 end
7 for each Ci do
8 for each set X ∈ L(Ci) do
9 If Ci ∩ S 6⊆ X then Remove X from L(Ci)

10 end

11 end
12 Let T = (C, E) be a clique-tree of G;
13 while |C| > 1 do
14 Let A ∈ C be a leaf of T and X ∈ C its unique neighbor in T ;
15 ∀X ′ ∈ L(X), let FA(X ′) = ∅;
16 for every A′ in L(A) do
17 for every X ′ in L(X) do
18 If A′ ∩X ′ 6= ∅, A′ 	X ′ ⊆ A	X and G[A′ ∪X ′] does not

contain a triangle then Insert A′ in the list FA(X ′);
19 end

20 end
21 for every X ′ in L(X) do
22 If FA(X ′) = ∅ then Remove X ′ from L(X);

23 end
24 If L(X) is empty then return No
25 Remove A from T and from C;
26 end
27 return Yes

Algorithm 2: Builds an induced-S-tree.

input : A clique tree T of G, lists FC , the last remaining clique C of C
in Algorithm 1, X ∈ L(C) and an empty graph T = (∅, ∅).

1 BuildTree(C, X);
2 return G[V (T)];

3 procedure BuildTree(C, X);
4 Mark C;
5 V (T)← V (T) ∪ {X};
6 for each unmarked neighbor C ′ of C do
7 Let Y ∈ FC′(X);
8 BuildTree(C ′, Y);

9 end

5

Let C be the last clique remaining in C after the execution of Algorithm 1.
We call Algorithm 2 with parameters C and X, for any X ∈ L(C). Algorithm
2 outputs an induced-S-tree T . Initially, V (T) = E(T) = ∅.

Theorem 2 Let G be a chordal graph with n vertices and m edges and let S
be a subset of V (G). An induced-S-tree of G is found by Algorithm 2 in time
O(nm2) if such tree exists.

References

[1] D. Bienstock, On the complexity of testing for odd holes and induced odd
paths. Discrete Mathematics 90 (1991), 85-92

[2] H-C. Chang and H-I Lu, A faster algorithm to recognize even-hole-free
graphs. Journal of Combinatorial Theory, Series B 113 (2015), 141161

[3] M. Chudnovsky and P. Seymour, The three-in-a-tree problem. Combinator-
ica 30 (2010), 387-417

[4] N. Derhy and C. Picouleau, Finding induced trees. Discrete Applied Math-
ematics 157 (2009), 3552-3557

[5] N. Derhy, C. Picouleau and N. Trotignon The Four-in-a-Tree Problem in
Triangle-Free Graphs Graphs and Combinatorics 25 (2009), 489-502

[6] J. Fiala, M. Kamiński, B. Lidický and D. Paulusma The k-in-a-path prob-
lem for claw-free graphs. Symposium on Theoretical Aspects of Compuper
Science (2010), 371-382

[7] R. Haas and M. Hoffmann, Chordless paths through three vertices. Theo-
retical Computer Science 351 (2006), 360-371

[8] B. Lévêque, D.Y. Lin, F. Maffray and N. Trotignon, Detecting induced
subgraphs. Discrete Applied Mathematics 157 (2009), 3540-3551

[9] N. Trotignon and L. Wei, The k-in-a-tree problem for graphs of girth at
least k. Discrete Applied Mathematics 158 (2010), 1644-1649

[10] K. Vušković, The world of hereditary graph classes viewed through Truemper
configurations. Surveys in Combinatorics, London Math Soc, 2013.

DECOM, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Hori-
zonte, Brazil.
vinicius.santos@gmail.com

DAINF, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil.
murilo@utfpr.edu.br

IM, NCE, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil.
jayme@nce.ufrj.br

6

