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Abstract

Although the edge-coloring problem is NP-hard for graphs in general, the problem is partially solved for proper interval graphs, a
subclass of proper circular arc graphs, by a technique called pullback. Furthermore, Figueiredo, Meidanis, and Mello conjectured
in the late 1990s that all chordal graphs of odd maximum degree ∆ have chromatic index equal to ∆. Using a new technique
called multi-pullback, we show that this conjecture holds for chordal ∩ proper circular arc graphs of odd ∆.
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1 Introduction

Circular arc graphs are the intersection graphs of a finite set of arcs on a circle. If no arc properly contains
another, the graph is said to be a a proper circular arc graph. If all the arcs have the same length, the graph is
said to be a unit circular arc graph. Although the class of the circular arc graphs is well studied, very little is
known about deciding the chromatic index of these graphs, except for the subclass consisting of the n-vertex
proper circular arc graphs of odd maximum degree ∆ which have n 6≡ 1,∆ (mod (∆ + 1)) and a maximal
clique of size two, or which have n ≡ 0 (mod (∆ + 1)) [1].

Circular arc graphs are a superclass of interval graphs. An important difference between these two classes
is that interval graphs have a linear number of maximal cliques (in the number of vertices), while circular arc
graphs may have an exponential number of maximal cliques. This may suggest why some problems are more
difficult for circular arc graphs than for interval graphs. For instance, vertex-coloring is polynomial for interval
graphs, but NP-hard for circular arc graphs [4].

The NP-hard edge-coloring problem asks the minimum amount of colors needed to color the edges of a
graph in such a way that no two adjacent edges receive the same color. This amount is called the chromatic
index of G, denoted χ′(G). By definition, χ′(G) ≥ ∆(G) for any graph G. The celebrated Vizing’s Theorem
brings that χ′(G) ≤ ∆(G) + 1 [8]. Therefore, we say that a graph is Class 1 if χ′(G) = ∆(G), or Class 2 if
χ′(G) = ∆(G) + 1. For instance, a complete graph Kn is Class 1 if n is even, and Class 2 otherwise.

We solve the edge-coloring problem in the class of proper circular arc ∩ chordal (PCAC) graphs of odd
maximum degree, that is, we prove that all of these graphs are Class 1, and our proof yields a polynomial-time
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exact edge-coloring algorithm for these graphs. It is important to remark that even for proper interval graphs
(often referred to as indifference graphs in the literature), an important subclass of proper circular arcs, the
problem is solved only for graphs with odd maximum degree, by a technique called pullback [2]. Later, this
technique was also used to solve the edge-coloring problem for all dually chordal graphs (a superclass of interval
graphs) of odd maximum degree [3].

To solve the problem for the PCAC graphs of odd maximum degree, we design a new technique called
multi-pullback, which we suspect that can be used for other classes, including the indifference graphs with even
maximum degree.

This paper is organized as follows: the remaining of this section is dedicated to some preliminary definitions;
Section 2 discusses the pullback functions introduced in [2] and presents our multi-pullback functions; then,
Section 3 presents our results on PCAC graphs using the multi-pullback functions introduced in Section 2.

Preliminary definitions
In this paper, graph-theoretical definitions follow their usual meanings in the literature. In particular,

G = (V (G), E(G)) is a graph, V (G) is the set of vertices of G and E(G) is the set of edges of G. An edge uv
is said to be incident to the vertices u and v, and the vertices u and v are said to be neighbors. The degree of
a vertex u, denoted dG(u), is the number of edges that are incident to the vertex u. The maximum degree of
G is ∆(G) := max{dG(u) : u ∈ V (G)}. The open neighborhood of a vertex is the set NG(u) := {v : uv ∈ E(G)}.
The closed neighborhood of a vertex is the set NG[u] := NG(u) ∪ {u}. We say that a graph H is a subgraph
of G if V (H) ⊂ V (G) and E(H) ⊂ E(G). Let U ⊂ V (G). The subgraph of G induced by U is defined
by G[U ] := (U, {uv ∈ E(G) : u, v ∈ U}). Let F ⊂ E(G). The subgraph of G induced by F is defined by
G[F ] := ({u : uv ∈ F for some v ∈ V (G), F ). The core of a graph is the subgraph induced by its vertices of
maximum degree. The semi-core of a graph is the subgraph induced by the vertices of maximum degree and
their neighbors. A k-edge-coloring of G is a proper edge-coloring of G with k colors, that is, an assignment
of colors to the edges of a graph in such a way that no two adjacent edges receive the same color and that at
most k colors are used. A set U ⊂ V (G) is said to be a clique if it induces a complete graph in G. A clique is
said to be maximal if it is not properly contained in any other clique. A simplicial vertex in G is a vertex that
belongs to only one maximal clique of G.

2 Pullback and multi-pullback functions

A function f : V (G) → V (G′) is said to be a pullback if it is a homomorphism (i.e. for all uv ∈ E(G) we have
f(u)f(v) ∈ E(G′)), and if f is injective when restricted to NG[u] for all u ∈ V (G).

Lemma 2.1 ([2,3]) If f is a pullback from G to G′ and λ′ is an edge-coloring of G′, then the function
λ(uv) := λ′(f(x)f(y)) is an edge-coloring of G.
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Figure 1. Example of a pullback from an indifference graph G to G′ := K4

Definition 2.2 Let G = (V,E) be a graph with E 6= ∅ and let {E1, . . . , Et} be a partition of E. A multi-
pullback F from G to a collection of t graphs {G′

1, . . . , G
′

t} is a collection of t functions {f1, . . . , ft} such
that:

(i) fi is a pullback from G[Ei] to G′

i;

(ii) there is some positive integer k and some collection of k-edge-colorings λ′

1, . . . , λ
′

t of G′

1, . . . , G
′

t, respec-
tively, such that the edge-colorings obtained from λ′

1, . . . , λ
′

t and the pullbacks f1, . . . , ft do not create
any color conflict on the edges of G, that is, the function defined by

λ(uv) := λ′

i(fi(u)fi(v)) , being Ei the set of the partition to which uv belongs,

is a proper k-edge-coloring of G.
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In Definition 2.2, observe that disjointness is assumed only among the sets of the partition {E1, . . . , Et},
but not among the domains of the functions in F , which are sets of vertices, not edges. This means that a
single vertex u can be mapped to a vertex v of G′

i by a pullback fi and to a different vertex w of G′

j by a
pullback fj , depending on which role we want u to assume in order to color each edge incident to u. The
Figure 2 shows an example of a collection of functions {f1, f2, f3} which can be verified to be a multi-pullback
from a PCAC graph G with ∆ = 5 to the K6, under the 5-edge-colorings λ′

1 = λ′

2 = λ′

3 =: λ′ of the K6 defined
by

λ′(uv) =

{

(u+ v) mod ∆ , if neither u nor v is ∆;

(2v) mod ∆ , if u = ∆.
(1)

G
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Figure 2. Example of a multi-pullback from G to the K6 under the 5-edge-coloring defined in (1). Observe that the vertex marked
with an asterisk is mapped to two distinct vertices by f2 and by f3, with no color conflict being created.

3 The result

Proper circular arc graphs have the consecutive 1’s property [7], i.e. there is a circular order for the vertices in
such a way that for every edge −→uv under the clockwise orientation of the edges along this order, all the vertices
clockwise between u and v induce a complete graph in the original undirected graph. This order is called a
proper circular arc order.

Lemma 3.1 Let G be a PCAC graph of odd maximum degree. If G has a universal vertex, or if the semi-core
of G is an indifference graph, then G is Class 1.

Proof Observe first that if G has a universal vertex, then G is a subgraph of the K∆(G)+1 and hence Class 1.
On the other hand, if the semi-core of G is an indifference graph, then G is also Class 1 because the chromatic
index of a graph is equal to the chromatic index of its semi-core [5], and because all indifference graphs of odd
maximum degree are Class 1 [2]. ✷

Lemma 3.2 below provides a full characterization of the structure of proper circular arc ∩ chordal graphs
which do not satisfy Lemma 3.1.

Lemma 3.2 If G is a PCAC graph of odd maximum degree with no universal vertex such that the semi-core S
of G is not an indifference graph, then S = G and there is a 6-partition {A,AB,B,BC,C,AC} of V (G) which
splits any proper circular arc order of G into six contiguous subsequences of the order in a manner that, being
the cardinality of each set in the partition denoted by the corresponding lowercase letters:

(i) the graph G has exactly four maximal cliques, which can be given by XA := {AB ∪ A ∪ AC}, XB :=
{BC ∪B ∪AB}, XC := {AC ∪ C ∪BC}, and Y = {AB ∪AC ∪BC};

(ii) XA is assumed without loss of generality to be of maximum size among the three cliques which appear
contiguously in the proper circular arc order (that is, all the vertices in each of these cliques appear
consecutively in the order), which are the cliques XA, XB, and XC ;

(iii) all the vertices in AB and in AC have degree ∆(G) in G;
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(iv) ∆(G) = a+ b+ ab+ bc+ ac− 1 = a+ c+ ab+ bc+ ac− 1;

(v) a ≥ b = c;

Proof Let σ be a proper circular arc order of G and let (X0, X1, · · · , Xt−1) be the maximal cliques that
appear contiguously in σ. We must have t ≥ 3, otherwise it can be straightforwardly shown that G would be
an indifference graph.

We claim that there is no Xi such that Xi ⊂ X(i−1) mod t ∪ X(i+1) mod t. If this claim holds, an induced
cycle of size t is easily obtained by choosing one vertex from each Xi ∩X(i+1) mod t. Because G is chordal and
it is not an indifference graph, we have t = 3. These three maximal cliques of G that appear contiguously in
σ are XA, XB , and XC , respectively.

Since G is not an indifference graph, we have that the intersection of two consecutive cliques in σ is not
empty (otherwise in any circular arc model of G there would be a point on the circumference which would
be uncovered by any arc). We define the sets AB := XA ∩ XB , BC := XB ∩ XC , and AC := XA ∩ XC ,
and also A := XA \ (AB ∪ AC), B := XB \ (AB ∪ BC), and C := XC \ (AC ∪ BC). As all the vertices in
AB ∪ BC ∪ AC are neighbors of each other, there is a fourth maximal clique Y := AB ∪ BC ∪ AC that does
not appear contiguously in σ.

Up to this point, we have proven that if the claim holds then there are at least three maximal cliques (XA,
XB , and XC) which appear contiguously in σ, as well as the fourth clique Y . We have also proven that the
sets AB, BC, and AC are not empty. We can further demonstrate that the sets A, B, and C are non-empty,
which is equivalent to prove that each of the cliques XA, XB , and XC has a simplicial vertex. If A = ∅, then
every vertex of BC is universal (see Figure 3), contradicting the hypothesis. The non-emptiness of B and C
follows analogously.

BC

AB AC

A

B C

XA

XB XC

Figure 3. Structure of a PCAC graph according to Lemma 3.2.

Now we shall prove the claim and that XA, XB , and XC are the only maximal cliques contiguously in σ.
Assume for the sake of contradiction that there is a fourth maximal clique XD contiguously in σ. Since the
intersections AB, BC, and AC are all non-empty, the clique XD must be contained in the union of two cliques
from {XA, XB , XC}. Without loss of generality, XD ⊂ XA ∪ XB . By the same arguments presented above,
the four sets (XD ∩XA) \ (XB ∪XC), (XD ∩XB) \ (XA ∪XC), (XB ∩XC) \XD, and (XC ∩XA) \XD are
all non-empty. Ergo, by choosing four vertices, one from each of these sets, we obtain an induced cycle of size
four, contradicting the fact that G is chordal. Hence, we have proven that XD cannot exist and also that the
claim holds. Furthermore, since all the vertices in A, B, and C are simplicial, the only maximal clique which
can be formed not contiguously in σ is the clique Y (recall Figure 3).

Assuming without loss of generality that XA is of maximum size among XA, XB , and XC , it remains
to demonstrate (iii)–(v). Clearly, the vertices of maximum degree in G are in AB ∪ BC ∪ AC. We shall
demonstrate that either AB and AC, or all the sets from {AB,AC,BC} have vertices of maximum degree
(this proves (iii)). If only one set I from {AB,AC,BC} has vertices of maximum degree in G, then surely
I 6= BC, because of the assumption on the cardinality of XA. If I = AB, then the semi-core of G is an
indifference graph, because the order B,BC,AB,AC,A is an indifference order 7 . The case I = AC follows
analogously. Remark that this also proves that the semi-core of G equals G.

Notice that vertices which belong to the same set from {A,AB,B,BC,C,AC} have the same closed neigh-
borhood and hence the same degree. Let u be a vertex in AB, v a vertex in AC, and w a vertex in BC. We

7 An indifference order of an indifference graph is a linear order of the vertices so that vertices belonging to the same maximal
clique appear consecutively in this order [6].
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know that ∆(G) = dG(u) = dG(v) ≥ dG(w) and also that:

dG(u) = bc+ b+ ab+ a+ ac− 1 ;

dG(v) = ab+ a+ ac+ c+ bc− 1 ;

dG(w) = ab+ b+ bc+ c+ ac− 1 .

From these equations, we have (iv) and also that b = c and a ≥ b, completing the proof of (v). ✷

Theorem 3.3 Every proper circular arc ∩ chordal graph with odd maximum degree is Class 1.

Proof In view of Lemma 3.1, let G be a PCAC graph of odd maximum degree with no universal vertex such
that the semi-core of G is not an indifference graph. Let also {A,AB,B,BC,C,AC} be a partition of V (G)
as in Lemma 3.2 (recall Figure 3). Let {E1, E2, E3, E4} be the partition of E(G) defined by:

E1 := E(G[A ∪AB ∪B ∪BC ∪AC]) ;

E2 := {uv : u ∈ BC and v ∈ C} ;

E3 := {uv : u ∈ AC and v ∈ C} ;

E4 := E(G[C]) .

Let V (K∆(G)+1) = {0, . . . ,∆(G)} and V (Kc) = {0, . . . , c−1}. We shall construct a multi-pullback {f1, f2, f3, f4}
with fi : Vi → G′

i, for all i ∈ {1, . . . , 4}, being

V1 := A ∪AB ∪B ∪BC ∪AC ,

V2 := BC ∪ C ,

V3 := AC ∪ C ,
V4 := C ,

and being G′

1 := G′

2 := G′

3 := K∆(G)+1 and G′

4 = Kc, under the edge-colorings λ′

1, λ
′

2, λ
′

3, λ
′

4 defined by
λ′

1 := λ′

2 := λ′

3 := λ′, wherein λ′ is the ∆(G)-edge-coloring of the K∆(G)+1 defined in (1), and λ′

4 is the
∆(G)-edge-coloring of the Kc defined by

(u, v) = (2ac+ a+ c+ bc+ u+ v) mod ∆(G) .

Remark that λ′ is an optimal edge-coloring of the K∆(G)+1 (which is Class 1 since ∆(G) is odd) and that λ4

is surely not optimal, since c < ∆(G)− 2.
Remark by Lemma 3.2 that |V1| = ∆(G) + 1. In order to define f1, take any bijective labeling function

satisfying:

f1(AC) = {0, . . . , ac− 1} ;

f1(A) = {ac, . . . , ac+ a− 1} ;

f1(B) = {ac+ a, . . . , ac+ a+ b− 1} ;

f1(BC) = {ac+ a+ b, . . . , ac+ a+ b+ bc− 1} ;

f1(AB) = {ac+ a+ b+ bc, . . . , ac+ a+ b+ bc+ ab− 1} .

Here, we use f1(Z) to denote
⋃

z∈Z{f1(z)}. Notice that we have used ∆(G)+1 distinct labels, from 0 to ∆(G),
and it is easy to realize that this labeling is a pullback from G[E1] to the G′

1.
It remains to color the edges incident to the vertices of C, that is, it remains to define f2, . . . , f4. Remark

that G[E2 ∪ E3] is a bipartite graph, with parts C and BC ∪ AC, and G[E4] is a complete graph. Figure 4
represents the sets BC, C, and AC.

Recall that G[E2] is the bipartite graph induced by the edges between AC and C, and notice that the edges
incident to vertices in AC are not incident to vertices in B. This is why we can define f2 by assigning to the
vertices of AC the same labels which they have been assigned by f1, and to the vertices of B the same labels
assigned to the vertices of C by f1, in the manner that we clarify in the sequel. As b = c, there will be enough
labels for all the vertices of C.

Analogously, the graph G[E3] is the bipartite graph induced by the edges between BC and C. Notice that
vertices in BC are not neighbors of vertices in A, therefore, the labels assigned by f1 to the vertices in A can
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AC C BC

Figure 4. The sets BC, C, and AC

be reused by f3 to the vertices in C (in the manner that we clarify in the sequel), if the vertices in BC are
assigned by f3 the same labels which they have been assigned by f1. Recall that a ≥ c, so there will be enough
labels.

To complete the proof, it remains only to define which are the three labels assigned to each vertex in C by f2,
f3, and f4, and to show that the edge-coloring obtained through these pullbacks do not create color conflicts in
G. Let C = {u0, . . . , uc−1}. We define for each ui ∈ C the triplet (f2(ui), f3(ui), f4(ui)) := (ac+a+ i, ac+ i, i).
Let λ be the ∆(G)-edge-coloring of G as in Definition 2.2. We show that λ is a proper edge-coloring, for which
it suffices to show that all the colors of the edges incident to the same vertex ui in C are different.

The colors of the edges incident to ui can be verified to be as follows (all the colors listed below are
mod∆(G), but this information is omitted for a clear description):

• the colors of the edges of G[E2] that are incident to ui are the ac colors from the set

{ac+ a+ i, . . . , 2ac+ a+ i− 1} ;

• the colors of the edges of G[E3] that are incident to ui are the bc colors from the set

{2ac+ a+ b+ i, . . . , 2ac+ a+ b+ bc+ i− 1} ;

• the colors of the edges of G[E4] that are incident to ui are the c− 1 colors from the set

{2ac+ a+ b+ bc+ i, . . . , 2ac+ a+ 2b+ bc+ i} \ {2ac+ a+ b+ bc+ 2i} ;

Notice that, at the edges incident to ui, the b colors between (2ac + a + i) mod ∆(G) and (2ac + a + b + i −
1) mod ∆(G) are not used, as well as the color (2ac+ a+ b+ bc+2i) mod ∆(G). As ac+ b+ bc+ c ≤ ∆(G) =
ac+ bc+ ab+ a+ c− 1, there is no color conflict at ui.

Since we have shown that there is no color conflict at any vertex ui ∈ C, we conclude that G is Class 1. ✷
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